the dssociation for computdtional heresy

presents

3 record of the proceedings of

SIGBOVIK 2024

the eighteenth annual intercalary robot dance party in celebration
of workshop on symposium about 26¢h birthdays; in particular,
that of harry q. bovik

cover art by alexey crusoe cover imdge by chatdll

carnegie mellon university
pittsburgh, pa
april 0, 2024

Association for
Computational Heresy

Advancing computing as Tomfoolery & Distraction

SIGBOVIK

A Record of the Proceedings of SIGBOVIK 2024
ISSN 2155-0166

April 0, 2024

Copyright is maintained by the individual authors, though obviously this all gets posted to the
Internet and stuff, because it’s 2024.

Permission to make digital or hard copies of portions of this work for personal use is granted;
permission to make digital or hard copies of portions of this work for classroom use is also granted,

but seems ill-advised. Abstracting with credit is permitted; abstracting with credit cards seems
difficult.

Additional copies of this work may be ordered from Lulu; referto http://sigbovik.org for
details.

11

@ SIGBOVIK 0x2024

Message from the Organizing Committee

time is small.
brevity is the wit of soul.
SIGBOVIK 2024 was full of plusplusgood articles.

A.C., H.P,JM., T.7, S.B., S.M., and H.Q.B. were actively involved in publication and organiza-
tion.

thus marks the end of the proceedings for this year.

-the SIGBOVIK ’°24/7

11

v

SUPPLEMENTAL APPENDIX 1

|A: WE THE PEOPLE (plus maybe our pets and our favorite socks)| 5
(1 Programming Socks: Is it high time for thigh-highs? An investigation into the |
| perceived unreasonable effectiveness of Programming Socks on productivity |
| levels in the field of Software Engineering 6
[2 Charge of the PhDs oo 12
[3 Selected investigations into egg logic: a personal perspectivel 13
{4 Unconventional Commits: An Exploration Beyond the Mundane| 18
[Getting Up And Running the A — Calculus| 23
(6 Xtremely Delighttul Random Development Environment and Dragons: A |
| Novel Way of Programming| 43
[7 The Ballmer Peak: An Empirical Search| 48
(8 What is your dog likelihood?| 0000000 55
[9 Gender 1s Complex: pulling the Laplacian EigenGender tfrom relationship |
| graphs| L 60
B: IN ORDER (or maybe out of order)| 69
(10 We Found the Best Shuffled Deckl. 70
(1T Proving P = NP thanks to the wondertul work of Reviewer T'wo| 83
12 Gotta Collect 'em AIllo o 86
(13 Mining for Gold Coins| 94
(14 An introduction to bogoceptionsort and its performance compared to ordinary |
| bogosort| 97
(15 Systems for Rating Rating Systems with Rating Systems|. 100
(16 Just How Random?: Introducing PROJECT S.P.O.R.K| 107
|C: TO (pronouced “two”)| 121
(17 Sleepy Dwarts Somniloquy on Drowsy Logic Chip Design|. 122
(18 The Magic School Bus Travels to Sub-threshold Voltagel 125
[19 Badness 0 (Epsom’s version)| 131
R0 Badness 0 (Knuth’s version)|. 145
21 Flaccid Drives: Storing Arbitrary Data in SIGBOVIK Articles|. 161
1 " 1 IVES™| © v o e e e 163
D: FORM A MORE PERFECT UNION (between machine and man)| 169
23 Solving C’s biggest flaw - Hemispheric divergence| 170
24 An empirical performence evaluation between Python and Scratch| 174
25 Exchange Traded Neural Network| 176
26 Minmaxing the energy efficiency ot biological computingl 180
[27 Advancing Consensus: Automated Persuasion Networks for Public Beliet |
[Enbancementl 188
28 Grounding Language Models to their Physical Presencel 195

[29 Quantum Disadvantage: Simulating IBM’s 'Quantum Utility’ Experiment

with a Commodore 64|

|[E: ESTABLISH JUSTICE (for Gotham and other places)| 207
[30 Saving the legacy of Hero Ibash: FEvaluating Four Language Models for |
[Aminoacianl L e 208
[31 Stale Diffusion: Hyper-Realistic 5D Movie Generation using Old-school Meth- |
C odd . . . 214
[32 Guidelines for the Development of Irresponsible AIl 219
|F: ENSURE TRANQUILITY (insert evil laugh here$| 223
[33 Just-too-late compilation - An examination of a post-emptive compilation |
| techniquel e 224
B4 ImgomgtoHurl|. 226
85 We Have Serverless at Homel, 231
B6_ USB-*: New Extensions for the Universal Serial Busl 235

{37 This SSH servers never gonna give you up (but it will probably let you down)|237

[38 Towards an Al-Exclusive Higher Education System| 242
G: PROVIDE FOR THE COMMON SIGBOVIK 245
[39 The Anything Prover: How to prove Anythingl 246
{40 The Perception and Access of Written Silence] 247
{41 An Empirically Verified Lower Bound for The Number Ot Empty Pages |
| Allowed In a SIGBOVIK Paper| 249
(42 Shunting Work: A Demonstration| 252
M3 Title of PDEl . . 0 0 0 0 oo 253
44 AMOR: Ambiguous Authorship Order| 257
45 Debunking the April 1 model of SIGBOVIK occurrences| 258
H: PROMOTE THE GENERATIVE WELFARE 275
46 An Optimal Control Approach to Graphic Design|. 277
U7 ITF;)LM: Innocuous Table Formatting ;) with Language Models| 284
48 Can Machines Feel? Novel Affective Layers for Pictorial Preprocessing and |
| Scalar Fusion in CNN Representations| 286
49 Beyond Prompt Engineering: Tardy Engineeringl 295
O CamelGPT: A Viable Small Language Model 296
b1 Revealing AGI Risks with a Dropot Inkf{ 303
[b2 Exploring the Viability of Utilising Multi-Modal GPT Models with Local |
| Hardware for Image Text Detection| 307
[p3 Bean There, Done That: Computer-Assisted Design of Bean Sculptures| 310
b4 Fractal Overdrive: An Aesthetic Fivaluation of Numeric Frrorl 316
555) Diffusion Local Time: hard real-time multilingual data visualization via |
| multimodal-LLM generative Al on heterogeneous edge devices for extremely |
| high-impact chronometry and extremely low-cost neurological diagnostics| . . 325
[b6 Undergrads Are All You Havel. 338
5 343
B8 Are Centaurs Actually Half Human and Half Horse”| 367

I: AND SE RE 371
b9 You Shall Tacltly Understand the Goals ot Thls Paper| 372
[60 A computer-assisted proof that e is rational 375
(61 A Brief History of Gender Theory: or, Much Ado About Bathrooms| 380
62 DeterMNISTic: a Sater Way to Classity Handwritten Digits| 390
J: RIN TLHOBQU’| 393
[63 How does the Al community pronounce epoch? A semirigorous sociolinguistic |
| SUTVEY| . . o o o o e i e e e e e e e 394
[64 Toki Pona and Orders of Semantic Completeness| 398
(65 Introducing Supernatural Language Processing (SNLP)| 411
66 SMS: Sending Mixed Signals] 0000 416
IK: TO OURSELVES (and those named like us)| 423
[67 Et Al(ex): Examining the impact of Alexs on the field of computer science] . 424
68 An Abundance of Katherines: The Game Theory of Baby Namingl 427
I: AND OUR POSTERITY 437
69 A Genius Solution: Applications of the Sprague-Grundy Theorem to Korean |
| Reality TV 438
[70 A Secondhand Understanding of Reality: Infinite Craft Subtleties| 448
M: DO ORDAIN AND ESTABLISH..... ' MERICAAAA] 469
[71 As American as Apple Pie: A Search to Define Americanness in the Context |
| of all Apple Pie Recipes on the Internet|. 470

A

WE THE PEOPLE (plus maybe our pets and our
favorite socks)

(1 Programming Socks: Is it high time for thigh-highs? An inves- |
| tigation into the perceived unreasonable effectiveness of Pro- |
| gramming Socks on productivity levels in the field of Software |
| Engineering|

lan F.V.G. Hunterl

(2 Charge of the PhDs|
[Altred, Doctorate Tennyson|

(3 Selected investigations into egg logic: a personal perspective|
lJana C. Dunfield|
(4 Unconventional Commits: An Exploration Beyond the Mundane|

|[H. Dog, T. H. Underpoot, and P. J. Ox, PhD)|

(5 Getting Up And Running the A\ — Calculus|
|George(s) Zakhour|

[6 Xtremely Delightful Random Development Environment and
| Dragons: A Novel Way of Programming|

[Refracted Light System[s Incorporated]

[7 The Ballmer Peak: An Empirical Search|
| | :‘ I A | I

(8 What is your dog likelihood?|

|Gemmechu Hassena, Simret Gebreegziabher, and Bharath Hariharanl

(9 Gender 1s Complex: pulling the Laplacian EigenGender from
| relationship graphs|

Anonymous

Programming Socks: Is it high time for thigh-highs? An
investigation into the perceived unreasonable effectiveness of
Programming Socks on productivity levels in the field of Software
Engineering

lan F.V.G. Hunter
Unaffiliated /Disowned, Ireland

Abstract
Programming Socks are an essential piece of equipment for any respectable software engineer. How-
ever, there is limited research on the level of impact that they have on practitioners. In this paper we
investigate the claim that Programming Socks are a low-cost high-impact upgrade to engineers’ wardrobes
and find that they have much untapped potential.

1 Introduction

Programming Socks are thigh length or “Thigh-High” socks, commonly striped but not as a critical necessity
(See Figure 1 for an example). They have been long-hailed as essential items to improve programmer
performance, code quality as well as job satisfaction.

Other related items that are known to be useful for programming include: cat tails, cat ears, mittens
and mini-skirts.! Surprisingly, garments traditionally designed for the duties of a French housemaid are
purportedly equally effective — if not more so — in the realm of software development. According to
informal polls with select focus groups?, public opinion suggests that the attire helps to promote ‘clean code’
practises.

Other innovations of note include replacing the long-beloved practise of talking to rubber ducks to assist
in debugging issues[3]. A cuddlier substitute has been found in the popular Swedish furniture store IKEA.
The plush shark ”Blahaj” appears to be more appealing to both new and old developers alike. The new
practise of verbal debugging with these shark toys has been coined as “Blah-Blah-Bldhaj’3, but the term
has yet to catch on.

Figure 1: An example Amazon listing [1]. 900+ bought in the last month?. 4.4/5 average star rating

It is often misunderstood that the widespread disappointment over the open-souce event ‘Hacktoberfest’ was about the
removal of the complimentary participatory shirts, but the refusal to provide skirts, which would have been an investment into
open-souce quality for years to come.

%i.e. My friends

3by me, just now

4December 2023

2 Data Gathering & Analysis

A set of images were gathered of individuals posting online about their socks of choice in front of their

computer screen. Key attributes were gleamed from the data, using widely-available organic ocular systems.
5 6

Figure 2: Samples from the dataset.

A significant source of “feet pics” was on the social news aggregation site Reddit.com. While some
communities on Reddit are dedicated to the promotion of the practise (e.g. r/unixsocks/ [4]) there are
several examples of Programmer Socks under discussion in other areas of the website (e.g. r/brisbane [5] of
Australia)

3 Results and Analysis

3.1 Effects on Programming

The principal metric we wished to observe was whether programmers who wore Programming Socks were
truly as productive as expected. Figure 3 shows a breakdown of technical content on wearers’ screens. There
was a surprising lack of interactive development environments, text editors or other signs of code production.
However, the overwhelming majority of wearers had terminals visible, often with prominent ASCII art logos
in transgender or non-binary colour schemes”.

From this data, we can only conclude that either: Programming Socks have become more main-stream and
non-programmers wearing these socks are developing into programmers themselves — or that Programming
Socks are so effective that the majority of wearers in our dataset simply finished their software and did not
need to do any additional coding. Either way, this result is a clear endorsement of their usage. Further
research is desirable to investigate these effects when paired with the additional attire mentioned in Section
1.

5Note that it is unclear if the effects of Programming Socks extend to data collection, which may have effected the quality
of the dataset.

6This is the reason I had all these pictures of feet on my computer, I swear.

7Actually all of the terminal logos in the dataset were non-binary. I suppose that’s because it’s hard to draw things with
only ones and zeroes without having a very zoomed out screen

Code Visible

Terminal Open

Nothing Of Technical Note

Figure 3: Evidence of coding on-screen

3.2 Colour Preference

A wide variety of Programming Socks are available. However, there are some general trends in the space.
Striped socks are significantly more popular than non-striped socks (As shown in Flgure 4) and there is a
clear preference for some basic colours 5 - black, white, pink.

Striped

Non-Striped

Figure 4: Popularity of Stripes

It was surprising to discover that rainbow socks were not chosen as often as other colour combinations,
because it is obviously the best choice.

25
20 - =
15 i
10 |- *
L H 0 0 0 m m 0
Black White Pink Blue Red Purple Rainbow

Figure 5: Colour Preferences

4 Appendix

We include other findings of interest below.

4.1 Amazon Search Listings

When searching for Programming Socks on Amazon.com, the majority of listings are correctly indexed as
thigh-high socks. There are a limited amount of novelty socks with a programming theme ® and an equal
amount of novelty socks that were unrelated to programming”. There were also a few shoes and gloves.

We decided to not divide Programming Socks into sub-categories, such as ones that had paw pads on
their toes, fluff and glitter or small teddy bear faces at their peak.

Novelty On-Topic

Programming Socks

a Other

Novelty Off-Topic

Figure 6: Amazon Listings for Programming Socks

84] will NOT fix your computer”, other hilarious jokes and socks with logos of programming languages, code, etc.
9Such as socks that make your feet look like chicken’s feet, or to fool people into thinking your feet are being eaten by
infeasibly proportioned crocodiles.

4.2 Interest in Programming Socks

Google Trends [6] gave us some interesting insight into the widespread appeal of Programmer Socks. They
are particularly of interest to Western countries (United States, Australia, United Kingdom) but also Eastern
Europe (Poland, Russia) (See Figure 7).

Interest by region @ Region v+ & <> <
1 United States |
2 Canada |
3 Poland |
4 Russia |
o5
’ 5 Australia |

Figure 7: Interest in 'Programming Socks’ in different countries

Programming Socks have become increasingly of interest since the early 21st century (2018) and continue
to grow (Figure 8. As the world consistently increases the number of software developers in its population[7]
and the benefits of Programming Socks become better known, this number will surely continue to skyrocket.

[«

<> <

Interest over time @

Note

Note

Jan 1, 2004 Dec 1, 2009 Nov 1, 201 Oct1,2021

Figure 8: Popularity of the "Programming Socks’ search term over time (worldwide)

The data ten years prior to that inflection point is particularly interesting. Interest was much higher and
varied in the years 2004-2006. We can only conclude that Programming Socks may have a deeper history
than previously known, possibly a well guarded secret by the programming elite, or maybe a handful of
developers in the know who made irregular spike purchases of huge orders in order to save on shipping costs.

10

5

References

References

(1]

Amazon.com: DRESHOW Extra Long High Thigh Socks Striped Over Knee Thin Tights Long
Stocking. Available at: https://www.amazon.com/DRESHOW-Striped-Tights-Stocking-Warmer/dp/
BO96M3LMCT/ (Accessed: 27 January 2024).

Amazon.com: Programming Socks. Available at: https://www.amazon.com/programming-socks/s?k=
programming+socks (Accessed: 27 January 2024).

Debugging, R.D. Rubber duck debugging, — Rubber Duck Debugging — Debugging software with a rubber
ducky. Available at: https://rubberduckdebugging.com/ (Accessed: 27 January 2024).

KDESOCKS-bin/Lemmmmmmmmmmysocks e R/unixsocks (no date) reddit. Available at: https://
old.reddit.com/r/unixsocks/ (Accessed: 27 January 2024).

(The quest for Programming Socks: R/brisbane - reddit. Available at: https://www.reddit.com/r/
brisbane/comments/urbqOc/the_quest_for_programming_socks/ (Accessed: 27 January 2024).

Programming Socks - Google Trends. Available at: https://trends.google.com/trends/explore?
date=all&q=programming%20socks&hl=en (Accessed: 27 January 2024).

Number of software developers worldwide in 2018 to 2024 https://www.statista.com/statistics/
627312/worldwide-developer-population/ (Accessed: 27 January 2024).

11

Charge of the PhDs

Alfred, Doctorate Tennyson

I \%
Half a year, half a month, Deadline to right of them,
Half a day deadline, Therapy to left of them,
All in the valley of Academia Sleep left behind them
Rode the six hundred. Depressed and traumatized;
"Forward, the PhDs! Swamped with thesis writing hell
Apply for the grants!" he said. While mastering out many fell.
Into the valley of Academia They that had taught so well
Rode the six hundred. Came through the jaws of Academia,
Back from the mouth of hell,
11 All that was left of them,
"Forward, the PhDs!" Left of six hundred.
Was there a man dismayed?
Not though the student knew VI
Someone had blundered . When can their glory fade?
Theirs not to make reply, O the wild papers they made!
Theirs not to reason why, All the world wondered.
Theirs but to publish and cry. Honour the research they made!
Into the valley of Academia Honour the PhDs,
Rode the six hundred. Noble six hundred!
ITI

Deadline to right of them,
Poverty to left of them,
Unemployment in front of them
Overworked and malnourished;
Swamped with meetings and conferences,
Boldly they studied and well,
Into the jaws of Academia,
Into the mouth of hell
Rode the six hundred.

Iv
Published all their proofs bare,
Published as rebuttals were quelled
Questioning the reviewers there
Attending a conference, while
All the world wondered.
Plunged in the faculty track
Right through the hiring decisions;
Teaching and Research
Powered with junior faculty grants
Submitted and published.
Then they earned tenure, but not
Not the six hundred.

12

Selected investigations into egg logic:
a personal perspective

Jana C. Dunfield

somewhere in Katarokwi-Kingston,
unless she’s somewhere else

\today

Content note

This paper discusses egg logics, which are known to the State of California to exacerbate denial of
one’s gender.

This paper also discusses personal health issues, street harassment, uses a disputed term be-
cause it was literally used in an employment equity survey but also because I get to use that term
occasionally (as a treat), and contains possibly unhealthy amounts of self-deprecation.

1 A judgmental reconstruction of my egg logic

Ashley (2019) defines transitude! as “the fact of being trans”. The traditional judgment form of
transitude asserts that a particular individual is trans. Examples:

1. Jana is trans

2. Jana is extremely trans

1.1 Syllogism of self-deprecation

By deploying probabilistic denial, I obtained (Dunfield 2005) a classic syllogism of judgmental non-
refinement:

(1a) Only 1 in 1000 people are trans. (major premise)

(1b) Being unusual is interesting. (minor premise)

(1selfdep) I am not interesting. (self-deprecation condition)
(1m) Therefore, I am not trans. (motivated conclusion)

First, let us observe that the major premise is false. (I will not dignify the 2021 Canadian census
by citing it properly, but it did show that even the subset of trans people who are willing to directly

YTransness is synonymous, but way less fun to write.

13

inform a national government that they are trans, possibly also outing themselves to their entire
household, is much greater than 0.1%.)

Now consider the self-deprecation condition, the sine qua non of the syllogism. Why did she?
assume she couldn’t be interesting? Because she wasn’t sure she existed. If I barely existed, how
could I be interesting?

By this specious reasoning, admissible in egg logic, I obtained the motivated conclusion.

1.2 Bayes’ rule, or, how did | pass Machine Learning on the first try?

Let us aggravate the underestimation of trans people (cf. (1a) above), by supposing that only 1 in
1000000 people are trans. The structure of the judgmental refinement syllogism does not change;

7y

we may add “extremely”, “very”, etc., obtaining e.g. “Being extremely unusual is very interesting”.
The logic remains: not many people are trans, so the probability that I am trans is low.

Similarly, extremely few people are me. By egg logic, the probability that I am me is one in
several billion. But the actual probability that I am me given that I am me is 1.

The probability that I am trans given that I am trans is 1.

1.3 Syllogism of self-preservation

(2a) Pittsburgh in 2005 is not the safest place and time for transitude. (major premise)
(2b) I am living in Pittsburgh in 2005. (minor premise)
(2¢) I would not be safe. (conclusion)

Unlike the syllogism of self-deprecation, this syllogism has some legitimate structure. However, I
failed to elaborate an implicit assumption:

(2no) Being trans is not important. (central fallacy)

I don’t know if I would have been able to do anything about being trans in 2005. But I wish I'd
known.

1.4 Egg induction and dream logic

Eventually, I accepted that the main proposition (Hauptsatz) of transitude, “I am trans”, was true
or at least plausible. In egg logic, however, the mere acceptance of this proposition does not entail
doing anything (for example: saying any actual words to anyone) about one’s transitude.® Instead,
egg logic admits the following deduction:

(3a) I have survived so far without doing anything about my gender. (previous states premise)
(3b) 1Ido not need to do anything about my gender. (pseudo-induction)

I occasionally dream that I am late for an exam. In my dream logic, the mere fact that I am not
taking classes is usually insufficient to refute the possibility of being late for an exam. For example,
if the putative exam is for undergrad calculus, not taking classes is insufficient. Even having already
received an undergrad degree is not sufficient. No, my dream logic requires even more refutation:

2She gets to be herself.
3Use a hypothesis? In this economy?

14

I tell myself that I have a PhD, which is gatekept by having received an undergrad degree, so it is
triply impossible that I could be missing an undergrad calculus exam.

In egg logic, the hypothesis of being cis (Reed 2012) must be refuted again and again and again:
by a new pair of jeans and a flight attendant and a guest at breakfast, and by shouting into the void
of a zero-follower social media account until I almost heard myself.

All that wasn’t enough. I had to get within spitting distance of my own mortality to realize the
one thing I couldn’t bear: the idea of dying and being remembered as a man.

1.5 Author’s ongoing self-deprecation

One of my several current forms of self-deprecation is that I often think that being trans is the only
interesting thing about me.

Hey, I'm trying.

2 Sequents

It is the 1990s. Puberty happens. Puberty, I am told, is no fun for anyone. It’s not fun for me, but I
don’t understand why. 'm homeschooled, and I am very rarely harassed or bullied, but I can count
my friends on one finger. I very carefully ask myself if I'm gay, but I don’t feel attracted to men so I
conclude that I'm not. I read a bunch of feminist SF; I don’t remember why.

I survive.

It is 1998. I put a quote from Le Guin’s Introducing Myself on the door of my dorm room.* I
hear about a panel where a bunch of trans people are going to speak. I don’t go.> Later that month,
[visit my parents. I go for a walk. Some dude in a pickup truck yells a homophobic slur at me. Two
and a half hours later, I send an email to myself, criticizing Truck Dude for his faulty gaydar. I sign
the email “~j.”, as I always did.

It is 1999 and I won'’t get into all of that here but I write things in private text files like “There
was more to this story, but it doesn’t need telling now.”®

It is the 2000s. I don’t know who I am, but I'm not trans, because I did an egg logic with my
super PL brain and I'm not trans.

It is 201X. I almost check out Whipping Girl (Serano 2007) from the UBC library, but I am afraid
that someone will notice even though the library has self-checkout and I have my own office. Or so
I tell myself. A friend makes a relevant and accurate observation about how other people perceive
my gender, and I blow up, but he made the observation in email so I'm spared him having to see
me blow up.” I shouldn’t be offended at the suggestion that 'm gender non-conforming. There’s
nothing wrong with being gender non-conforming. There wouldn’t be anything wrong with being
trans, it’s just that I'm

“It was the part about the fish stick. There is no pattern here. Do not look in Section 3 for a pattern.

5 extracted my class schedule from the Internet Archive’s copy of my undergrad institution’s website and I didn’t
have any classes during it.

1 desperately wish I could go back in time—not to let her in on the trans thing, just to tell her to be less cryptic.

"I remembered stewing for hours or probably days about this before I could reply to him. I actually replied in under
an hour. It only felt like days.

15

It is 2017. I play Undertale and become emotionally invested in fan debates over whether the
player character is canonically nonbinary. And now it’s 2018. Am I nonbinary? That feels less off,
but not good. Am I a trans woman?

Oh shit

It is still 2018. I shorten my first name to an initial in the page header of a paper.® I probably
have cancer. I have surgery. It’s not a big deal, because I'm probably not here. I definitely have
cancer. I have surgery again.

It is, somehow, still 2018. I drink radioactive iodine. I get up to pee. I think I'm real.

It is 2019. I write ‘Jana” in the sand at Cascais and it's swept away. I start telling people.”? I
start an email draft called “epistemic logic” to keep track of who I've come out to.

It is 2020. The “epistemic logic” draft has 67 names on it. I come out at work!? and have
nightmares but it’s actually pretty okay.

It is 2021. The pandemic careens on. The state careens on (Gill-Peterson 2021).

It is 2024. The Canadian state stirs and careens towards careening.

I am real and I'm singing with my friends.

3 Related work

The closest I've come to submitting to SIGBOVIK was around 2013 when I started to write some-
thing arguing (mostly seriously) that we shouldn’t use “guys” to refer to mathematical abstractions.
The throwaway joke in the author block was a parenthetical “(is a guy)”, attached to my name.

I'm not sure that was a funny joke, but it’s funny that I thought it was a joke.

4 Future work

Possible future work includes the focusing logic of bureaucracy. For example, when you are told
that it’s hard to change the name on your PhD thesis because your thesis is a legal document, you
might be tempted to use conventional deduction to argue that a thesis is no more a legal document
than your algorithms homework was, or to argue that your PhD-granting institution is located in
a jurisdiction in which legal names aren’t a thing (Baker and Green 2021). However, experience
(Bohrer 2023) demonstrates that the use of a hypothesis is admissible in bureaucratic logic only
when the hypothesis is useful to the bureaucracy.

SWhen ACM eventually got around to manually editing PDFs to update my name, they didn’t really need to change
those headers. Saved you some work, ACM. You're welcome, ACM.

°“I'm more frightened and more happy than I've been in a long time. . ..I've been asking myself, ‘Is this worth turning
your life upside down?’ But maybe my life isn’t the right way up now.”

%0Out of some regrettable desire to improve my employer’s diversity stats, or as a bid for reassurance and official
recognition, or maybe as a gesture towards the effacement of my previous existence, I went to the trouble of re-filling
out my employer’s employment equity survey. That instrument included a bracing variety of transitudinous options,
including “transsexual”. Why not, I thought? It was only while writing this footnote that it struck me: if someone hasn’t
already made a graph of the number of self-identified transsexuals employed here over time, there is enough data to
make one.

16

Acknowledgments'!

I thank my past self, despite everything.
I thank my trans friends; I still took a while, but that’s okay. Blame is for PL nerds, right?
I thank all my friends.
Even if you're not my friend, you're getting thanked too. You're reading this.

References

Florence Ashley. Gatekeeping hormone replacement therapy for transgender patients is dehuman-
ising. Journal of Medical Ethics, 45(7):480-482, 2019. doi: 10.1136/medethics-2018-105293.
URL https://jme.bmj.com/content/45/7/480.

Austin A. Baker and J. Remy Green. There is no such thing as a “legal name”. Columbia Hu-
man Rights Law Review, 53(1):129-188, 2021. URL https://hrlr.law.columbia.edu/hrlr/
there-is-no-such-thing-as-a-legal-name/.

Rose Bohrer. Screen-sharing concurrency. In Proceedings of SIGBOVIK 0x2023, pages 220-225.
Association for Computational Heresy, 2023.

Jana Dunfield. Literally what was I thinking. Personal communication. From herself, 2005. Year
approximate.

Jules Gill-Peterson. The Cis State, April 2021. https://sadbrowngirl.substack.com/p/
the-cis-state.

Natalie Reed. The Null HypotheCis, April 2012. https://freethoughtblogs.com/nataliereed/
2012/04/17/the-null-hypothecis/.

Julia Serano. Whipping Girl: a transsexual woman on sexism and the scapegoating of femininity. Seal
Press, 2007.

Uhttps://tex.stackexchange.com/questions/571314/make-a-color-box-with-the-trans-pride-flag

17

Unconventional Commits: An Exploration
Beyond the Mundane

H. Dog
T. H. Underpoot
P. J. Ox PhD
Department of Physics
Institute for the Study of Advanced Procrastination
phys@whatsthat.overthere.edu

March 21, 2024

Abstract

This paper presents ”Unconventional Commits”, a pioneering al-
ternative to the Conventional Commits specification. We examine
methods of commit messaging that defy conventional norms, mar-
rying the methodical with the innovative. Our exploration aims to
expand the conceptual boundaries of code versioning, asserting the
significance of a multifaceted approach to enhancing the development
process.

1 Introduction

Traditional views on software development often emphasise efficiency and
pragmatism, as embodied by the Conventional Commits specification. This
perspective, however, neglects the diversity of thought and innovation inher-
ent in the field. ”Unconventional Commits” is introduced as a counterpoint
to this norm, embracing a broad spectrum of ideas to enrich the narrative of
code evolution.

18

2 Background

2.1 Conventional Commits

The Conventional Commits specification offers a structured framework for
commit messages, supporting version control and changelog generation. While
it provides clear benefits for automation and clarity, it may limit the scope
for creativity and individual expression.

2.2 The Perils of Joke Commits

Platforms like What the Commit demonstrate the use of humour in com-
mit messages, which, while amusing, can detract from the functional and
informational value of commit histories. Such practices are discouraged in
professional environments due to their potential to undermine the integrity
of the development process.

3 Proposing Unconventional Commits

The concept of ”Unconventional Commits” introduces novel methods for at-
taching messages to git commits, emphasising the balance between innovation
and integrity. The following methods are proposed:

3.1 The Novel Commit

This method involves encoding the commit message within the narrative arc
of a novel, where the message is revealed through careful analysis of the text.
The commit reference directs to a specific passage for interpretation.

3.2 Musical Commits

Here, commit messages are transcribed into musical compositions, with the
notation corresponding to a coded format. The commit provides a recording
or sheet music for decoding. MIDI files are also a possibility.

19

3.3 QR Code Image

Commit messages are converted into QR codes, then printed, and scanned
back into a digital format. The commit includes the image, requiring optical
decoding to access the message.

3.4 Commit in a Bottle

Emulating historical message dissemination methods, commit messages are
physically secured in a container and hidden. The commit provides geo-
graphical coordinates, inviting a physical search.

3.5 Culinary Code

Commit messages are embedded within culinary recipes, with each ingredient
and cooking step representing elements of the encoded message. The commit
challenges the developer to decipher the message through preparation.

3.6 Cryptic Crossword Puzzle

Commit messages are concealed within the answers to a specially designed
crossword puzzle. The commit includes this puzzle, engaging the developer’s
problem-solving skills to decode the message.

3.7 Steganography in an Image

This method hides commit messages within images using digital steganogra-
phy, challenging the developer to employ specific algorithms for extraction.

3.8 A Journey Through Software

A complex program is developed to reveal the commit message upon exe-
cution. The program’s source code, obfuscated and intricate, serves as the
commit, with execution as the key to decryption.

20

3.9 Video Game Easter Egg

A video game contains the commit message, accessible only upon completing
challenging tasks or achieving high scores. The commit includes the game,
intertwining development with interactive problem-solving.

3.10 The Time Capsule

Commit messages are physically archived and concealed, with instructions
for future retrieval. This method links developers across generations in a
shared quest for discovery.

4 Discussion

The introduction of ” Unconventional Commits” juxtaposes the conventional
with the innovative, highlighting the potential for a diverse array of commit
messaging techniques to coexist alongside traditional methods. This explo-
ration not only enriches the software development process but also fosters a
culture of creativity and exploration.

5 Conclusion

”Unconventional Commits” presents a novel framework that challenges the
traditional confines of commit messaging. By embracing innovative and di-
verse methods, this approach encourages a reevaluation of the possibilities
within software versioning, promoting a multidisciplinary perspective in the
realm of version control. The exploration of unconventional methods serves
not only to enrich the developer’s toolkit but also to inspire a deeper en-
gagement with the process of code evolution, demonstrating that the act of
committing code can transcend its utilitarian roots to embrace a broader
narrative of creativity and shared human experience.

References

[1] Git. Git Documentation. https://git-scm.com/doc

21

[2] Conventional Commits. Conventional Commits 1.0.0. https://www.
conventionalcommits.org/en/v1.0.0/

[3] What the Commit. What the Commit. https://whatthecommit.com

[4] Stephen P. Blung The Role of Pizza in Software Development. Journal of
Edible Communication, 1988.

22

Getting Up and Running the A-Calculus

GEORGE(S) ZAKHOUR

Abstract (Spoiler Alert) — Programmers, developers, and coders suffer from a myriad of issues pertaining to their
health. These can vary from eye redness to repetitive strain injuries and a diminished life expectancy. A common
exercise that software practitioners can engage in to reduce these health averse conditions is to be in the outdoors
and to move—by means of walking or running—longer. Alas, professionals are hesitant to pursue their physical and
mental well-being as that sacrifices productivity and programming-derived joy.

In this paper, we address this problem through the lens of programming languages and provide a solution
that greases the friction between outdoor activities and programming. Through the insight that humans leave a
trace while moving and the observation that apparatuses to record such traces are ubiquitous, we formalize an
encoding of the A-calculus in those traces. We develop an alternative front-end to Church’s language which we call
Poololoop and we provide a reference compiler that produces Haskell and Scheme code. We evaluate Poololoop on
two use-cases that we ran and show that the compilation runs in a few milliseconds.

CCS Concepts: « Social and professional topics — Computing occupations; - Human-centered computing —
Interaction techniques; « Theory of computation — Formalisms; Grammars and context-free languages.

Additional Key Words and Phrases: A-calculus, Programmer Health, Runtimes

1 INTRODUCTION

The attentive reader would have noted that computers and the Internet are ubiquitous. For the clueless
reader: in the 2010s, 3.04 billion personal computers were shipped [33] in part to the 5.35 billion Internet
users [20]. Those—the PCs—are being comandeered, in 2024, by an estimated 28.7 million software
developers [19], showing that they too—the software developers—are ubiquitous.

Popular Programming Plagues. It is not too uncommon to witness a plethora of software engineers
and programmers shuffle this Earth bemoaning their bad health. Luria [48] collected the death notices
published in Science between 1958-1968 and found that the mean age at death of male engineers is 71.1
(N=192) and that of women was 82 (N=1). For both reported genders it was found that archeologists
survive engineers: 76.7 for men (N=12) and 84 for women (N=1). In their longitudinal study on life
expectancy by occupation, Luy et. al [49] found that in the 1990s the probability of German men in
technical occupations such as engineering and maths aged between 40 and 60 of surviving is 89.5%
(N=364) while that of German women in the same occupation is 91.7% (N=56). And similarly to the
previous study, men in Social service and education’s probability of survival is 90.9% (N=159) and that
of women is 93.9% (N=172). While these numbers include software engineers they also include other
professions that require their practitioners to wither a lifetime on a desk. Nonetheless these numbers
show that professions that require being outdoors, weathering the elements, have their practitioners
live longer. For instance mucking about in the mud [84] will grant the mucker 2—-5 more years as well
as the opportunity to uncover ancient teeth, rusty Victorian trash, Roman garbage, and large feathered
reptiles’.

Statistics reporting on the life expectancy of software engineers are scarce. Nonetheless, Postamate
reported that “software engineers have a life expectancy of only 55 years, compared to 78 years for the
general population” [27]. The website, whose slogan is “Home of Satire and Sarcasm”,* proceeds to ask
why software engineers die so early without delivering a satisfying answer.

The reader is recommended the article by Gartley [32]—by which we mean the article written by Gartley and recommended by
the author(s), and not recommended by Gartley, although the author(s) find it hard to believe that Gartley would not recommend
Gartley’s article for it is a good article—for some dank dinosaur memes.

2 A note to the editors: commas and generally any punctuation sign, will go outside quotations and parenthesised sentences.

23

Yet, because programming, coding,’ and software engineering are sedentary jobs they come with a
myriad of related health issues. Chief among the Repetitive Stress Injuries that programmers must deal
with is Carpal Tunnel Syndrome: the professionals suffering from CTS are dominantly programmers,
system administrators,” and IT professionals [1, 80, 81]. Other musculoskeletal problems include pain
and stiffness in the neck among 48.6% of computer professionals, in the lower back (35.6%), and in the
shoulders (15.7%) [81].

Sedentary jobs present an uncountable number of other issues: (1) vision blurring (13.2%), (2) irritation
in the eyes (18.6%), (3) watering of eyes (23.2%), (4) pain in the eye (25.7%), (5) burning in the eye (29.8%),
and (6) headaches (29.2%) [81].

In summary, it is surprising that nerds—software developers—suffer from so many illnesses that can
be avoided if they could just go outside and have a walk.

Problem Statement. The main activity of software developers is to develop software [68] through
software development languages [68]. With the exception of very few languages discussed in Section 7,
these are primarily developed to be written using a so-called full-size keyboard consisting of somewhere
between 101 and 105 keys resting on a desk and read—the programs expressed in the programming
languages that is and not the keys—on a computer monitor beaming every character onto the reader’s
cornea at a generous 120Hz. The author(s) believe that this overly constrained development environment
is the direct cause of the software developer’s overly restrained physical posture. We address this problem
at its very core by designing a programming language that will not have negative health effects on its
user.

Solution. By rethinking how programs are expressed and by deconstructing the syntax used to express
these programs the author(s) present a language whose syntax is the path left behind by a technophile
walker, hiker, runner, or cyclist®. These activities are predominantly done in the outdoors and are often
recorded passively through a smartwatch or a smartphone. The programming language, Poololoop,
leverages the twists and turns in the recorded path to express programs.

The main benefits of using Poololoop are thus:

(1) The eyes are free to observe Nature and wildlife, eliminating the need for the 20-20-20 rule’,

(2) The hands and fingers are free to be relaxed,

(3) The body is exposed to natural sources of vitamins such as the Sun—being an example of a
source and not a vitamin—,

(4) The user’s partner is free to believe that the user took time off work to hang around.

By developing a programming language to solve this problem the author(s), expert(s) in the domain
of programming languages, abide by Maslow’s principle: if the only tool you have is a hammer, it is
tempting to treat everything as if it were a nail [51].

Paper Structure. In Section 1 we motivate the problem. So if you have not been motivated already
then reread Section 1 until you are. In Section 2 we present the necessary background on programming
languages and running. In Section 3 we describe the language; its high-level ideas and its formalism. In

There is nothing you can say that will convince me otherwise. The compromise I offer is to typeset the comma, or period, directly
under the quotation signs. Something like “this’, or “that”

3Similarly to Footnote 2, the Oxford comma is another hill I am willing to die on.

4The American editors are seething and malding right now.

>You know that feeling you get after reading a long list of symptoms? The burning in the eye, the tingling in the fingers, the
shooting headache, the slight dizziness... That feeling that these symptoms creep up on you one by one and the conclusion your
mind draws is that you must be suffering from those symptoms? The author(s) feel that this is happening to them as they are
typing. But let’s not forget that the author(s) are computer professionals and they might be exhibiting actual symptoms.
®While the techniques presented here apply to all four activities the paper will only focus on the runners and walkers.

"Every 20 lines-of-code take 20 minutes to update 20 dependencies.

24

Section 4 we provide code examples from the Poololoop standard library. In Section 5 we discuss the
implementation of the compiler. In Section 6 we showcase two use cases where Poololoop was used in
real-life. In Section 7 we discuss the related work. And in Section ?? we do not conclude in solidarity
with McCann [53] who recommends that SIGBOVIK bans conclusions.

2 BACKGROUND

In this section we describe the necessary background that we assume the reader is ignorant of.

2.1 Running

Running is not only an action that programs do. Running is an action that many things do, probably
too many things, as it has the most number of meanings in the Oxford English Dictionary [89]. The
first definition, Li.1.a, in the dictionary states that running, when applied to mammals—which humans
are—is the act of moving rapidly on alternating feet—otherwise it’s just hopping—while never having
all appendages simultaneously on the ground. The second definition, V.79.d.i is the one familiar to most
serious programmers. In this paper we adopt both definitions and disambiguate them where needed by
explicitly mentioning whether a program is to be ran, or a human—author(s) included—is to be doing
the running.

Scientifically, running has been the object of study as old as Science®. Famously, in 2010, Keller, a
scientific-mathematical human runner [50], solved the long standing problem of the Jogger’s Pony-
tail [42]: a phenomenon observed by the running community where a jogger’s ponytail sways from
side-to-side while her head bobs up-and-down. And in 2002 the answer to whether one should run or
walk in the rain has been proposed by Bailey [7].

Technologically, running has been commoditized under Sport Business [71]. Unsurprisingly for readers
in the first quarter of the twenty-first century, social networks’ for runners exist. The leading platform
is Strava [78] where runners connect with other runners. Each runner’s run is traced on a geographic
map and their bio-stats plotted on colorful graphs. Runners can give each other kudos—a digital signal
meant to deliver a rush of serotonin in the receiving runner’s brain—for runs that they have done. They
can—optionally—comment—optionally—motivating messages on runner’s runs, and they can tag other
runners who ran with them a run.

Digitally, runs and the act of running is encoded in multiple format. The most popular format is the
open GPS Exchange Format (GPX) [85] which is an extension of the XML file format [72] that is meant
to be human-readable'’. Most electronic tracking devices, colloquially smart devices, that record runs
do so in a GPX format. The GPX file format consist of multiple tracks (<t rk>) each with its own name.
Each track is composed of track segments (<t rkseg>) defined by a sequence of points (<t rkpt>)
defined by their geo-coordinates (Lat and lon) attributes and optional fields such as the elevation
(<ele>). Below is a small example demonstrating the GPX file format:

1 <?xml version="1.0" encoding="UTF-8"?>

2 <gpx creator="" xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance" xsi:schemalLocation="http://www.topografix.com

/GPX/1/1 http://www.topografix.com/GPX/1/1/gpx.xsd" version="1.1" xmlns="http://www.topografix.com/GPX/1/1">

j <tZrl:ZmGPRun, rabbit, run. Dig that hole, forget the sun.</name>
5 <type>running</type>
6 <trkseg>
7 <trkpt lat="51.53707" lon="-0.18343"><ele>37.0</ele</trkpt>
8
9

<trkpt lat="51.53712" lon="-0.18333"><ele>37.0</ele</trkpt>
</trkseg>

8Not to be confused with the prestigious Science scientific journal

9Readers in the last quarter of the twentieth century may be more familiar with that social phenomenon where every activity has
its own glossy magazine.

Where human is not well defined.

25

0 </trk>
1 </gpx>

2.2 A-calculus

The A-calculus has been called the “smallest programming language” by some™"°™’] It was introduced by
Alonzo Church in 1932 [14] as a new foundational theory of logic and mathematics. Concurrently, Alan
Turing introduced in 1936 the Turing Machine [87]'! to show that it is not possible to resolve Hilbert’s
1928 Entscheidungsproblem that asks whether a general algorithm exists to prove any mathematical
proposition. While Turing has broken into the mainstream, having his own movie—meaning a movie
where he is portrayed rather than written or directed or produced by Turing'’—published in 2014
starring the movie heartthrob and English sweetheart Benedict Cumberbatch as Turing himself [55],
Church saw no such treatment.

Besides the A-calculus, Church is commonly recognized among the nerd community through the
Church-Turing thesis. Luckily for Church his name came first in the thesis’ name because C, which
happened to be the first letter of Church, comes earlier in the alphabet than T, which also happened to
be the first letter in Turing [25]. Church was also first'® in showing that the Entscheidungsproblem is
not possible to solve [15].

2.2.1 Syntax. The A-calculus is the mother of all functional languages. Its one and only feature are
functions. What do we do with functions? (1) We create them, (2) we give their arguments name, and
(3) we apply them to something, i.e. we replace names with other things.

So all expressions in the A-calculus have one of the following three shapes.

(1) Abstraction: Take an expression, find your favorite sub-expression, keep it in your pocket and
replace it with a variable, then wrap the whole expression in a syntactic form that says that
variable should stand for something.

(2) Variable: That thing you replace your favorite sub-expression with,

(3) Application: The way you say that a variable stands for your favorite sub-expression.

Formally though, expressions are denoted with the symbol e and they are described by a grammar,
which is just the type of the syntax tree. Anyways, the A-calculus expressions are described by this
self-explanatory grammar:

ex=Ax.(e) | x| (e;ez)

In practice, programmers are familiar with the A-calculus if they have written in a Lisp-like dialect,
Haskell, Scala, F#, or some other functional language. Below we address three common criticism against
the A-calculus.

ThEYE aRe ToO mAnY pArEnThEsEs. No. You're used to calling functions like this, f(x, g(y)), right?
The A-calculus not only eliminates those useless commas, it gets rid of one pair of parenthesis! It simply
moves the parentheses one token to the left to become (f x (gy)) and removes the outermost ones
to become f x (gy). But wait, there’s more. To eliminate more of these pesky parentheses we adopt
two conventions: A associate to the right and applications to the left. What does this mean? It means
that Ax.(Ay.e) becomes Ax.Ay.e and (e; e;) e3 becomes e; e; e3. For example: Ax.Ay.x x y y stands for
Ax.(Ay.(((xx) y) y)). Neat, no?

UTuring did not call the Turing Machine the Turing Machine because Turing was humble, it was Church who dubbed Turing’s
machine: Turing Machine.

12The author(s) are not aware of any movie that Turing wrote, directed, or produced

13The author(s) choose to conveniently sweep the Godel debacle under the footnote line. Kurt Godel, the archetypical Austrian—
archetypical not being a qualifier for Austrian—nerd proved that the Entscheidungsproblem cannot be resolved in 1931 [34].
Everyone was aware of Godel’s result and it is acknowledged by Church and Turing.

26

I cAn’T pRoGrAm WiThOuT nUmBeRs, ClAsSeS, aNd ObJeCtS. You don’t need them bro. You just need
these three syntactic forms to write any program. Booleans? They’re functions. Numbers? They’re
functions. Classes and objects? They’re the poor man’s closure [16]. Closures? They’re just functions.
In Section 4 we’ll show you how you can do it too.

WHhEYE ArE ThE mUITiVaRiAtE fUnCtIoNs? They don’t exist. You know why? Cause they’re useless.
Just Schonfinkel them [67, 70] my dude. A function that takes two things is a function that takes the
first thing and returns a function that expects the second thing. This fact can be recalled with this
mnemonic rhyme:

Many arguments are mere ornaments.
With higher-order languages, ordure
as these can be teased out with such an ease:
Make As take one, which when asked to run,
returns another expecting the other,
until no more can arguments dwindle.
Congrats. Now you know how to Schoénfinkel.

Or you could bundle your arguments in a pair. But guess what? Pairs are also just functions.

2.2.2 Semantics: What does it all mean? So now you know how to write A programs. How do you run
them? You use the relation e — e’ which can be read as “e becomes e’ after a single step”. This style is
conveniently called small-step semantics because it invites the evaluator to behave like a CPU and to
operate in discrete units commonly known as clock-cycles.

The — relation is defined through a single rule: the f rule. That’s the only' rule!® you will ever need.
Do you see now why it’s the “smallest programming language”? The f-rule looks like this:

(Ax.e1) €2 — 91|§2 B

Where the notation e, |3, is the capture-avoiding substitution [77]. We could define it, or we could do
what every other programming language does and show you examples.

(addxd)[};; .4 = add (add ad) d
(Ay.subx b)[},, ., = Ay.sub (subub) b
(Ax.foox)[5, = Ax.foo x

This again, is all you need to do any computation. In other words, this model: the three syntactic
forms and the f rule is all you need to write Linux and Clang which you can then use to program a
simulator of a Turing Machine. However unlike Linux, the A-calculus does not require files, and unlike
Clang it’s not developed by a group, and unlike Turing Machines there are no tapes. What’s common
across them? The state. Church, by inventing the A-calculus, stated computationally and constructively
the separation between Church and state'®.

4That’s only one if you consider—which the author(s) do—the weak-head normal form evaluation strategy. You can ignore these
words, it’s beyond the scope of this paper.

15That’s not really true. The first giveaway is the rule’s name. You would think that if there’s a 3, then there’s an a. This is also
not entirely true as there is also an 1. The « rule just renames some variables, which you might need to do in some cases when
free—as in freedom, not as in free beer—variables are involved. The 7 rule is at best a compiler optimization.

16This joke is paraphrased from Guy Steele: “And some people prefer not to commingle the functional, lambda-calculus part of a
language with the parts that do side effects. It seems they believe in the separation of Church and state. :-) :-) :-)” [76]

27

Variables Begone! In 1972, the iconic Dutch composer Louis Andriessen composed de Volhard-
ing [4, 8]'7 which lead to the creation of the eponymous minimal jazz group de Volharding [24].
This event signaled the climax of the minimalism movement in Europe [9]. In 1972, the Dutch computer
scientist Edsger W. Dijkstra delivered EWD340 as his Turing Award acceptance speech [26] in which he
announced that he was the first Dutch to register as programmer. In 1972, the Dutch mathematician
Nicolaas Govert de Bruijn published Lambda Calculus Notation with Nameless Dummies [21] which
combined both minimalism, programming, and signaled the end of logical minimalism and computer
design [23]. With his seminal paper, the visionary de Bruijn foresaw and solved half of the problem now
attributed to Phil Karlton: “There are only two hard things in Computer Science: cache invalidation and
naming things” [22, 30, 40]. By completely removing the need for variables in the A-calculus de Bruijn
resolved the latter problem [3] back in the 70s.

How did he do it? de Bruijn observed that in programs without free—as in freedom—variables variables
are just “pointers” to wherever they were bound or declared. For example, Ax.Ay.x can be said to be
the lambda that returns a lambda which returns the variable bound by the lambda two levels before.
Coincidentally, Aa.Ab.a is the same lambda that returns a lambda which returns the variable bound by
the lambda two levels before. So in de Bruijn notation we express them as AA2. This notation is dubbed
de Bruijn indices'® and is the one we will use throughout the paper.

To get the reader used to this notation, we will list some lambda expressions and their de Bruijn
indices in the following. The identity function Ax.x becomes A.1. The constant function Ax.Ay.x becomes
AA.2. The application function Af.Ax.f x becomes A1.2 1. This function Ax.(Af.x) x becomes A.(1.2) 1.

3 THE DESIGN OF POOLOLOOP

Poololoop, pronounced [puzlovlu:p], is a portmanteau [88] of “Pool of loop”.

The main construct that Poololoop exploits for its syntax is the loop, or that which is colloquially
called a circle by the general population who failed their basic geometry class and forgot that a circle
has a constant radius. This choice is motivated by three reasons.

First, humans naturally walk around in circles [74], thus the user does not need to concentrate on the
syntax and can rather spend their energy on the problem at hand. A feature that hardly any modern-day
programming language enjoys.

Second, The programs naturally become small in diameter. The user does not need to stray far away
from home and venture into foreign environments. This has the positive outcome of avoiding taking
any unneeded risk that may trigger separation anxiety in users.

Third, loops make Poololoop future proof. Mastroianni et. al [52] and others [47] proved that the past
was better. It thus follows that the function describing the quality of time is a monotonously decreasing
function. The trivial corollary states that the future will be worse. Of the multiple proposed models
describing the future, two dominate [44]: the Orwellian [59] and the Huxlerian [37]. In what follows we
argue that Poololoop fits snugly in both models.

The Orwellian model predicts a general increase in user monitoring and language moderation by
lifting the principle of least privilege [69] from software development into efficient social organization. In
this realm, a successful language must cater not only to its users but also to Big Brother. Proponents of the
Orwellian model justify it by offering the following argument. In 2023, 31.17% (N=59,'336) of software
developers reported working for companies with a workforce of larger than 500 employees [75]. The law

"Dutch for perseverance. The author(s) recommend that the reader play this composition and read the remainder of the paper
while listening to it.

18Not to be confused with de Bruijn levels

9For the editors from continental western Europe: this comma is a thousands separator and not a decimal separator. I'm sorry
that your language is not so relevant scientifically anymore.

28

of large numbers—and one may not need to invoke this law to make a strong argument—implies that
many programmers will have to work under surveillance-friendly conditions [2, 10, 38]. In this setting
Big Brother subordinates shall not employ Poololoop as prescribed as that may give the wrong impression
that the now-healthy workforce, coming back from a hard day’s work in Nature?’ [41, 57, 58, 61] using
Poololoop, showing signs of happiness and good mental health may be confused with an idle workforce
loitering around the coffee machine all day. Thus a more consistent employment of Poololoop in the
Orwellian model is one where the programmers are lead in file to the underground parking lots, away
from sunlight and under the infrared glow of night-vision-enabled surveillance cameras, to write their
programs in the oppressing underground stale air. In such a space, without exploiting loops, the space
of programs that can be expressed becomes too limited to be useful.

The Huxlerian model predicts an intoxicating increase in developer tooling with excellent user
experience and a deluge of mind-altering technologies®! that will boost the productivity of programmers.
In that model, for programmers to use a tool, it must be an addictive one. Utilizing Poololoop in the
great outdoor will help greatly in improving the mental state of the programmer. Thus, an excess use of
Poololoop has the benefit of increasing the user engagement. Moreover, it has been shown that runners
and walkers in Nature do feel a sense of connection with natural entities and a sense of yearning to
revisit them [12, 29, 65]. Hence, a use of Poololoop naturally leads to an excessive use which leads to
unprecedented levels of programmer satisfaction, which according to the Huxlerian model, must lead
to an increase in output and productivity.

3.1 Syntax

Poololoop is an alternative front-end to the A-calculus with de Bruijn indeces as presented in Section 2.2.
To that extend, we present the front-end to the three syntactic forms of the untyped A-calculus: variables,
functions, and function applications.

We start by distinguishing between the language Poololoop and the formal mathematical system
T underlying the language. The equivalent of the expressions e of the A-calculus are the loops ¢ of ©.
To define the language we define in Section 3.1 the loop-encoding of e, (e]) : A — T, which translates
expressions into loops. The actual definition is by cases on the A-calculus syntactic forms and is split
in Definitions 3.1 to 3.3. And in Section 3.2 we define the untangling of 4, [¢] : © — A, particularly in
Definition 3.4, which translates loops back into expressions.

3.1.1 Variables. When we use de Bruijn indeces, variables will always be represented as natural
numbers®*. It is worth noting that we do not consider zero to be a natural number. Therefore quite
naturally we denote a variable n by n consecutive empty loops.

Definition 3.1 (Variables). A variable n is loop-encoded as the loop wrapping n empty loops as follows:

Repeated n times

20Not to be confused with the prestigious Nature scientific journal.

ZExemplified by conversing with computers that pass the Turing test.

22In 1889 Giuseppe Peano published Arithmetices Principa [62] in which he presents the defacto agreed-upon axiomatization of
the natural numbers. The first axiom is verbatim 1 € N (sic). Implying that zero is not a natural number. However, in his 1901
Formulario mathematico [63] he realizes his mistake and includes zero as a natural number and the first axiom of his formalism

29

3.1.2 Functions and Applications; Introduction and Elimination; Yin and Yang. Functions are non-empty
loops that contain the loop-encoding of their body and applications are non-empty loops that contain
the components of the application. This creates a lovely correspondence between the syntactic class of
an expression and the number of elements in its outer loop: nothing is a variable, one thing is a function,
and many things is an application. Sadly we can’t have nice things, so we introduce the directionality
of the loop. The direction of the loop is formally the direction in which the loop turns. In practice this
corresponds to time, and since loop-encoding is not a distributed system then time is a well-defined
pre-order lattice with a complete total ordering [43]. Since introduction, or building, generally has
a positive connotation and elimination, or destruction, has a negative one then a functions’ loop is
positive and an application’s loop is negative.
To that end, functions and applications are formally defined as follows:

Definition 3.2 (Function). A function whose body is e is defined to be a positive (clock-wise) loop
wrapping the loop-encoding of e.

(Le) =
(e)

Definition 3.3 (Function Applications). A function applications whose function is e; and arguments
are e, - - - e, is a negative (clock-wise) loop wrapping the loop-encoding of all its components.

.
(er---en) = lea) (ed)

R4

3.1.3 A Note on the Choice of Direction. The directionality of loops came to the author(s) as they
showered [18, 39, 60]. While thinking about the loop-encoding of lambdas, the author(s) were observing
the little water tornadoes that the water did as it swirled down the drain and after a Eureka moment they
assigned the positive direction to lambdas. As the author(s) live in the northern hemisphere and wish to
avoid exhibiting any north-south bias, we flip the directionality of functions and applications based
on whether the program was ran in the northern hemisphere or the southern one. This hemispherical
distinction in directionality has been introduced by the French mathematician Gaspard-Gustave de
Coriolis [17] and popularized by Archer, Oakley and Weinstein [83]. As runs could start, end, and cross
the equator, we leave the question of deciding the choice of directionality for future work.

3.2 Formal Semantics

Formal semantics in the theory of programming languages are split into two parts: static semantics,
fancy for semantics at compile-time, think type systems, and dynamic semantics or runtime behavior.
As Poololoop is untyped then static semantics are not relevant here. And since Poololoop is a front-end
for the untyped A-calculus then its dynamic semantics are exactly those of the A-calculus with de
Bruijn indeces, i.e. the weak-head normal form evaluation strategy with the f rule in Equation (). This
evaluation strategy is functional, i.e. given a reducible expression e there is a unique e’ such that e — e’.

This observation motivates the colimit commutative diagram? definition in Figure 1 for the functional
evalution ~» at the -level and the untangling [#] function, which in practice is the compilation relation.

becomes 0 € N. To those who define the natural numbers informally as the counting numbers: how many fingers am I holding
up if T hold up my fist? It has been 123 years already since Peano’s correction, so of course zero is a natural number.
BWhich is otherwise quite useless.

30

Fig. 1. The diagram describing the T semantics with respect to A semantics

For the readers who are not versed in diagram notations, we simply mean the following: given the
encoding function that “decompiles” and the underlying runtime that makes one step then it is pos-
sible to define (uniquely) the compiler and the interpreter (higher-level runtime) such that e — [(e]) ~»].

In Definition 3.4 we define the compilation function of a loop ¢ into a A-calculus expression.

Definition 3.4 (Compilation). We define the compilation of a loop ¥ in by cases:

Repeated n times

&y

1[4

o

B
e
=
1l

[- - [3a]

With Definitions 3.1 to 3.4 we can formulate Theorem 3.5 which expresses the expected fact that
untangling and loop-encoding are inverse operations.

THEOREM 3.5. Loop-encoding and untangling are inverse operations. In other words, for every loop ¥ in
© thent = ([4]), and for every A-calculus expression e then e = [[(e)].

ProorF. Like most theorems in the domain of programming languages [5, 13, 45], the proof is a trivial
application of structural induction. O

Defining the interpreter ~» is also not difficult but requires the author(s) to typeset many complicated
diagrams.

Definition 3.6 (The ~ interpreter). The definition is left as an exercise to the reader.
4 PROGRAMMING IN POOLOLOOP
4.1 Church Booleans

To construct a boolean one of the two boolean constructors must be used: true or false. Thus the church
encodings of booleans will always have two outer lambdas, one for each constructor.

31

True. The boolean true value is encoded as AA.2. Informally, the first lambda asks its user for what is
meant by true, and the second asks for what is meant by false. The expression then returns the true
value provided by the user. Its loop-encoding in T is the following:

All loop examples are to be read from the top-left corner, traveling along the entire loop continuously
without breaking smoothness, until the top-right corner is reached. The inhabitants of the southern-
hemisphere are instead expected to read the diagram from the top-right corner towards the top-left
corner in a similar fashion.

False. Dually, the boolean false will return the false that the user provided, i.e. false is AA.1. Its loop-
encoding is the following:

4.2 Church Numerals

4.2.1 Numbers. The Peano encoding of the natural numbers [63] assume two constructors: the zero
and the successor function. The zero is then encoded as A11.1%, one is encoded as A1.2 1, two as A1.2 (2 1),
three as A1.2 (2(21)), etc. In © we illustrate 0, 1, and 2 as the following diagrams in order from left-to-
right:

4.2.2 Addition. Addition is a fundamental operation [28]. The operation takes two Church numbers
and produces a Church number. Therefore it has two outer-most lambdas for the given numbers, and
two other lambdas for the zero and the successor function. A number n is encoded as the application
of the given successor function n times to the given zero. Thus, addition of n and m is encoded as the
application of the given successor function n times to m such that the given zero and successor functions
are passed along to m. In other words, the de Bruijn encoding of addition is

add = AAL42(321) 1)

Whose loop encoding is the following diagram:

24Here zero is a natural number. This is not be confused with the definition of the natural numbers at the meta-level.
Z5The attentive reader would have noticed that the encoding of zero and false are the same. This feature has been added to Church
encodings in order to attract C and Javascript programmers into functional programming.

32

4.2.3 Multiplication. Just as we re-interpreted the meaning of zero in the addition function to be the
second number to be added, for addition we re-interpret the successor function to addition. Therefore
multiplying n and m becomes n additions of m on a given zero. Thus, by inlining Equation (1), we obtain
the following definition of multiplication

mult = AAA1.4(1.43(132))1 ®)

Its loop encoding is the following diagram:

4.3 Fixed Point Operators

The Y-combinator allows recursive and diverging programs to be expressed. It is defined as follows:
Y=X1(42(11)) (A.2(11)) 3)

and its loop encoding is the following:

33

4.3.1 Recursive Programs: factorial. Now we demonstrate that Poololoop is not a toy programming
language by implementing the factorial function. We implement it using the Y-combinator defined in
Equation (3) and the church numerals. Below is the program in the A-calculus without de Bruijn indices:

1 fact = (\f. (\x. f (xx)) (\x. f (xx))) -- Y-Combinator Equation (3)

2 \recurse.\n.\s.\z. -- First argument is the recursive call

3 n (_.\T.\F. F) (\T.\F. T) -- is true if n is zero and false otherwise
4 (s z) -0l =1

5 (recurse -- recursive case

6 (n\s.\z. n (\g.\h. h (g s)) (\u. z) (\u. u)) -- MAGIC: predecessor of n

7 s (ns z)) -- the last argument recalls Equation (1)

Using de Bruijn incides, fact becomes:
(A.(A.2(11)) (1.2 (11))) (AMAAL3 (AAL1) (AA.2) (21) (4 (BAA5(AA.1(24)) (A.2) (A.1))2(321)))

And its loop encoding is:

This particular diagram is meant to be read from the bottom-left strand, all the way throughout the
path, until the end of the bottom-right strand. Godspeed.

34

Fig. 2. Aloop is defined by the intersection point of two vectors v1 (blue) and v2 (red) and its—the loop’s—direction
is defined by the same two vectors. The starting point is the empty point in the top-left corner.

5 IMPLEMENTATION

We implemented a compiler for Poololoop in the C programming language®. The source code, which is
relatively tiny at 147 lines long is provided in Appendix A%’. The compiler takes two command line
arguments, and an optional third. The first argument is the path to a GPX file and the second is an
identifier that the compiled code should be assigned to. The optional third argument specifies the target
language to compile to. By default the target language is the Scheme programming language. The other
alternative language is Haskell. The two targets are specified with scm and hs respectively.

The semantics implemented by the compiler is as described in Section 3. The implementation decides
on the directionality based on whether the starting point has positive or negative latitude, i.e. is in the
northern or southern hemisphere respectively.

The implementation abides by Postel’s Robustness law [66], it accepts file formats that supersede
GPX. Informally, Poololoop’s compiler accepts any file that contains a sequence of latitude and longitude
coordinates specified respectively with lat="ieee float" and lon="ieee float". The syntactic class
ieee float is the class of IEEE floats.

Compiling the compiler is as easy as passing it to gcc and linking it with the math library using the
-1m flag. When the compiler is compiled with the -03 optimization flag, then compiling the two case
studies presented in Section 6 took less than 3 milliseconds on the author(s)’ machine which is just an
everyday laptop that one takes on a holiday. The GPX file of the two case studies contains 509 and 519
GPS points respectively. Section 6 provides the executed commands and their output.

The main observation is that every loop is defined by an intersection point. Thus, find the intersection
point and you will find the loop. The direction of the loop is computed from two vectors: (1) the vector
whose tail and tip are defined by the point just before the intersection point and the one just after,
respectively, and (2) the vector whose tail and tip are defined by the point just before the intersection
point and the one just after, respectively. Figure 2 shows an example of these two vectors, v; and vy,
respectively.

The compiler exploits the key idea that intersection points act as parentheses. Every intersection
point is traversed twice by the runner, on entering the loop and on exiting it. Thus, the compiler finds
the intersection points, sorts them by the time traversed, and treats each pair as a parenthesis: the first
is equivalent to an open parenthesis and the second is equivalent to a closed one. Once this Intermediate
Representation (IR) is generated, then compiling to a de Bruijn indexed A-calculus IR is equally trivial,
and compiling to Scheme or Haskell is just a boring task at this point.

The compiler uses the naive O(n?) algorithm to find intersections in a piece-wise linear path: it
checks segments two-by-two for intersections. When tried on a GPX file with 13,714 GPS points the

compiler took 291 milliseconds to produce a syntax error?.

26C11, probably.
27 And also as a Gitlab Snippet: https://gitlab.com/-/snippets/3688034.
ZWhich is only raised after finding all intersections.

35

6 EVALUATION

In this section we show that using Poololoop in real-life is possible. We have chosen two programs
from Section 4 and we ran one program on a large-scale and walked the other on a small-scale. We
report on these two case studies in the following paragraphs.

The first author went on run along the true path on the night of Saturday 9" of March 2024. The
GPX track recorded by the author’s smart watch is shown in Figure 3a. The running distance was 4.48
kilometers long * at the respectable pace of 5 minutes and 35 seconds per kilometer®® and the running
time was around 25 minutes and 5 seconds, which is almost exactly the same length as de Volharding®'.
The engine running the program was indeed exposed to that composition as they were running the
program. Therefore one thread of validity to this case study is the choice of music as it might have
affected the pace of the runner and thus the measured run time [11].

The last author’s fix was also done on the night of Saturday 9" March 2024. The path is 2.66 kilometers
long. The author took 46 minutes and 42 seconds to walk it at the shameful pace of 17 minutes and 33
seconds per kilometer. The GPX track recorded by the author’s smart watch is shown in Figure 3b. The
slow pace can be explained by the author’s report that conducting this experiment was tedious and
awkward. They have in fact tried to walk the path in daylight but gave up soon after the first loop as
they have reported feeling an uncomfortable level of awareness exhibiting itself through emotions of
self-consciousness and fear of walking into small and developing humans engaging in a communal and
recreational activity consisting of striking, repeatedly, with a single foot, a round orb thus carrying it off
the ground and potentially into the faces of others—author included. While the author was not disturbed
during the experiment they have received inquisitive looks—even under the cloak of darkness—from
strangers. Thus one thread of validity to this case study are other humans.

Both case studies have been recorded and archived on Strava [31, 78], a popular website where
athletes preserve their artifacts. The tracks are publically accessible*” alongside multiple plots and a
GPX file which can be fed into the Poololoop compiler.

Below are the benchmarks of the four compilations that the author(s) conduced on the GPX files of
both case studies as produced by the hyperfine benchmark utility [64].

1 > hyperfine "./poololoop gpx/fix.gpx f hs" "./poololoop gpx/fix.gpx f scm" \
2 "./poololoop gpx/true.gpx t hs" "./poololoop gpx/true.gpx t scm"

3

4+ Benchmark 1: ./poololoop gpx/fix.gpx f hs

s Time (mean + o): 2.0ms + 0.7 ms [User: 1.8 ms, System: 0.4 ms]
6

7 Benchmark 2: ./poololoop gpx/fix.gpx f scm

s Time (mean + o): 1.5ms + 1.0 ms [User: 1.5 ms, System: 0.2 ms]
9

10 Benchmark 3: ./poololoop gpx/true.gpx t hs

un Time (mean + o): 1.7ms + 0.8ms [User: 1.6 ms, System: 0.3 ms]
12

13 Benchmark 4: ./poololoop gpx/true.gpx t scm

14 Time (mean + o): 1.7ms + 0.8 ms [User: 1.6 ms, System: 0.3 ms]

The output of each command is the following:

20r 2.78 miles in freedom units.

300r 8 minutes 57 seconds per mile in freedom units.

31'Which should be just about done if you started it per Footnote 17.

3212 - SIGBOVIK 24 CS#2: https://www.strava.com/activities/10926312841, and A(12(1 1))(A2(1 1)) - SIGBOVIK 24 CS#1: https:
//www.strava.com/activities/10925302747. By appending /export_gpx to the URL, the artifact evaluators can download the
GPX file.

36

(a) The true program as described in Section 4.1 (b) The Y-combinator as described in Section 4.3

Fig. 3. A satellite image of the area where the two programs of the two case studies were ran and walked with
the path superposed on top in a red line. The starting point of the run and walk is indicated by a green dot. The
ending point of the run and walk is indicated by a checkered flag in a white circle.

1 > ./poololoop gpx/fix.gpx f hs

2 F=(\x0->((\xL->(x0 (x1x1))) (\ x1 -> (x0 (x1x1)))))
3

4+ > . /poololoop gpx/fix.gpx f scm

5 (define f (lambda (x0) ((lambda (x1) (x0 (x1 x1))) (lambda (x1) (x0 (x1 x1))))))
6

7 > ./poololoop gpx/true.gpx t hs

s t=(\x0->(\x1->x0))

9

10 > ./poololoop gpx/true.gpx t scm

1 (define t (lambda (x0) (lambda (x1) x0)))

We would like to remind the artifact evaluators that the generated Haskell code of the Y-combinator
cannot be used even though it is syntactically correct. That is because Haskell is strongly typed and the
Y-Combinator cannot be typed in the Simply Typed A-calculus, nor in System-F. That is no fault of ours.
The generated Scheme code on the other hand is perfectly fine.

7 RELATED WORKS

As with most novel work such as ours, not much truly related related work exists. Two line of works
nonetheless can be identified. The author(s) hope that by the end of this section the reader would have
realized that none of these completely satisfy Poololoop’s design choices from Section 3.

7.1 Alternative or Assistive Hardware

Augmented Reality (AR) devices which intend to superpose virtual objects on top of real-world objectives
have been around commercially for more than a decade. These could be used to assist programmers in
writing their programs in the great outdoors just as Poololoop does.

The first device that broke into the mainstream is the Google Glass in the early 2010s. It is a wearable
device, just a pair of eyeglasses, with two small transparent glass rectangles covering a part of the user’s
field of vision. By projecting pixels onto these transparent rectangles the user can switch their focus
from real-life into the virtual, and vice versa. But damn do they look dorky [90].

37

More recent devices, such as Facebook’s Quest and Apple’s VisionPro offer better image quality and
hand-gesture detection. Yet these have two downsides. First, the real-world is seen through a screen
looping back the view from a front-camera. Meaning these devices are virtual reality devices that happen
to mirror the real-world—for now®’. And second, they sure do look more obnoxious than the Google
Glass.

7.2 Gestural Programming Languages

Gestural Programming is the domain of computer vision and artificial intelligence research where one
teaches a robot how to accomplish tasks by demonstrating to the robot, visually, through the means of
a human, how they are accomplished. This line of work has been explored by Soratana et al. [73] and
Cabrera et al. [54]. But it’s easy to conclude that this is unrelated to Poololoop and is not what we mean
by “Gestural Programming”.

Let’s try again. Gestural Programming is the domain of programming pedagogy where researchers
explore the use of input devices other than the keyboard and the mouse for programming. For example
in Streeter’s PhD thesis [79] the author®® applied multiple gesture matching algorithms to data recorded
from students programming in Google Blockly with the Microsoft Xbox Kinect. Similarly Toro-Guajardo
et al. [86] reported on young people programming in Scratch using the Nintendo Switch Joy-Cons
and found that they have more fun if they, and their hands, move. While this line of work is closer to
Poololoop than the previous one, it is still unrelated.

One more time. Gestural Programming is the domain of programming language research which
produced bodyfuck [35, 36, 82], a language in which programmers input programs through moving
their bodies. Bodyfuck is an alternative front-end for the popular programming language brainfuck [56]
where the eight brainfuck actions are mapped into eight bodily gestures the programmer performs
facing a visual recording apparatus. For example, if one wishes to increment the register in focus then
one must jump, and if one wishes to decrement it then one must duck. Bodyfuck has been birthed to be
performative art. Fifteen programs were performed and put on display in the Things That Are Possible
MFA Show [6]. It aims to separate the act of software performance, i.e. software inscription® from the
computational context in which it happens in. Bodyfuck aims to demonstrate that software inscription
can be done completely outside computers®® in the surrounding cultural space. Similarly, Poololoop
demonstrates that this inscription can be done completely outside.

This shows that we’re on the right track of identifying actually related related work. Sadly, the
author(s) could not find any other related work in that style. However, the early readers of the SIGBOVIK
publication proceedings may recall the work of Leffert entitled “Harnessing Human Computation:
p-reduction hero” [46] in the 2010 Technical Report track. Alas, the author(s) were unable to find the
Flash application which was reported on nor the report nor its source code in order to learn what the
work is about. Nonetheless we conjecture, based on the name, that it presents a A-calculus evaluation
technique that is gamified a-la Guitar Hero. Nevertheless if that is the case, then unlike Poololoop,
programming can only be done indoors while staring at a screen.

33Seriously, imagine the horrors of having that feedback camera attacked.

34Being the author of Streeter’s PhD thesis and not the author(s) of this very paper you are almost done reading.

%5 As the author(s) of this almost-finished paper have no background in academic art they have found the essay cited earlier to be
extremely difficult to read, and they report here their best guess at what it could mean.

36 Also around the year 2010, the first author of this almost-done paper that you are reading recalls writing a whole PHP program
on a piece of paper during a biology class in their senior highschool year as they had no interest in biology and no access to a
computer. This footnote tells the anecdote to show that this separation is natural and to brag that the first author was able to
write a whole PHP application by hand on a piece of paper.

38

REFERENCES

(1]

—
_

K. Mohamed Ali and BW.C. Sathiyasekaran. 2006. = Computer Professionals and Carpal Tunnel Syndrome (CTS). Interna-
tional Journal of Occupational Safety and Ergonomics 12, 3 (2006), 319-325. https://doi.org/10.1080/10803548.2006.11076691
arXiv:https://doi.org/10.1080/10803548.2006.11076691 PMID: 16984790.

Seth Allcorn. 2022. Micromanagement in the workplace. Organisational and Social Dynamics 22, 1 (2022), 83-98.

Reem Alsuhaibani, Christian Newman, Michael Decker, Michael Collard, and Jonathan Maletic. 2021. On the Naming of Methods: A Survey of
Professional Developers. In 2021 IEEE/ACM 43rd International Conference on Software Engineering (ICSE). 587-599. https://doi.org/10.1109/
ICSE43902.2021.00061

Louis Andriessen. 1972. de Volharding. Composition.

Carlo Angiuli. 2017. The Next 700 Type Systems. SIGBOVIK (2017), 169-171. https://sigbovik.org/2017/proceedings.pdf

The Digital Arts and New Media MFA Program at UC Santa Cruz. 2010. 2010 MFA Exhibition :: Things That Are Possible. https://danm.ucsc.
edu/news_events/2010-mfa-exhibition Accessed: March 3, 2024.

Herb Bailey. 2002. On running in the rain. The College Mathematics Journal 33, 2 (2002), 88-92.

World Association For Symphonic Bands and Ensembles. 2021. DE VORHALDING for Piano and Winds (1972) by Louis Andriessen (The Nether-
lands, 1939-2021). https://wasbe.org/de-vorhalding-for-piano-and-winds-1972-by-louis-andriessen-the-netherlands-1939-2021 Accessed:
March 3 2024.

Maarten Beirens. 2016. European Minimalism and the Modernist Problem. In The Ashgate Research Companion to Minimalist and Postminimalist
Music. Routledge, 61-85.

Clive R Boddy. 2017. Psychopathic leadership a case study of a corporate psychopath CEO. Journal of Business Ethics 145, 1 (2017), 141-156.
Robert Jan Bood, Marijn Nijssen, John Van Der Kamp, and Melvyn Roerdink. 2013. The power of auditory-motor synchronization in sports:
enhancing running performance by coupling cadence with the right beats. PloS one 8, 8 (2013), e70758.

Stefan Brené, Astrid Bjernebekk, Elin Aberg, Aleksander A Mathé, Lars Olson, and Martin Werme. 2007. Running is rewarding and
antidepressive. Physiology & behavior 92, 1-2 (2007), 136-140.

Robert Chatley, Alastair Donaldson, and Alan Mycroft. 2019. The Next 7000 Programming Languages. Springer International Publishing, Cham,
250-282. https://doi.org/10.1007/978-3-319-91908-9_15

Alonzo Church. 1932. A Set of Postulates for the Foundation of Logic. Annals of Mathematics 33, 2 (1932), 346-366. http://www.jstor.org/
stable/1968337

Alonzo Church. 1936. A note on the Entscheidungsproblem. The journal of symbolic logic 1, 1 (1936), 40-41.

C2 Wiki Community. 2022. Closures and Objects Are Equivalent. http://wiki.c2.com/?ClosuresAndObjectsAreEquivalent Accessed: March 3,
2024.

Gaspard Gustave Coriolis. 1835. Mémoire sur les équations du mouvement relatif des systémes de corps. Bachelier.

Rebecca M Currano, Martin Steinert, Larry J Leifer, et al. 2011. Characterizing reflective practice in design-what about those ideas you get in
the shower?. In DS 68-7: Proceedings of the 18th International Conference on Engineering Design (ICED 11), Impacting Society through Engineering
Design, Vol. 7: Human Behaviour in Design, Lyngby/Copenhagen, Denmark, 15.-19.08. 2011. 374-383.

Evans Data. 2023. Worldwide Developer Population from 2016 to 2023. https://www.statista.com/statistics/627312/worldwide-developer-
population/ Accessed: March 3 2024.

DataReportal, Meltwater, and We Are Social. 2024. Internet and Social Media Users in the World 2024. https://www.statista.com/statistics/
617136/digital-population-worldwide/ Accessed: March 3 2024.

Nicolaas Govert De Bruijn. 1972. Lambda calculus notation with nameless dummies, a tool for automatic formula manipulation, with
application to the Church-Rosser theorem. In Indagationes mathematicae (proceedings), Vol. 75. Elsevier, 381-392.

Vitor De Mario, Golden Cuy, David Karlton, and Murven. 2014. Has Phil Karlton ever said "There are only two hard things in Computer
Science: cache invalidation and naming things"? https://skeptics.stackexchange.com/questions/19836/has-phil-karlton-ever-said-there-are-
only-two-hard- things-in-computer-science. Accessed March 3 2024.

Liesbeth De Mol, Bullynck Maarten, and Edgar G Daylight. 2018. Less is more in the fifties: Encounters between logical minimalism and
computer design during the 1950s. IEEE Annals of the History of Computing 40, 1 (2018), 19-45.

Mark Delaere, Maarten Beirens, and Hilary Staples. 2004. Minimal music in the Low countries. Tijdschrift van de Koninklijke Vereniging voor
Nederlandse Muziekgeschiedenis 1 (2004), 31-78.

Oxford English Dictionary. 2022. Dictionary. Oxford University Press.

Edsger W Dijkstra. 1972. The humble programmer. Commun. ACM 15, 10 (1972), 859-866.

Postamate Editor. 2023. Why Software Engineers Have Short Life Expectancy. https://postamate.com/2023/08/why-software-engineers-have-
short-life-expectancy/

Mimi Engel, Amy Claessens, and Maida A Finch. 2013. Teaching students what they already know? The (mis) alignment between mathematics
instructional content and student knowledge in kindergarten. Educational Evaluation and Policy Analysis 35, 2 (2013), 157-178.

S Forster et al. 2009. The forest for leisure activities and tourism: a yearning for nature or sustainable development?(essay). Schweizerische
Zeitschrift fiir Forstwesen 160, 7 (2009), 189-194.

Martin Fowler. 2009. Two Hard Things. https://martinfowler.com/bliki/TwoHardThings.html. Accessed March 3 2024.

Rob Franken, Hidde Bekhuis, and Jochem Tolsma. 2023. Kudos make you run! How runners influence each other on the online social network
Strava. Social Networks 72 (2023), 151-164.

Luke-Elizabeth Gartley. 2022. CLADISTICS ruined my life: intersections of fandom, internet memes, and public engagement with science.
Journal of Science Communication 21, 5 (2022), Y01. https://doi.org/10.22323/2.21050401

Gartner. 2021. Global Shipments of Personal Computers from 2006 to 2021. https://www.statista.com/statistics/273495/global-shipments- of-
personal-computers-since-2006/ Accessed: March 3 2024.

Kurt Gédel. 1931. Uber formal unentscheidbare Sitze der Principia Mathematica und verwandter Systeme 1. Monatshefte fiir Mathematik und
Physik 38-38, 1 (Dec. 1931), 173-198. https://doi.org/10.1007/bf01700692

Nik Hanselmann. 2010. bodyfuck - gestural brainfuck interpreter (2010). https://youtu.be/watch?v=ekjtZ85mA3I Accessed: March 3, 2024.
Nik Hanselmann. 2010. There is no hardware. http://web.archive.org/web/20141205200435/http://www.nikhanselmann.com/public/etc/thesis/
Accessed: March 3 2024, Archived: December 5 2014.

Aldous Huxley. 1932. Brave New World. Chatto & Windus.

Feruzan Irani-Williams, Lori Tribble, Paige S Rutner, Constance Campbell, D Harrison McKnight, and Bill C Hardgrave. 2021. Just Let Me Do
My Job! Exploring the Impact of Micromanagement on IT Professionals. ACM SIGMIS Database: the DATABASE for Advances in Information
Systems 52, 3 (2021), 77-95.

39

Zachary C Irving, Catherine McGrath, Lauren Flynn, Aaron Glasser, and Caitlin Mills. 2022. The shower effect: Mind wandering facilitates
creative incubation during moderately engaging activities. Psychology of Aesthetics, Creativity, and the Arts (2022).

David Karlton. 2017. Naming things is hard. https://www.karlton.org/2017/12/naming-things-hard/. Accessed March 3 2024.

Mia Keinédnen. 2016. Taking your mind for a walk: a qualitative investigation of walking and thinking among nine Norwegian academics.
Higher Education 71 (2016), 593-605.

Joseph B Keller. 2010. Ponytail motion. SIAM J. Appl. Math. 70, 7 (2010), 2667-2672.

Leslie Lamport. 2019. Time, clocks, and the ordering of events in a distributed system. In Concurrency: the Works of Leslie Lamport. 179-196.
John Lanchester. 2019. Orwell v Huxley: whose dystopia are we living in today? https://www.ft.com/content/aa8ac620-1818-11e9-b93e-
f4351a53f1c3 Accessed: March 3, 2024.

P.J. Landin. 1966. The next 700 programming languages. Commun. ACM 9, 3 (mar 1966), 157-166. https://doi.org/10.1145/365230.365257
Akiva Leffert. 2010. Harnessing Human Computation: f-Reduction Hero. SIGBOVIK Technical Report (2010). https://sighbovik.org/tr/2010-
001.html

Luis Lugo, Sandra Stencel, John Green, Timothy S Shah, Brian J Grim, Gregory Smith, Robert Ruby, Allison Pond, Andrew Kohut, Paul Taylor,
et al. 2006. Spirit and power: A 10-country survey of Pentecostals. In The Pew Forum on Religion and Public Life.

Saul M Luria. 1969. Average age at death of scientists in various specialties. Public Health Reports 84, 7 (1969), 661.

Marc Luy, Christian Wegner-Siegmundt, Angela Wiedemann, and Jeroen Spijker. 2015. Life Expectancy by Education, Income and Occupation in
Germany: Estimations Using the Longitudinal Survival Method. Comparative Population Studies 40, 4 (Dec. 2015). https://doi.org/10.12765/CPoS-
2015-16

L Mahadevan. 2012. And the Ig Nobel Goes to... Joseph B. Keller. SIAM News 45, 10 (2012).

Abraham Harold Maslow. 1966. The psychology of science: A reconnaissance. (1966).

Adam M Mastroianni and Daniel T Gilbert. 2023. The illusion of moral decline. Nature 618, 7966 (2023), 782-789.

Jim McCann. 2015. Comment: SIGBOVIK Should Ban Conclusions. SIGBOVIK (2015), 83-84. https://sigbovik.org/2015/proceedings.pdf
Cabrera M.E., Sanchez-Tamayo N., R. Voyles, and J.P. Wachs. 2017. One-Shot Gesture Recognition: One Step Towards Adaptive Learning. 12th
IEEE International Conference on Automatic Face & Gesture Recognition (2017).

Benedict Cumberbatch Morten Tyldum. 2014. The Imitation Game. Film.

Urban Miiller. 1993. Brainfuck. http://esoteric.voxelperfect.net/wiki/Brainfuck Accessed: March 3, 2024.

Gunnthora Olafsdottir, Paul Cloke, André Schulz, Zoé Van Dyck, Thor Eysteinsson, Bjérg Thorleifsdottir, and Claus Vogele. 2020. Health
benefits of walking in nature: A randomized controlled study under conditions of real-life stress. Environment and Behavior 52, 3 (2020),
248-274.

Marily Oppezzo and Daniel L Schwartz. 2014. Give your ideas some legs: the positive effect of walking on creative thinking. Journal of
experimental psychology: learning, memory, and cognition 40, 4 (2014), 1142.

George Orwell. 1949. Nineteen Eighty-Four. Secker & Warburg.

Linda A Ovington, Anthony J Saliba, Carmen C Moran, Jeremy Goldring, and Jasmine B MacDonald. 2018. Do people really have insights in
the shower? The when, where and who of the Aha! Moment. The Journal of Creative Behavior 52, 1 (2018), 21-34.

James Patience, Ka Sing Paris Lai, Elizabeth Russell, Akshya Vasudev, Manuel Montero-Odasso, and Amer M Burhan. 2019. Relationship
between mood, thinking, and walking: a systematic review examining depressive symptoms, executive function, and gait. The American
Journal of Geriatric Psychiatry 27, 12 (2019), 1375-1383.

Giuseppe Peano. 1889. Arithmetices principia: Nova methodo exposita. Fratres Bocca.

Giuseppe Peano. 1901. Formulario mathematico. Revue de Métaphysique et de Morale 14, 3 (1901).

David Peter. 2023. hyperfine. https://github.com/sharkdp/hyperfine

Darcy C Plymire. 2004. Positive addiction: running and human potential in the 1970s. Journal of Sport History 31, 3 (2004), 297-315.

J. Postel. 1980. DoD standard Transmission Control Protocol. https://doi.org/10.17487/rfc0761

John C. Reynolds. 1972. Definitional interpreters for higher-order programming languages. In Proceedings of the ACM Annual Conference -
Volume 2 (Boston, Massachusetts, USA) (ACM ’72). Association for Computing Machinery, New York, NY, USA, 717-740. https://doi.org/10.
1145/800194.805852

S Pressman Roger and R Maxin Bruce. 2015. Software engineering: a practitioner’s approach. McGraw-Hill Education.

Fred B Schneider. 2003. Least privilege and more [computer security]. IEEE Security & Privacy 1, 5 (2003), 55-59.

M. Schénfinkel. 1924. Uber die Bausteine der mathematischen Logik. Math. Ann. 92, 3-4 (Sept. 1924), 305-316. https://doi.org/10.1007/
bf01448013

David J Shonk and James F Weiner. 2021. Sales and revenue generation in sport business. Human Kinetics.

Jérome Siméon and Philip Wadler. 2003. The essence of XML. ACM Sigplan Notices 38, 1 (2003), 1-13.

T. Soratana, M.V.S.M. Balakuntala, P. Abbaraju, R. Voyles, J. Wachs, and M. Mahoor. 2018. Glovebox Handling of High-Consequence Materials
with Super Baxter and Gesture-Based Programming. 44th International Symposium on Waste Management (2018).

Jan L. Souman, Ilja Frissen, Manish N. Sreenivasa, and Marc O. Ernst. 2009. Walking Straight into Circles. Current Biology 19, 18 (2009),
1538-1542. https://doi.org/10.1016/j.cub.2009.07.053

Stack Overflow. 2023. Stack Overflow Developer Survey 2023. Stack Overflow. https://survey.stackoverflow.co/2023/#work-company-info
Accessed: March 3, 2024.

Guy L Steele Jr. 2001. Re: need for macros (was Re: Icon). https://people.csail.mit.edu/gregs/Il1-discuss-archive-html/msg01134.html Accessed:
March 3, 2024.

Guy L Steele Jr. 2017. It’s Time for a New Old Language.. In PPoPP.

Strava. 2024. Strava. https://www.strava.com/ Accessed: March 3 2024.

Lora Streeter. 2019. Teaching Introductory Programming Concepts through a Gesture-Based Interface. Theses and Dissertations (2019).

K Suparna, AK Sharma, and J Khandekar. 2005. Occupational health problems and role of ergonomics in information technology professionals
in national capital region. Indian Journal of Occupational and Environmental Medicine 9, 3 (2005), 111-114.

Richa Talwar, Rohit Kapoor, Karan Puri, Kapil Bansal, and Saudan Singh. 2009. A study of visual and musculoskeletal health disorders among
computer professionals in NCR Delhi. Indian J. Community Med. 34, 4 (Oct. 2009), 326—328.

Daniel Temkin. 2015. BodyFuck - esoteric.codes. https://esoteric.codes/blog/bodyfuck-gestural-code Accessed: March 3, 2024.

The Simpsons. 1995. Bart vs. Australia. Television series. https://simpsons.fandom.com/wiki/Bart_vs. Australia Season 6, Episode 16.
Time Team Official. 2011. Phil’s Pub Review. https://youtu.be/watch?v=611fmiAMC84 Accessed: March 3 2024.

Topografix. 2004. GPX (GPS Exchange Format) Version 1.1. http://www.topografix.com/GPX/1/1/ Accessed: March 3, 2024.

40

S. Toro-Guajardo, E. Lizama, and F.J. Gutierrez. 2023. Gesture Coding: Easing the Introduction to Block-Based Programming Languages with
Motion Controls. Proceedings of the International Conference on Ubiquitous Computing & Ambient Intelligence (2023). https://doi.org/10.1007/978-
3-031-21333-5_84

A. M. Turing. 1936. On Computable Numbers, with an Application to the Entscheidungsproblem. Proceedings of the London Mathematical Society
52-42, 1 (1936), 230-265. https://doi.org/10.1112/plms/s2-42.1.230 arXiv:https://londmathsoc.onlinelibrary.wiley.com/doi/pdf/10.1112/plms/s2-
42.1.230

Tom Murphy VII 2015. The Portmantout. SIGBOVIK (2015), 85-98. https://sigbovik.org/2015/proceedings.pdf

Simon Winchester. 2011. A Verb for Our Frantic Times. https://www.nytimes.com/2011/05/29/opinion/29winchesterhtml Accessed: March 3,
2024.

Marcus Wohlsen. 2013. Guys Like This Could Kill Google Glass Before It Ever Gets Off the Ground. https://www.wired.com/2013/05/inherent-
dorkiness-of-google-glass/ Accessed: March 3, 2024.

41

A COMPLETE C11 POOLOLOOP REFERENCE COMPILER SOURCE CODE

The complete C source code of the Poololoop compiler is available in the following listing.

®NoUa W =

©

N
S

N
3

#include <stdio.h>
#include <string.h>
#include <errno.h>
#include <stdlib.h>
#include <stdbool.h>
#include <math.h>

#define det(a,b,c,d) ((b.y-a.y)*(d.x-c.x)-(b.x-a.x)*(d.y-c.y))
#define dot(a,b,c,d) ((b.y-a.y)*(d.y-c.y)+(b.x-a.x)*(d.y-c.y))

#define new(type) memset(malloc(sizeof(type)), 0, sizeof(type))
#define alloc(v) memcpy(malloc(sizeof(v)), (typeof(v)[1]){v}, sizeof(v))
#define at(a,i) (a->data[i])
#define push(a,e) do {
if (a->len >= a->cap)
a->data = reallocarray(a->data, a->cap+=a->cap+l, sizeof(a->data[0]));
a->datala->len+] = e;
} while(0)

#define typedef array(type, name) \
typedef struct { type* data; size t len; size t cap; } name

#define error(m) do { fprintf(stderr, m "\n"); exit(-1); } while(0)
#define paren(code) do { printf("("); code; printf(")"); } while(0);

typedef struct { double y; double x; } coord;
typedef_array (coord, coord arr);

typedef struct { int id; double ord; double dir; bool open; } crossing;
typedef array (crossing, crossing arr);

typedef enum { var, fun, app } expr_kind;
typedef struct { size t var; void* es; expr kind kind; } expr;
typedef array (expr, expr_arr);

enum { haskell, scheme } target = scheme;

int compare_cross(const void* pl, const void* p2) {
return ((crossing*)pl)->ord - ((crossing*)p2)->ord;

bool prefix(char* s, char* p) {
return *p || (*p=*s && prefix(s+1, p+l));

double read d(char* str) {
char buff[25] = {0};
for (size t i =5; str[i] !'= 34 & i < 30; i++) buff[i-5] = str[il;
return atof((char*) &buff);

coord arr* read_coords(char* s) {
coord arr* coords = new(coord arr);
for (double cs[2] = { NAN, NAN }; *s; s++) {
if (prefix(s,"lat=\"")| |prefix(s,"lon=\"")) cs[s[1]=111]=read d(s);
if (!isnan(cs[0])&&!isnan(cs[1])) {
push(coords, ((coord) {cs[0],cs[1]}));
cs[0] = cs[1] = NAN;
}
}
return coords;

}

crossing arr* find crossings(coord arr* cs, double hemisphere) {
crossing arr* arr = new(crossing arr);
for (size t i=0,j=0,2=0; j<cs->len-1; i=0,j++) for (; i<j; i++,z++) {
coord a = at(cs, i), b = at(cs, i+l), c = at(cs, j), d = at(cs, j+1);
double n = det(a,b,c,d), t1 = det(a,c,c,d)/n, t2 = det(a,c,a,b)/n;
if(0<tl&t1<18&&0<t28&12<1) {
double dir = -hemisphere*atan2(det(a,b,c,d),dot(a,b,c,d));
push(arr, ((crossing) { z, i+tl, dir, true }));
push(arr, ((crossing) { z, j+t2, dir, false }));

\
\
\

75
76
77
78

42

}

if(arr->data) gsort(arr->data, arr->len, sizeof(crossing), compare cross);
return arr;

void codegen(expr* e, unsigned int debruijn) {

}

if (le) error("Empty expression not allowed");

else if (e->kind == var) {
if (debruijn < e->var) error("Free variables not supported");
printf("x%ld", debruijn - e->var);

} else if (e->kind == fun) paren({
printf(target==scheme ? "lambda (x%ld) " : "\\ x%ld -> ", debruijn);
codegen(e->es, debruijn + 1);

}) else paren({
for (size t i=0; i<((expr_arr¥)(e->es))->len & (!i||printf(" ")); i++)

codegen(((expr_arr*) (e->es))->data+i, debruijn);

expr* parse(crossing arr* pts, unsigned int* i) {

if (*1 >= pts->len) error("Unexpected End-0f-Run");
crossing pt = at(pts, *i);
size t j = (*i)++;
while (j+1 < pts->len & at(pts,j).open
&& lat(pts,j+1).open & at(pts,j).id = at(pts, j+1).id) j+=2;
size t streak = (j-*i+1)/2;
if (streak > 0) {
*i += 2*streak-1;
return alloc(((expr) {streak, 0, var}));
} else if (pt.open & pt.dir > 0) {
expr* body = parse(pts, i);
if (*i<pts->len & pt.id==at(pts,*i).id & !at(pts, (*i)++).open)
return alloc(((expr) {0, body, fun}));
else error("Expected closing intersection");
} else if (pt.open & pt.dir < 0) {
expr_arr* arr = new(expr_arr);
do push(arr, *parse(pts, i));
while (*i >= pts->len || pt.id!=at(pts,*i).id || at(pts,*i).open);
if ((*i)++ >= pts->len) error("Closing intersection never found");
return arr->len == 1 ? arr->data : alloc(((expr) {0, arr, app}));
} else error("Too many closing intersections");

char* file get contents(char* filename) {

}

FILE* file = fopen(filename, "r");

if (!file) {
fprintf(stderr, "error opening %s: %s\n", filename, strerror(errno));
exit(errno);

}

typedef array(char, str);

str¥ contents = new(str);

for (char =0; (c = fgetc(file)) ™ EOF;) push(contents, c);

fclose(file);

return contents->data;

int main(int argc, char** argv) {

if ((argc !'= 3 & argc !=4)
|| (argc == 4 && stremp(argv([3],"hs") & stremp(argv[3],"scm"))) {
fprintf(stderr, "USAGE: %s file.gpx name [hs|scm]\n", argv[0]);
return -1;

}

target = (argc == 3 || strcmp(argv[3],"hs")) ? scheme : haskell;

coord arr* cs = read_coords(file get contents(argv[1]));

crossing arr* crossings = find_crossings(cs, cs->data ? at(cs,0).y : 0);
free(cs->data); free(cs);

expr e = parse(crossings, new(unsigned int));

free(crossings->data); free(crossings);

printf(target = scheme ? "(define %s " : "%s ="
codegen(e, 0);

target = scheme & printf(")");

, argv(2]);

Xtremely Delightful Random Development Environment and
Dragons: A Novel Way of Programming

Refracted Light System|s Incorporated] (Lux Beattie/babblebubble)

Abstract

It is a well-known fact that programmers think strangely and enjoy thinking even stranger
[citation needed] g delight the weirdes mensters people known as programmers, one may intro-
duce them to esoteric programming languages that require them to think in novel ways—or our
approach, creating an esoteric integrated development environment (IDE) for Java. This IDE,
Xtremely Delightful Random Development Environment and Dragons (XDRandomDEaD), chal-
lenges programmers to code with their only keyboard input being whitespace and enter keys, the
movement arrows, and backspace; all other code is written by pseudo-random generators that
the user selects. This makes programming an extremely delightful experience with no frustration

whatsoeverlcitation needed] " T¢ 5156 includes dragon pictures for emotional support.

1 Introduction

The stereotype is that STEM majors are not creative. This is objectively untrue—we are
creative within the framework of having a problem to solve and optimize. So, what if we started
creating problems on purpose? This is the philosophy of the integrated development environment
(IDE) Xtremely Delightful Random Development Environment and Dragons (XDRandomDEaD).
The more problems programming in it has, the more delighted programmers will be as they try to
speedrun making a functional program—just see how popular EsoLangs StuCo is!

We chose the programming language Java for XDRandomDEaD because Java is euwrfaverite
little-pookie-bear a somewhat problematic language that is-newherenearas-stupid-as-Julia—which
isjust-herrible programmers might know. Java is also a very wordy language, and lines of code in
it are often quite long. For example, public static void main(String[] args) is the function
header for a main function. Because of this property, using pseudo-random generators to write
code will be extremely delightful.

XDRandomDEaD’s only keyboard inputs allowed are whitespace, newlines, backspaces and
deletes, and the movement arrow keys. Every other input is a pseudo-random generator or the
mouse (allowing you to select text). You can select text and delete it, but to input new non-
whitespace/non-newline text, you must use a generator outlined in the following section.

43

2 XDRandomDEaD Generators

There are 11 generators in XDRandomDEaD:

« Digit (0-9)

o Lowercase Latin Letter (a-z)

o Uppercase Latin Letter (A-Z)

e Unicode Latin-1 Supplement Lowercase Vowels

e Unicode Latin-1 Supplement Uppercase Vowels

e Unicode Latin-1 Supplement Consonants (Both Cases)
» Non-reserved English Dictionary word (3-9 Letters)

o Java Keywords 1 (a-i) + false

o Java Keywords 2 (j-z) + true, null, and String

o Punctuation

e Dragons

Here are the options of some generators that may be unclear from their name:

Unicode Latin-1 Supplement Lowercase Vowels

e A o« & e O
e 4 e & e O
e A o i e O
e A o 1 e U
e ° i e U
e a ° 1] fl
e e O e U
e ¢) ey
e ¢ e O oy

Unicode Latin-1 Supplement Uppercase Vowels
° A ° A ° A

.A .A OA

44

o
(on N e A O

° OO
.E OO

, . . U
oE OO
o I e O « U
o | e O OY

Unicode Latin-1 Supplement Consonants

. Q e P e O
e D e B3 e N
. N e C . b

Non-reserved English Dictionary word (3-9 Letters)
https://drive.google.com/file/d/1h1I6LxnsjdkKGs_cN_sMxdRhW8_pgLMj/view?usp=sharing
(sourced from EFF’s diceware wordlist, minus the Java keywords)

Java Keywords 1 (a-i) + false

e abstract e continue o for
e assert o default . goto
e boolean e do .
o if
e byte e double
e implements
e case e eclse
e import
e catch e enum
e char e extends * instanceof
e class o false e int
e const e final o interface

Java Keywords 2 (j-z) + true, null, and String

e long e null e protected
e native o package e public
o nNew e private e return

45

e short e synchronized o tries

e static e this
. id
e strictfp e throw Vol
° t 1 o th
String Fows o volatile
e super e transient
e switch e true e while
Punctuation
[] { [] $ [] ”
° } L4 % o ’
[] I: L[] - L[] \
.] . & o
. (. | *« >
[]) L] * L]
] o - L] ?
° # o + ° /
° ' e o
° @ o — o ~
Dragons
e fire e draconic o claw
e dragon e wWyvern . wing
e dungeon e drake
e lizard
e treasure e serpent
o Tiamat
e Wyrm e legendary
e lair e scale e Bahamut

3 XDRandomDEaD Dragons

XDRandomDEaD also supports the feature of a nice dragon image popup on the client’s screen
everytime they select the dragon generator. This cannot be turned off.

46

4 FEvaluation

Doent-do-this- A very good idea that will surely make programmers happy!

References

Electronic Frontier Foundation. (2016, July 18). https://www.eff.org/files/2016/07/18/
eff_large_wordlist.txt

47

THE BALLMER PEAK: AN EMPIRICAL SEARCH

CLINICAL STUDY

Twm Stone
A Real Job
The Private Sector
Cambridge, UK
twm.stone@cantab.net

Jaz Stoddart
A Real Scientist
Royal Botanic Gardens, Kew
London, UK
js2231@cantab.ac.uk

ABSTRACT
The concept of a ‘Ballmer Peak’ was first proposed in 2007, postulating that there exists a very
specific blood alcohol content which confers superhuman programming ability. More generally, there
is a commonly held belief among software engineers that coding is easier and more productive after a
few drinks. Using the industry standard for assessment of coding ability, we conducted a search for
such a peak and more generally investigated the effect of different amounts of alcohol on performance.
We conclusively refute the existence of a specific peak with large magnitude, but with p < 0.001
find that there was a significant positive effect to a low amount of alcohol—slightly less than two

drinks—on programming ability.

Keywords Alcohol - Problem solving - Cognition -
Software engineering - Programming - Coding

ACM Reference format:

Twm Stone and Jaz Stoddart. 2024. The Ballmer Peak:
An Empirical Search. In Proceedings of SIGBOVIK,
Pittsburgh, PA USA, April 2024 (SIGBOVIK’24), 7 pages.

1 Introduction

There has long been a belief among programmers that their
coding ability is significantly improved after a couple of
drinks. Although there has been significant previous work
in this area—notably showing a minor beneficial impact
of alcohol on creative problem solving (Benedek et al.,
2017), and showing a detrimental impact of a particular
(high) level of inebriation on novice coders (Brabrand et al.,
2024)—there has not been any direct scientific investiga-
tion of the effect of differing levels of alcohol intoxication
on coding ability.

It was posited in 2007 by renowned popular science author
Randall Munroe, in the adjacent comic (Munroe, 2007),
that there existed a peak of width approximately 0.01%,
centred on 0.1337% blood alcohol content, which confers
superhuman programming ability. More recently the in-
trepid comedic minds of Mitchell, Webb et al. explored
the huge potential benefits to all human activities of hav-
ing a very precise level of inebriation (slightly less than
two drinks (Mitchell, Webb et al, 2010)) and an insightful
Danish-language documentary by Vinterberg demonstrated
the wide-ranging positive effects of maintaining a blood
alcohol level of above 0.050% (Vinterberg, 2020) .

PROGRAMMING ‘,
SKILL '

L

o0 4 06 OF 40 uz M 6

BLOOD ALCOHOL CONCENTRATION (%)

e
LI .

CALLED THE BALLMER PEAK, IT HOWEVER, \T5 A DELICATE EFFECT ...HAS THAT
WAS DISCOVERED BY MICROSOFT REQUIRING CAREFUL CALIBRATION— EVER HAPPENED?
IN THE LATE 805. THE CAUSE YOU CANT JUST GVE A TEAM OF REMEMBER
15 UNKNOWN, BUT SOMEHOW A BAC. CODERS A YEAR'S SUPPLY OF WHISKEY WINDOWS ME? \
BETWEEN (2% AND (:38x CONFERS AND TELL THEM TO GET CRACKING, 2
SUPERHUMAN PROGRAMMING ABILITY. | | & T Kew !
= b ' /
1 i ‘ O J
B \
N e ey WSREEEEC) S
Mol (a

Figure 1: Apple uses automated schnapps 1Vs.

In this study, we attempt to establish the existence of the
Ballmer Peak and more generally the existence, magnitude
and location of any benefit to programming conferred by
alcohol intoxication. We additionally aim to gain a qualita-
tive understanding of the different ways in which alcohol
consumption impacts the different facets of programming,
and to guide future research in this area.

48

2 Methodology

2.1 Test subject

The test subject was chosen so that they had substantial
previous experience in both competitive programming and
using the chosen programming language professionally,
but had never used the LeetCode platform before. This
minimized the impact of the practice effect on problem
completion rate whilst also preserving the novelty of the
problems.

The selected candidate was a male, 27 year old Caucasian
of Northern European descent, currently employed as a
Software Engineer. Weighing around 65 kilograms and
being approximately 170cm tall, he is generally fit and
well with no formally diagnosed cognitive or physical
conditions which might impact problem solving ability or
result in abnormal metabolism of alcohol.!

2.2 Means of intoxication

To achieve a given level of percentage blood alcohol con-
tent (%BAC) we needed to administer potentially large
amounts of alcohol to the test subject but in a predictable
manner. Mitchell, Webb et al. suggested several options
for administration—Cointreau enemas, intravenous claret,
enteral Special Brew—which were deemed infeasible by
the Ethics Board due to lack of available medical expertise
(Mitchell, Webb et al, 2010).

Frequent ingestion of liqueur chocolates was considered as
the method of intoxication but the required quantities and
rate of consumption was deemed financially impractical
and liable to induce emesis. It was thus decided that the
most cost-effective means of administering ethanol was to
imbibe it. This was done with a combination of beer, cider,
premixed cocktails, and something which could generously
be called ‘homemade punch’, the proportions of which
depended on the target %BAC. These dilute sources of
ethanol were chosen as pure ethanol is quite unpalatable,
far more expensive to purchase and infeasible for us to
produce ourselves, owing to the difficulty associated with
separation from the azeotrope it forms with water.

2.3 Assessment of coding ability

To assess coding ability in this investigation, we opted
to use the industry standard—the speed of solving Leet-
Code problems.> The chosen language for solving the
LeetCode problems was a relatively new one—akin to
pseudo-pseudocode with duck typing—introduced by Van
Rossum and Drake, since it was the language with which
the test subject had the greatest familiarity (Van Rossum
and Drake, 2009). The LeetCode problems were filtered
using inbuilt functionality to select at random exclusively

"Due to requirements of the Ethics Board, the test subject was
the first author.
"https://leetcode.com/

from the subset of problems ranked as "Easy"; problems
requiring a subscription or the use of other languages were
also discarded, as were problems previously completed.’
The problems were solved by typing directly into the pro-
vided in-browser IDE; no code completion, debugging
tools or Al assistance were used, although it did have syn-
tax highlighting.*

Since our budget did not extend to a premium LeetCode
subscription, we did not use the associated debugger but
instead simulated the problem-solving workflow of a pro-
fessional software engineer by

¢ Adding lots of print () statements, running all of the
provided test cases, and looking at stdout.

¢ Getting annoyed and looking up how various language
features actually work on Stack Exchange.

The time to solve was taken from the point the page loaded
to the point the submission stats loaded for a correct so-
lution, including all reading, coding, debugging, and run
time. No attempt to measure the asymptotic behaviour
of the solution—in particular, as long as the platform ac-
cepted a solution and did not return a Time Limit Exceeded
error, it was considered solved even if the algorithmic
complexity was not as good as required in the problem
description—and no other measure of code ‘quality’ was
quantified, although observations were made by the author
contemporaneously.’

2.4 Recording of blood alcohol content

Blood alcohol content (%BAC) was recorded using a BAC-
track C6 electronic breathaxlyser,6 which was recently cali-
brated and claims an accuracy of +0.001%BAC. The ac-
curacy of the breathalyzer was verified post-calibration
through multiple means.

First, the zero point reading was verified through testing
on sober volunteers.” Repeated readings taken on them
consistently returned values of 0.000%BAC.? Four sober
volunteers were then each given several pints of approxi-
mately equal strength beer or cider (Fuller’s London Pride,
4.7% or Aspall Cyder, 4.5%)° and periodically breathal-

3Also any problem involving binary trees on account of the
test subject not being bothered to learn how they work.

*This was mildly useful on a number of occasions, although
it did not prevent the test subject spending 10+ minutes failing to
realise he had misspelled lambda as lamdba.

>We originally used Microsoft Word for this but it kept putting
the entire document into 8pt Times New Roman whether we
wanted it to or not.

®BACtrack Breathalyzers / KHN Solutions Inc., San Fran-
cisco, USA

"Here sober is defined as no alcohol having been consumed
within the preceding 24 hours.

81t was observed during later testing that it always rounded
down readings below 0.007% which contradicts the manufacturer
claimed precision.

“Due to availability at The Old Wheatsheaf, Enfield.

49

ysed until a peak value was reached.!” The expected peak
%BAC for each volunteer was calculated from known vol-
ume of consumed alcohol and expected blood volume
using Equation 1, which roughly matched the observations
taken using the breathalyser.

Valcohol — 100 x
blood

Valcohol

BAC =100 —_—
% x Mpatient * B

(D

where Vjconoi i the volume of alcohol consumed in ml,
Vbiood 1s the volume of blood in ml, M ¢iens is the mass
of the patient in kg, and B is the gender and age appropriate
value for the average blood volume in mL.kg~! (Nadler
etal., 1962).11

Repeated readings taken from the same subject had a
spread of +0.002%, in line with the advertised accuracy
of the breathalyzer.

2.5 Data collection

Data collection took place approximately every second
night for forty days and forty nights. The test subject
was inebriated to a given level and then, after a pause to
minimise residual alcohol on the breath,'? began solving
problems. The %BAC of the test subject was monitored
through measurements taken immediately before and after
each problem was attempted. After the subject became
bored with coding,' he resumed drinking and the process
was repeated up to several times.

3 Results

A total of 100 problems were attempted'# over the course
of forty days and forty nights preceding the SIGBOVIK
’24 conference, on 15 separate occasions. The results were
distributed as follows. Note that there is a bias towards
data collection in the lower ranges of %BAC; owing to the
average time per problem being greatly reduced more were
completed before more drinks were consumed.

"They were all former university students and thus experi-
enced drinkers, mitigating any risk factors that may have been
grounds for ethical concerns.

1B for an adult male = 75mL.kg™~
=65mL.kg™"

Including efforts to wash the mouth out with water.

BOr was observed buying crisps, or trying to remember the
Oscar-winning films of the 70s.

140f the 100, 99 problems were completed and 1, attempted at
~0.2%BAC, was not owing to the the test subject succumbing
to unconsciousness after half an hour. The recorded completion
time of 90 minutes was projected based on a sober assessment of
the problem and the progress made.

! and for an adult female

Table 1: Sample distribution

Range Sample size Mean time /s

z = 0.000% 22 394
0.000% < z < 0.025% 16 402
0.025% < z < 0.050% 20 249
0.050% < xz < 0.075% 12 310
0.075% < = < 0.100% 11 610
0.100% < z < 0.125% 6 614
0.125% < =z < 0.150% 8 1204
0.150% < z < 0.175% 3 2550
0.175% < = < 0.200% 2 3281

Our first figure, below, is a scatter plot of the raw data—
showing completion time against %BAC.

5400~
4800~
4200~

3600 -

w
s!
S
S

Time to solve (s)
N
B
L 3
=

1800 -

1200 -

600 -

OAO OHS

Mean BAC (%BAC)

ObO 0b5

Figure 2: Time to solve in seconds against mean %BAC.

The next two figures presents the same data, but with a
quadratic line of best fit and a 95% confidence ribbon.
This model was chosen from many potential ones (linear,
quadratic, exponential, cubic, power, etc.) since it matched
most closely; it is fit with p < 0.001. Figure 3 presents
the raw data and has a minimum at (0.043%, 222s) and
y-intercept (0.000%, 466s), whereas Figure 4 presents
"adjusted time" (see Limitations) against %BAC in the
same way, with a minimum at (0.047%, 64.5s) and y-
intercept (0.000%, 214s).

20

5400 -

4800 -

4200 -

3600 -

3000~

2400~

Time to solve (s)

1800 -
1200-

600 -

QHO
Mean BAC (%BAC)

Figure 3: Time to solve against mean %BAC.

2400~

1800 -

1200-

Difficulty adjusted time to solve (s)

600-

QHO
Mean BAC (%BAC)

Figure 4: Difficulty-adjusted time against mean %BAC.

relative difference between observed and predicted time
to solve was a metric calculated to attempt to account for
%BAC and thus allow for trends in performance over the
problem set to be seen. The relative difference between
observed and predicted time was calculated as:

Tobse'r‘ved - Tpredicted

relative —

Difference (2)

Tpredicted

Relative difference between predicted and observed time to solve

' ' ' ' '
0 25 50 75 100

Problem number

Figure 5: Prediction error throughout the study.

4 Discussion

4.1 Results and Implications

Over the course of this study the test subject descended
through, at least once, every possible %BAC between
0.000% and 0.200%. Despite this, no spike in percep-
tual or actual competence was observed from problems
suddenly becoming easier at any given level of inebriation.
Thus, we believe we can conclusively rule out the existence
of the Ballmer Peak as originally formulated.

However, looking at Figure 3 it is clear that a moderate
amount of alcohol has positive effects on problem-solving
speed. The peak of this effect is at about 0.043%BAC,
where the test subject was able to solve problems around
45% faster than while sober. To get to this level requires
slightly less than two standard drinks—that is, around a

In order to visualise whether there was a "practice effect"— pint and a half of 5% beer, a glass and a half of rosé, or

where performance improved over time across all problems
irrespective of intoxication—Figure 5 was produced. The

three shots. Additional alcohol intake beyond that con-
sistently worsened performance, with only slightly higher

51

%BAC having parity with sobriety and then higher lev-
els having an increasingly negative effect. After the ini-
tial peak there was no positive impact at any point for a
marginal drink.

A further observation is that alcohol intake increases spread
but does not necessarily lower the ‘best case’ solving speed.
One of the fastest problems solved during this study was
at 0.090%BAC, the equivalent of having 6 straight shots
of vodka.!> This is in accordance with the notes taken
contemporaneously; there was a perception that sometimes
one can just "see it" and get the solution straight away;
this ability did not actually seem to be affected by alcohol
intake less than a very high level. However, as soon as the
problem required debugging or trying a different approach
the ability of the test subject regressed significantly. This
was due to a combination of continual typographic and
logical errors—each requiring some amount of effort to
fix, the fix itself potentially adding more—but also the test
subject remained convinced for longer that ‘this approach
is basically perfect I just need to fiddle with the algorithm
a bit’ rather than trying a different approach.

For the sober problems the test subject made more of an
attempt to use so-called ‘idiomatic Python’ in the hope of
getting a pithy one-line solution as fast as possible. This
was sometimes successful but often wasted a lot of time
fiddling with list comprehensions'® although it did reliably
place him in the top 95% of submissions (see below).

The possibility of a practice effect was considered. Once
a line of best fit had been determined for the full data set,
we measured the deviation from this ‘predicted time* for
each of the problems solved. The results, Figure 5, of
this analysis suggest there is no significant practice effect
in our dataset. This conclusion is reached given the best
fit for this data was a quadratic curve rather than a line
with negative gradient. Additionally, the confidence ribbon
entirely overlaps the line y = 0; indicating the observed
values never significantly deviate from predicted values
made with a model that assumes no practice effect.

5This clearly had nothing to do with the fact that the problem
in question—return true if there are three consecutive odd num-
bers in this integer array—was orders of magnitude simpler than
some of the other problems in the so-called ‘Easy’ category.
'SFor example, the solution for 2404: Most Frequent Even
Element was the following concise yet readable code:
def mostFrequentEven(self , nums:
evens sorted ([elem for elem in nums
if elem % 2 == 0])
counts = {thing: evens.count(thing) for

List[int]):

Accepted
‘& Twm Stone submitted at Mar 24, 2024 17:58

@& Solution

O© Runtime

3058 ms
Beats 5.04% of users with Python3

195ms 318ms 441ms 564ms 688ms 811ms 934ms 1057ms.

Figure 6: Somehow, 5% of users did worse than this...!”

4.2 Limitations

Assessing how long a problem ‘should’” have taken was
difficult; LeetCode does not provide average solution time
for its problems, only ‘acceptance rate’, i.e. what propor-
tion of submissions for the problem were correct. This
was used as a proxy for difficulty in our ‘adjusted time’
but might reasonably also be considered to reflect how
many traps or tricks there were in the question. We directly
divided the real completion time by the acceptance% to
adjust but one might be sceptical that is realistic—it is im-
probable that "add two numbers together" (#2235, 87.6%)
is really half the difficulty of "find a substring length m
which repeats k times" (#1566, 43.0%).'® Figure 4 shows
the impact of adjusting for difficulty in this manner. The
location of the peak is almost unchanged and the overall
data distribution is similar. Alternatives were considered
for measuring difficulty but getting sober volunteers to
solve enough of the problem set to have meaningful results
on this was deemed infeasible within the time constraints
of the study.

The approach to measuring %BAC used during this study
may have impacted the accuracy of results. It should be
noted that whilst it might have been possible to complete
this work without the assistance of a breathalyser, using
estimates based upon Equation 1, the use of one is likely
to have increased accuracy and ease with which %BAC
was measured. Estimates based solely upon blood volume
are subject to introduced errors from assumptions made
regarding rates of metabolism, efficacy of intake alcohol
into blood, body fat distribution and proportion, and, of
course, blood volume (Cederbaum, 2012) (Nadler et al.,
1962). However, breathalyzers are known to over estimate
%BAC immediately following consumption and so this

17 Astute readers will have noticed that the x-axis labels are not
consistent with the achieved runtime—in other words, this result
was off-the-charts bad.

thing in evens}
return —1 if not counts else sorted ([elem "®In particular, this second problem requires not only adding
for elem in counts if counts[elem] == butalso counting, and we know from (Linderholm, 1972) that,

max ([counts[thing] for thing in

counts])])[0]

for the superstitious, the combination of the two requires dealing
with both cardinals and ordinals.

52

may present a further source of inaccuracy—though mea-
sures were taken to mitigate this, such as waiting between
initial consumption and starting the test and washing the
mouth out with water.

Alternative more accurate approaches to %BAC measure-
ment were not considered due to the associated prohibitive
costs, impracticality, and ethical issues presented by re-
peated frequent sampling of blood and urine.

4.3 Further confounders

This study was not double-blinded or indeed blinded at
all. The test subject knew!® how much alcohol they had
consumed. Even worse, given that they had taken the
measurement of %BAC themselves and were aware of
previous results, there may have been a placebo effect
around how hard the test subject expected the problem to
be, which could have informed their approach.

Increased tolerance of the subject to alcohol over the course
of the study was not accounted for. Whilst initial data gath-
ering was performed after pre-existing social events / pub
trips, it was quite quickly established that this level of
drinking was much too slow to realistically reach above
~0.08%BAC. In order to get data for higher ranges (in-
cluding, crucially, the originally postulated 0.1337% peak)
the test subject had to intentionally drink large quantities
rapidly on multiple occasions. This was observed to have a
significant positive effect?® on his ability to withstand high
levels of inebriation during subsequent research.”!

Tiredness and caffeine intake may have influenced the
ability of the test subject to solve the problems. Whilst the
test subject was never knowingly under-caffeinated some
of the problems were solved quite late at night. The test
subject’s sleep cycle did suffer adverse consequences from
this research—hence much of the data was gathered on
Friday or Saturday nights to minimize the impact on their
day job—and it is possible data gathered towards the end
of the study was impacted negatively by this.

Prolonged alcohol consumption followed by periods of
unconsciousness in which one does not drink water causes
changes in composition of the blood. Of these changes, it
is the reduced volume from dehydration and the presence
of alcohol metabolites—primarily acetaldehyde, as well
as additional congeners such as tannins and other phenolic
compounds—which are believed to be the principal causes
of a hangover (Mackus et al., 2020). Given the nature of
the study and the concentrated periods of data collection
throughout the forty days and forty nights of study, it is
possible that the test subject achieved a state of both being
drunk and hungover at the same time. Since this was not
a study aimed at examining the effects of programming

At least, if they were paying attention.

2From a certain point of view...

21 At least perceptually, their ability to focus without feeling ill
was improved substantially. The fact that that the test subject ran
a marathon mid-way through the study and then ceased training
may have also impacted this.

while hungover, we chose to ignore any impacts this might
have had.

5 Conclusions

From this brief case study, we believe there is sufficient
evidence to conclude that the Ballmer peak, sensu Munroe
(2007), does not exist. The absence of a specific narrow
peak for improved programming ability does not however
discount the more widely held beliefs of general improve-
ments in performance after very nearly two drinks.

To that end, our work supports the hypotheses of Mitchell,
Webb et al. and we believe that the high importance of
the subject matter means that further work to replicate this
study on a larger scale is thus needed.?

Cheers.

5.1 Additional conclusions

In addition to our primary areas of research, we discovered
various other items of scientific value:

* Recording data for research while becoming progres-
sively more inebriated is challenging.?

* The UK drink-driving limit is dangerously high. The test
subject could literally?* five-and-drive—drink 5 beers
over the course of an evening and reasonably expect to
be under the legal limit while leaving the pub. This is
not to say that the test subject could reasonably expect
to be safe to drive in this condition, just that it would be
legal.

* It was learned that for the dial in a fridge "2" means
"2 power" and not "2 °C" and the fridge will happily
chug along at 6+ °C. Furthermore milk stored at 6+ °C
will spoil and spoiled milk actually isn’t okay to drink.
Unintentionally drinking several glasses of slightly off
milk will make you rather ill.>

5.2 Suggestions for further research

We have identified several promising avenues for continu-
ing research in this area. It seems likely that the optimal
level of alcohol consumption is different for design, cod-

22 Additionally, we currently lack understanding as to the mech-
anistic, psychological and metabolic processes which have led
to this result. There are large potential benefits to the field of
software engineering from improving our knowledge of how to
exploit this effect.

BSee bit.ly/98K8eH for more evidence on this.

2*Although did not!

% Spoiled milk typically contains some small amount of alco-
hol and thus there may be grounds to return to the study of spoiled
milk as a low concentration source of alcohol for maintenance of
%BAC at the optimal level. Products such as Kumis contain mild
levels of alcohol and there are vodkas now distilled purely from
milk based alcohol.

93

ing, testing, debugging, documentation, etc. All of these
could be interesting areas to explore.

The immediate applicability of this research to software
engineering is also potentially limited, since professional
coding work is likely to require working with a larger
codebase, not having the entire context for the problem
in your head, and negotiating with stakeholders. Each of
these could favourably or adversely be impacted by alcohol
intake.

Auto-brewery syndrome is a rare condition in which stom-
ach flora can produce a constant supply of alcohol keeping
the afflicted individual in a permanent state of intoXication
(Din et al., 2020). Further work may be required to induce
auto-brewery syndrome to see if one can achieve a constant
level of inebriation sufficient to exploit the findings of this
work and improve programming performance.

Further research will commence as soon as we secure the
funding to replenish Twm’s drinks cabinet.

6 Acknowledgements

We would like to thank the following people, without
whom this paper would have been slightly worse:

* Amanda Chua and Kevin Lim for procuring supplies,
for helping with data collection and for advice on our
experimental design.

¢ Qur Ethics Board, Tom Flynn and Rachel Newhouse, for
rubber-stamping all of our dubious decisions.

* Joonatan Laulainen and Dan Robertson, for steering us
clear from even worse ideas for a study, for convivial
ideation and for moral support.

* Nephele Penny, Jack Rickard and Oliver Shenton for
assisting in the measurements of calibration accuracy of
our equipment.

e Clara Ding, Tim Coulter, Lily Mills, and Dmitri
Whitmore, for putting up with Twm drinking for this
study while taking part in a video game tournament.

* Betty la Chatte for guidance on creative typography.

* Herbie Bradley, Patrick Kennedy-Hunt and Alexandra
Souly for proof-reading and advisement.

References

Mathias Benedek, Lisa Panzierer, Emanuel Jauk, and
Aljoscha C. Neubauer. Creativity on tap? Effects of al-
cohol intoxication on creative cognition. Consciousness
and Cognition, 56:128-134, 2017. ISSN 1053-8100.
doi:https://doi.org/10.1016/j.concog.2017.06.020. URL
https://www.sciencedirect.com/science/
article/pii/S1053810016303713.

Claus Brabrand, Nanna Inie, and Paolo Tell. Programming
under the influence: On the effect of Heat, Noise, and
Alcohol on novice programmers. Journal of Systems

and Software, 210:111887, 2024. ISSN 0164-1212.
doi:https://doi.org/10.1016/j.jss.2023.111887. URL
https://www.sciencedirect.com/science/
article/pii/S0164121223002820.

Randall Munroe. Ballmer Peak. xkcd, 2007. URL https:
//xkcd.com/323/.

David Mitchell, Robert Webb, James Bachman, Abigail
Burdess, Mark Evans, Sarah Hadland, and Stuart Scud-
amore. The Inebriati. In That Mitchell and Webb Look.
BBC, 2010.

Thomas Vinterberg. Another Round. Zentropa Entertain-
ments, Film i Vst & Topkapi Films, 2020.

Guido Van Rossum and Fred L. Drake. Python 3 Reference
Manual. CreateSpace, Scotts Valley, CA, 2009. ISBN
1441412697.

Samuel B Nadler, John H Hidalgo, and Ted Bloch. Predic-
tion of blood volume in normal human adults. Surgery,
51(2)):224-232, 1962.

Carl E. Linderholm. Mathematics Made Difficult. World
Publishing, 1972. ISBN 978-0-529-04552-2.

Arthur I Cederbaum. Alcohol metabolism.
ics in liver disease, 16(4):667-685,
doi:https://doi.org/10.1016/j.c1d.2012.08.002.

Marlou Mackus, Aurora JAE van de Loo, Johan Garssen,
Aletta D Kraneveld, Andrew Scholey, and Joris C Ver-
ster. The role of alcohol metabolism in the pathology of
alcohol hangover. Journal of Clinical Medicine, 9(11):
3421, 2020.

Asim Tameez Ud Din, Faran Alam, Farooq Mohyud Din
Chaudhary, et al. Auto-brewery syndrome: a clinical
dilemma. Cureus, 12(10), 2020.

Clin-
2012.

o4

What is your dog likelihood?

Abstract

10,000 years ago humans formed an unlikely companionship with gray
wolves. Through time, these wolves changed and evolved to look like the
adorable canine companions we keep as pets today. The notion that people
consciously or subconsciously tend to pick canines that resemble them is
a founded one. Research shows that similar to choosing a mate, people
choose dogs that look more familiar to themselves without noticing it, and
people look for similar physical features and personality resemblances in
their pets. We analyze this similarity using the facial recognition models
from computer vision. We train and evaluate a model that can predict
dog likelihood given picture of a human face.

Owner

Their Dog

1 Introduction

Previous studies have debated whether humans pick dogs that resemble them.
The notion that people consciously or subconsciously tend to pick canines that
resemble them is a founded one. Research shows that similar to choosing a

95

mate [2], people choose dogs that look close to their own feature with factors
like hairstyle and breed influencing their choices [1]. Furthermore, [3] finds that
dog owners may choose their pets to display their gender identities.

Consider Figure 1: you see a human standing with two breeds of dogs. Which
breed of dog do you think is the actual dog of the human in question? If you
guessed the image on the right, then you are correct. The resemblance between
the dog and the owner is uncanny. There is a lot of research that has been
done in regard to whether people choose dogs who look like them or give their
dogs major makeovers to make them look like them in time. We will leave this
question to be answered by people who know dogs and psychology, but we know
computer vision and we want to train computers to identify which dog belongs
to which human. Why, you ask? Cause why not?

Figure 1: A ‘real’ human standing with a ‘not-so-real’ dog.

To achieve this we collected 1500 images of dogs matched with their owners.
Then we trained a model of facial resemblance between a dog and its owner
using FaceNet [4] Architecture with ResNet50 backbone. After training the
network we decided to give it a go and asked our friends to send us pictures of
their dogs. Our model has 70% accuracy.

56

2 Methodology

2.1 Preprocessing

After collecting 1500 images of dogs and their owners, the first thing we did was
to separate the human and the dog images. By running an object recognition
model, we predict and create a bounding box on dogs and the person from which
we extracted the dog and person.

2.2 Training

Once we had the dataset ready we trained a FaceNet model. At the time
we trained the model, FaceNet was the state-of-the-art for facial recognition
problems. We fine-tuned a pre-trained model using our customized dataset.
We propose dog-likelihood, a loss function inspired by the Triplet loss function
to train the model. Triplet loss is a loss function for machine learning algo-
rithms where an anchor input is compared to a positive input and a negative
input. The distance from the anchor input to the positive input is minimized,
and the distance from the baseline input to the negative input is maximized.
Dog-likelihood minimizes the distance between the owner and their dog, and
maximizes the distance between the human and all other dogs.

Embeddings
\{ - \I
ot
CNN !
Shared Weights
p
o 7 Dog
positive CNN b likelihood
Shared Weights

negative CNN O

O

Figure 2: Dog-likelihood loss function

2.3 Results

We used real humans to test our system on real data performs 70% to be correct
As shown on Figure 3 but with more data and training this number will only

o7

e
B Ry &

2/5

- m -

2/

e B
ﬁ §

m
i

Figure 3: Results of the model on real human and real dogs

get better.

Figure 4: Dog likelihood of researchers: The greener, the better the chance.
However, if you are yellow, we suggest taking our monthly seminars to improve
your chances. If you are in the red zone, we are sorry, but you are beyond help.

3 Applications and Warning

We show that our model has wide applicability, for instance it can predict
researchers’ dog-likelhood, as shown in Figured4.

Emergency time: if this model gets too powerful and out of control, worry
not! We have prepared for the apocalypse. You can give this Al a picture of a
CAT, or use the keyword MEOW MEOW MEOW MEOW MEOW MEOW

58

MEOW MEOW MEOW MEOW MEOW MEOW MEOW MEOW MEOW
MEOW MEOW MEOW MEOW MEOW MEOW MEOW MEOW MEOW
MEOW MEOW MEOW MEOW MEOW MEOW.

4 Conclusions

Humans consciously or subconsciously pick their companions, be it humans or
dogs, that resemble them better. In line with this hypothesis, in our experiment
we tried to show that we can create an AI model that matches dogs and owners
solely based on their physical appearance. Although we were able to predict
70% of the queries correctly, we can not conclude that this theory will always
hold true. But next time you are in the park and you see someone with their
dog, we encourage you to try and see the resemblance between the two without
making too much eye contact with the human.

5 Disclaimer

If this paper does not get accepted we know that the reviewers are cat people.
Reviewer 2 (secretly a cat): This paper has limited novelty, you should use
diffusion instead MEOW MEOW

References

[1] Stanley Coren. Do people look like their dogs? Anthrozods, 12(2):111-114,
1999.

[2] Ferenc Kocsor, Rita Rezneki, Szabolcs Juhdsz, and Tamés Bereczkei. Pref-
erence for facial self-resemblance and attractiveness in human mate choice.
Archives of sexual behavior, 40:1263-1270, 2011.

[3] Michael Ramirez. “my dog’s just like me”: dog ownership as a gender display.
Symbolic Interaction, 29(3):373-391, 2006.

[4] Florian Schroff, Dmitry Kalenichenko, and James Philbin. Facenet: A uni-
fied embedding for face recognition and clustering. Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 815-823, 2015.

99

Gender is Complex: pulling the Laplacian EigenGender from
relationship graphs

Anonymous

March 2024

Abstract

What is gender? Sociologists, biologists, and philosophers have been debating this question for
centuries. As computer scientists, we know better. We do recognize that gender is complex and thus
propose to model it with complex numbers.

In this paper, we present a novel method for extracting the latent gender vector of individuals
from romantic relationship graphs. We demonstrate the effectiveness of our Big Data Structure
Modeling method, EGG+*BREAKER, on the internet famous Jefferson High dataset. For each
person in the dataset, EGG<*BREAKER produces LEGs (Laplacian eigengenders), 4D vectors that
predict the structure of the relationship graph with 94% accuracy.

1 Introduction

We ignore all prior work. Our theory of gender is based on freshman linear algebra and Blanchardian
psychoanalysis.

We will start from first principles (math presented without justification). Suppose at least one person
exists. The Gender Direction (GD) g of that person is an element of the Human Gender Hilbert
space (HGH) H equipped with an attraction kernel « : H x H — R which maps pairs of humans’
genders to the unnormalized log probability they are attracted. It is obvious the kernel will be symmetric
(in an ideal world). Research has shown that people are attracted to those similar to themselves (the
kernel is positive semidefinite) and attraction can be predicted by a linear model (though crudely)
[Spr+94] [Aro+89].

One natural candidate for the attraction kernel is the inner product of the HGH x. By the Cauchy-
Schwartz inequality, this choice leads to a narcissism problem: any person would be most attracted to a
multiple of themselves. This prediction does not match the stated preference of most people [iex]. Where
did our modelling go wrong?

We will turn to "transsexual typology” for an answer. In [Bla89], Ray Blanchard claims that transgen-
der individuals can be classified into just two categories: homosexual and heterosexual. Autogynephylia,
the term proposed for males experiencing gender dysphoria due to being "sexually oriented toward the
thought or image of themselves as women”, is a replacement for the earlier automonosezualism. In its
original defintion, the latter meant "pathological narcissism in which the individual is excited by his own
body as it is”. This is starkly similar to our characterization of the gender cosine similarity attraction
kernel, where a person likes themselves most. Blanchard holds that automonosexualism is caused by
heterosexual attraction to an imagined partner. But according to Fruedian psychoanalysis [Frel4], the
opposite is true: narcissism is primary and develops into attraction.

Motivated by this discovery, we will rework the attraction kernel to fit the real world. We have proven
that heterosexuality is a result of narcissism. We can easily account for this with a HAK (heterosexual
T;my‘ﬁ An astute reader will notice that we just flipped the signs of one of the
variables and that even though this HAK allows for an infinite number of genders, it cannot account for
homosexuality. We can easily account for this fact using a more general human romantic translation
(HRT) matrix. is an orthonormal transformation that turns gender vectors into those of a preferred

gender. With HRT, the kernel becomes %

Because HRT is orthonormal, we can transform all GD vectors by its Cholesky decomposition to
produce eigengender vectors. In eigengenderspace, the attraction kernel is simply the cosine similarity
again. Note that eigengender can be complex: if the HRT is equal to the number —1 as in the HAK, all
components of the GD will be multiplied by .

attraction kernel):

60

"

§ NI
RN /
v XA 2 g
+ N e
gt 1% Nis ;—c
oo oo SRR 2 o
Ne S T i_‘i_.’—«'f
-
SN S

1

o
!
g
¥

Ta
i
WX T
f N

L
Yooy 7 7\.
{7,. Sars \\ ‘
TR - Yo *
/ » /N
r X X v 1
o/ =

S 4l -

Figure 1: The Jefferson High dataset and its issues

2 Data

We proved from first principles that gender is a complex vector. We will apply the only useful tool
other than first principles thinking: machine learning. Because eigengender is determined up to an
orthonormal transformation by the gender attraction kernel, we can apply Yoneda Lemma or something
to say that we can predict it from observations of romantic attraction.

[BMS04] is the only public dataset we could obtain in an ethical way.! The dataset looks real despite
slander from anonymous Twitter users.lcitation needed] The only concern we have is connectivity. We need
diverse interactions to extract non-trivial and interesting (complex) eigengenders, but the graph is so
sparse it is planar and there are only two gay couples.? But the planarity is also a blessing as it means
we can parse it using computer vision.

Actually, we cannot. The figure is too blurry and contains ambiguous links (see fig. 1). The author
painstakingly traced the graph in Krita 4.1.7 [Dev20] to be more pixelated and easier to parse (fig. 2).
We extract subjects and links between them using connected components (fig. 2b).?

3 Methods

In the previous section, we mentioned that it should be possible to predict gender from observations.
As we explained, the problem of predicting eigengenders is ill-posed even given a set of all possible
interactions. But, when dealing with real data, not all possible links are sampled. This necessitates an
approximation.

Recall that the attraction kernel outputs unnormalized log probabilities. The set of eigengenders we
choose will be the one with the highest likelihood of producing the observed attraction kernel. Similarly
to word2vec [Mik+13], this is a matrix factorization problem X X7 ~ a.

1We failed to get access to its source, Add Health [HU22] due to time constraints.
2In an old Reddit comment [BMU], an author says that some gay couples may have been excluded from the dataset.
The only couples affected are the diatomic polycules, which are all equivalent and have the same predicted predicted gender
regardless of ground truth.?!
21This is not because the author was too lazy to duplicate the same structure 63 times.
3We will not be releasing the parsed traced data because you can just screenshot it. (We also made mistakes when
tracing and are afraid of being called out)

61

0 50 100 150 200 250 300 350

(a) Our glorious traced dataset (b) Parsed dataset adjacency matrix

Figure 2: Parsing the dataset through tracing. Notice the little gay dots near the diagonal.

3.1 Overview of the algorithm

In this subsection, we will break down the algorithm we use to find a matrix factorization, titled
EigenGender Generation Based on Romantic Experience Adjacency Kernel with Elementwise Reweight-
ing (EGG*BREAKER).

Gender will be represented as a C? vector for each person. The magnitude for all d complex com-
ponents is shared. [eigenvalues of orthonormal matrix have the same magnitude]. We will compute an
approximation of the adjacency matrix by computing the real part* of the complex inner product of the
eigengender matrix with itself. As an approximation of Bayesian (maximum likelihood) inference®, we
compute binary cross entropy and equalize the weighting of the two classes (attracted /not attracted) per
person. This class reweighting is necessary because the data sample is sparse and we must focus on the
observed links, just as in real life.

We optimize the loss of the eigengender vectors on a full batch of the dataset using the Adam optimizer
with a learning rate of 0.5. We use 500 iterations for all of our experiments.

4 Results

4.1 Evaluations

We evaluate the trained network on its accuracy at predicting the presence of relationships in the
data. We compute accuracy using the eigengenders’ predicted probabilities and not the top-1 prediction.
We considered evaluated the accuracy with reweighting similar to what we used for the loss, but found
no siginicant difference (fig. 3). We report accuracy over 4 runs because we’re poor.

Our final eigengender-based model uses 2 complex numbers with shared magnitude per person. We
considered some changes to this formula:

1. using "quaternions” (normalizing the whole complex vector to have magnitude 1);
2. not normalizing the complex components to have the same magnitude;

» storing gender in two separate vectors instead of one, breaking symmetry.

— using real numbers for the vectors (with twice the dimensionality), breaking puns about
complex numbers in addition. Disqualified for the latter.

The results are as follows:

480 it’s symmetric.
5trust me bro

62

1.0

0.8 A

o
(=]
I

Accuracy (reweighting)
o
e
1

0.2 1

0.0 T T T
0.0 0.2 0.4 0.6 0.8 1.0

Accuracy (no reweighting)

Figure 3: Accuracy evaluation with and without reweighting

Method Accuracy
Baseline 0.92 £0.02
?Quaternion” 0.522 £+ 0.00
No norm 0.944 + 0.00

Separate components | 0.941 £ 0.00
Real (disqualified) | 0.948 +0.00

What is the optimal number of components? We can use the eye-elbow method® and brute force
search to find out. Unsurprisingly, the answer turns out to be 2 (fig. 4).

1.00 A

0.95 A

0.80 A

0.75 T T T T T T T T
1 2 3 4 5 6 7 8 9

Number of components

Figure 4: Eye-elbow chart for calibrating gender dimensionality

4.2 Visualizations

What does eigengender look like? Since we have a planar visualization of the relationship graph
handy, we can attempt to answer this question. Thanks to our shared-magnitude parametrization, we

6 Application of the elbow method by eye.

63

can ignore gender magnitude as it only scales up attraction and focus on gender phase. Specifically, we
can overlay the imaginary component of the logarithm of the eigengender in shades of purple (fig. 5).”
We standardize the elements of the gender phase vectors to lie in [0, 1].

800 1

1000 4

1200 1

1400 A

0 250 500 750 1000 1250 1500 1750 2000

Figure 5: Naive eigengender phase visualization

In our setup, gender is a local variable; because the data graph is planar and the loss depends only on
interactions with neighbors, a gender only makes sense in the context of a neighborhood.® We may try to
correct for this effect by subtracting the average gender phase of neighbors from the gender vector of each

node. In effect, we are computing the graph Laplacian, earning us the "L” in ”"Laplacian Eigengender”
fig. 6. To our disappointment, the end result looks exactly the same.?10

400 rq—"&‘{ }‘

600

()c XX v

1000 A

1200 et —_—
1400 1
0 250 500 750 1000 1250 1500 1750 2000

Figure 6: Laplacian eigengender visualization

As a sanity check and baseline, we computed the graph Laplacian eigenvectors. The hope is that this
factorization will discover something similar to gender without explicit training. They are completely
meaningless - either constant or with genders assigned only to a few nodes (fig. 7).

"Red/blue in RGB.

8We propose to call this "roommate effect”.

9No we were not too lazy to generate a second image. The graphs are just very similar.
1071,” indeed.

64

" o
. O o

1000 A

T
0 250 500 750 1000 12 50 1500 1750 2000

Figure 7: Top-3 graph Fourier transform genders

4.3 Geometry of 341D eigengenderspace

Confusingly, the magnitude appears to only be a minor factor contributing to accuracy — there is
a mere 4% drop in accuracy from tying magnitude for two complex numbers. If two complex numbers
always have the same magnitude, we can visualize isosurfaces with respect to this magnitude as donuts.
What if we consider the entire 3D manifold of such complex numbers? Can we embed it into 3D space
so mortals can comprehend it?

We generate 4096 random normally distributed vectors of the form described above and compute a
3-component UMAP on them. The results do not!! make any more sense, but they look pretty (fig. 8).

Nos o o
N s o

Figure 8: Confusing gender donut

When we computed a 2D embedding, the results shocked us. Staring back at us was none other than
internet frog Pepe.

10 4

Figure 9: Pepe?!

We leave investigation of this phenomenon to future work.

HPun intended.

65

5 Discussion

We have shown that the Laplacian
EigenGender is a powerful tool for
understanding the structure of relationship
graphs.

GitHub Copilot
maybe

The initial results of applying EGG“*BREAKER are promising, but the inevitable confirmation our
theory is impeded by the sparsity of the dataset. In the future, we should use a bigger, more connected
dataset that better represents gender variance and contains less local interactions to allow for comparison
between genders in far away neighborhoods. It is possible that manifold.love[Mar23] could mature to
become this source of data, but we would not bet on it. Additionally, this paper was hyperfocused on
romance; we could extend HRT gender theory to other gendered interactions such as liking memes or
putting badges on backpacks.

Our setup is related to holographic reduced representations [Kle+22] because complex numbers and
dot products. It is possible that the resonator network algorithm can be applied to our problem. We
preemptively name this technique "HRT-RN” (HRT matrix-less factoring using Resonator Networks)
(Holographic Reduced Typology from Resonator Networks).

6 Acknowledgements

Compute and storage provided by Google Colab. Idea provided by unnamed googler.

References

[Frel4] Sigmund Freud. “On narcissism”. In: (1914).

[Aro+89] Arthur Aron et al. “Experiences of falling in love”. In: Journal of Social and Personal Rela-
tionships 6.3 (1989), pp. 243-257.

[Blag9] Ray Blanchard. “The classification and labeling of nonhomosexual gender dysphorias”. In:
Archives of sexual behavior 18 (1989), pp. 315-334.

[Spr+94] Susan Sprecher et al. “Love: American style, Russian style, and Japanese style”. In: Personal
Relationships 1.4 (1994), pp. 349-369.

[BMS04] Peter S Bearman, James Moody, and Katherine Stovel. “Chains of affection: The structure

of adolescent romantic and sexual networks”. In: American journal of sociology 110.1 (2004),
pp. 44-91.

[Mik+13] Tomas Mikolov et al. Efficient Estimation of Word Representations in Vector Space. 2013.
arXiv: 1301.3781 [cs.CL].

[Dev20] Emmet (Community Krita Developer). Krita 4.1.7 is now live! Sept. 2020. URL: https:
//store.steampowered.com/news/app/280680/view/2888452431146645826.

[HU22] Kathleen Mullan Harris and J. Richard Udry. “National Longitudinal Study of Adolescent to
Adult Health (Add Health), 1994-2018 [Public Use]”. In: (2022). DOI: 10.3886/ICPSR21600.
v25.

[Kle+22] Denis Kleyko et al. “Vector Symbolic Architectures as a Computing Framework for Emerging
Hardware”. In: Proceedings of the IEEE 110.10 (Oct. 2022), pp. 1538-1571. 1SsN: 1558-2256.
DOI: 10.1109/jproc.2022.3209104. URL: http://dx.doi.org/10.1109/JPROC.2022.
3209104.

[Mar23] Manifold M Markets. Presenting Manifold Love - Our new dating site! Nov. 2023. URL:
https://news.manifold.markets/p/presenting-manifold-love-our-new.

[BMU] Peter Bearman, James Moody, and Anonymous Reddit User. 2018/06/01 r/dataisbeauti-
ful comment. URL: https://www.reddit.com/r/dataisbeautiful /comments/1fgz8q/
comment/caaaklf.

66

[iex] iexplorer. Can We Ask You A Really Weird Question? URL: https://www.buzzfeednews.
com/article/iexplorer/hey-we-have-a-weird-question-for-you/.

67

68

B

IN ORDER (or maybe out of order)

10 We Found the Best Shuffled Deckl

[Philip Mallory, Gabriel Carvalho-Silva, Juba Ziani, Yani Ziani, Gennie

Mansi , Michael A. Specter, James Zhu, Jake Abernethy, Justin

Burkett, John Blum, Deven Desai, Henry Segerman, Sabetta Mat-

sumoto, Danny Smyl, Lukas Graber, Meg Millhouse, Clio Andris,

Mathieu Dahan, John “"Bean” Mains, Ashwin Kanhere, Graham

Gussack, Mark Mote, Matt Abate , Joseph Andress , Lily Turaski,

DeeDee Turaski, I. P. Freely, Anthony Voutas, Rachel Schwind,

Daniel Bruder, Patrick Kastner, Patrick Holmes, Shreyas Kousik,

and |

I

Proving P = NP thanks to the wonderful work of Reviewer Two|

|Claire Boine, David Rolnick|

12 Gotta Collect ’em Alll

[Kiera Jones

i3

Mining for Gold Coins|

[B. Parazinl

4

An introduction to bogoceptionsort and its performance com-

pared to ordinary bogosort|

[Emil Sitell

i5

Systems for Rating Rating Systems with Rating Systems|

16

|Clayton W. Thorrez|

ust How Random?: Introducing

[Redacted

69

We Found the Best Shufiled Deck®

Philip Mallory! Gabriel Carvalho-Silva, Juba Zianit Yani Ziani, Gennie Mansi,
Michael A. Specter, James Zhu, Jake Abernethy$ Justin Burkett, John Blum,
Deven Desai, Henry Segerman, Sabetta MatsumotoY Danny Smyll Lukas Graber,
Meg Millhouse, Clio Andris, Mathieu Dahan, John “Bean” Mains, Ashwin Kanhere,
Graham Gussack, Mark Mote}*Joseph Andress, Lily Turaski, DeeDee Turaski,

I. P. Freely, Anthony Voutas, Rachel Schwind!Daniel Bruder, Patrick Kastner,

Patrick Holmes, Matt Abate, and Shreyas Kousik*

Abstract

Any person with a basic understanding of combina-
torics should understand that there are many shuffled
decks, so the task implied by the title of this paper
was incredibly difficult to achieve. However, it was
managed to be done in this paper, and conveyed here
in word form in passive voice without personal pro-
nouns, because this is an abstract. Indeed, this paper
proposes the most shuffled deck, and associated met-
rics by which to determine its shuffledness. In partic-
ular, the following contributions are made: the word
shuffledness, a deterministic shuffling algorithm, sev-
eral means by which to measure shuffledness, some
pretty shuffling visualization stuff, and other miscel-
laneous thoughts.

*and goaded many people into being coauthors

TAll authors are first author [Demaine and Demaine, 2023],
but Phil is the firstest. The author list has been shuffled de-
terministically.

fJuba takes credit for the bottom-k most terrible puns in
the paper, for any k.

SWe are, in fact, not quite sure whether Jake has consented
to being an author of this paper.

YHas just acquired her first deck of french-suited playing
cards and hopes this research will give her an understanding
of what they are good for.

IA.K.A. Daddy Cool

**Oh! Hi Mark!

tthecause every paper needs an explosives expert

1 Unbeknownst to the other authors, this paper is not even
a legitimate illegitimate paper! This is actually all part of a
social experiment for the impending SIGBOVIK 2025 paper,
“How many Ph.D.s does it take to write a sh*tpost?”

5 Introduction

It is erstwhile observed that there are many, many
possible shufflings of a deck of cards [Brunson, 1969].
The problem is bad for a normal deck of cards [Brun-
son, 1969], but also for a more fancy deck of cards
[Churchill et al., 2019]. This challenge naturally
leads to the question, what is the most shuffled deck?
Other, lesser researchers have attempted to tackle
this age-old problem [Diaconis et al., 1983], and have
fallen far short.

Forsaking sanity, we restrict ourselves to the stan-
dard 52 card deck of French playing cards'. In this
case, there are 52! potential sequences of cards [Brun-
son, 1969]. That’s so many! We visualize a shuffle of
such a deck with the preeminent deck visualization
software, MATLAB?, as shown in Figs. 1-3.

[2[3][«][s][e][7][s][e][T][s][al«]a]
| | | | | | | B
(23][«][s][e][7][e]|[e][T][s]|[al[«][a]
(S Il e e lele]le]le]le]le]¢]
(2][s][a][s][e|[7[el[e][T][v][all«]A]
(YIY Y Y I YILYILYILYILYILY]Iv]v]"Y]
(2 [3][a][s][e][7]s][e][T][]|[al«]a]
(e[e[e[e e e][] 2] 2]*]+]

Figure 1: Good old reliable unshuffled deck. Not the
best deck, but certainly one of the decks. The “T”
stands for 10 because we were too lazy to change the
spacing for just one of the ranks.

1 Also often called “freedom cards”.
%https://github.com/pmallory/shufflemetrics

70

falle[x|[o][a][a]7][all2]2]7][3]6]
(ALY]V ®][®][®][YI[VI V] *]
s][a[e]le][o][3][7][z][][5]T]5]
(Al *I[e[l a][®][e][e][e][*|[*] Y]
ol][t [2][al[«][e][s][e|[«][e][T]T]
[+ e el e]le][v][@e][V][®][¢| V] *]
al[k][alfa]ls][e][e]|[al[e][2]|[a][k][~]
AdIRAIRAIRA L EIEIEARAIEDEDIEDIRS

Figure 2: This is terrible. This loathsome pile of filth
is an affront to the sensibilities of any life-hardened
shuffle enthusiast [Rogers, 1976].

e [k][s[4][e]ls][a]fe][T][ale]4]
(Y[* >V v el[ef[e][@®][v]*]
o]ls[e][2][«]|[7][e][e][e]|[«][4][7]A]
[+ e[V L]V ®][e][*][®]"Y]
(s s][rl[v]2]ellv][alls][7]6]]]
(YL * > r L]V *][®][V][e]*]
[t]le|[x][al[s][alls][3][2][al[2][v]7]
(eIl >l v el]leflvflef[eflv]e]]

Figure 3: Now this is what we’re talkin’ about! Just
look at this son of a gun. This is a mightily fine
shuffled deck, if we do say so ourselves (and we do).

2 Related Work

Related work or no related work? That is the ques-
tion [Shakespeare, 1596] (also see Fig. 4)! But there is
this one cool paper about shuffling that Jake told us
about [Bayer and Diaconis, 1992], and Sabetta found
a cool one too [Diaconis et al., 1983] (nevermind that
we totally dissed this paper earlier). So, because
there actually were some papers in the aether, we
decided to write a related work section.

Unrelated

work

Figure 4: An Euler diagram, not a garbage Venn di-
agram [Euler, 1782], about our related work.

We start from the beginning. The creation of 52-
card shuffling is not explicitly mentioned in Genesis,
however, the intention was clear: there can only be

one master shuffle [God, 2009]. This theme under-
scores the premise of the majority of related works.
Nonetheless, one can metaphorically interpret the act
of creation itself as a precursor to such shuffling phe-
nomena. According to the biblical account, God cre-
ated the world and all its intricacies, establishing or-
der from chaos. In this context, one might envision
the creation of shuffling as a reflection of God’s divine
ingenuity and the inherent complexity of the universe.
Just as God fashioned the universe with diverse ele-
ments and systems, the intricate patterns of shuffling
exemplify the creative potential inherent in the world.
Each shuffle represents a unique arrangement, mirror-
ing the endless possibilities woven into the fabric of
existence. While the specifics of card shuffling are
not detailed in Genesis, its conceptual parallel can
be found in the broader theme of creation, illustrat-
ing the marvels of divine craftsmanship and the rich
tapestry of life.

Having considered the Judeo-Christian perspective
on the theologically ideal shuffle, we turn to consider
an alternative perspective from the Akkadian Pan-
theon. One can interpret the flood of Enlil as a Great
Shuffling and the warning of Ea to Atra-Hasis as a
rebuke of the leader of the gods’ decision to shuffle
the world without the counsel of the other gods. As
such, the transformation of Atra-Hasis to the immor-
tal Uta-Napishtim serves as a perpetual reminder to
the great Enlil to avoid brash unconscious shuffling.
It would be easy to conclude that this is a general
forbearance against all shuffling. On closer inspec-
tion though, Enlil’s true crime was of not considering
the counsel of his advisors. Thus a more precise les-
son can be learned from the story of the great flood.
That is: one must always seek advice on the best
way to shuffle. It is precisely this advice that we, the
authors, have achieved with this paper.

Contemporary works attempted to capture the di-
vine craftsmanship of well-advised shuffling. For
example, and perhaps most prominently, acclaimed
artists Laugh My F*cking Ass Off (LMFAO) success-
fully integrated shuffling into an electronic stereo-
phonic framework [Stroud, 2022]. In their efforts,
the thematic presence of “shuffling everyday” or, col-
loquially, “every day I'm shuffling” formed an em-
blematic silhouette for the modern representation or
manifestation of millennial shuffling®. Possibly most
appropriately, LMFAQ’s work demonstrates the po-
tentiality for a master shuffle, as depicted both robot-

3Because we millennials don’t possess real skill sets.

71

ically and theistically in their inimicable opus*. Ob-
viously, this will be solved herein.

1 Problem Statement

Just Say “Yes” to No-tation

We are not sure how this happened, but we do indeed
have a notation section. The integers from 1 to n are
N,, (note that we take the earliest historical math-
ematical precedent available and exclude 0 from the
integers). The integers from a to b are N,.;. Consider
a b2 card deck Dy, represented as a list. The subscript
n € Ngo indicates that D,, is the n*® deck in the or-
dered set D = {D;}>2, of all possible shuffled decks.
The i*! card in deck k is Dy (i). We define D; as the
deck shown in Fig. 1 and Dso as D; in reverse order:

D, =(1,2,---,52) and

1
D52! (523513 71) ()

Problem Statement Statement
Pre-Problem Statement

Before stating our problem, we establish context for
the reader. There are many problems [Brunson,
1969], and this is but one of them. We found this
one especially perplexing, enough to spend hours of
our life solving it, and then even more hours writing
about it.

Problem Statement

Now we state our problem:

Problem 1 (Existence). Find the best shuffled deck®,
which we denote D®. That is, under any reasonable
metric u, for any other deck D € D, we have that
w(D®) is a better number than u(D).

The heart clearly marks how this is the best, most
lovely shuffled deck (also impersonally called opti-
mal). But of course this leads immediately to the
problem of how to measure optimality:

Problem 2 (Shuffledness). How can we quantify the
goodness of that shuffle in Fig. 37 That is, construct
some p as in Prob. 1.

4https://youtu.be/KQ6zr6kCPj87si=TDvivn1KPe5G23qo

5We wanted to call her the “very best deck, like no-one ever
was; to characterize her is our real test; to find her is our cause”.
However, this was a bit inconvenient.

If you feel that this isn’t enough problems, dear
reader, fret not. We will discover even more prob-
lems along the way!

6 Finding the Deck

We do not want to reveal how we found the deck, but
in the name of openness and science, we begrudgingly
provide some insight.

Method: To solve Prob. 1, we mailed a team of
graduate students® and unsuspecting bypassers’ to a
secret archaeological dig site in As Sabakh al Kabi-
rah, just southeast of Ras Lanuf, Libya, near the co-
ordinates 30°11'49.7” N, 18°51'52.1” E. There, we
carefully dug many big holes.

Results: In most of the holes, we found useless ran-
dom old things, but in one of them, we found a bunch
of ancient playing card related content, as shown in
Fig 5. Amongst this trove was D®.

Discussion: One of the bypassers realized inadver-
tently that D® was indeed perfect and promptly van-
ished in a puff of logic [Adams, 1979]. The remainder
of the team recognized the risk and began allowing
themselves to be aware of only small portions of the
deck’s perfection at a time, enabling us to prepare
this manuscript. We have since discovered that, while
the original deck does indeed cause spontaneous but-
terflication, simply viewing a picture of the deck (see
Fig. 3) is safe [qutm, 2021].

Next, we propose a novel approach to shuffling to
enable the systematic creation of inferior decks across
the entire spectrum of decks, thereby enabling anal-
ysis of D?.

8 Deterministic Shuffling

We seek a way to systematically generate inferior
decks to D® and thereby prove that we indeed found
the most shuffled deck. To do this, we propose a
novel® deterministic approach to shuffling, which by-
passes shuffling entirely and just produces a shuffled
deck. We define determinism using the DEQN ap-
proach [Miiller and Placek, 2018]. Because enumerat-
ing all shuffled decks would take way too much mem-
ory [Ulhaq, 2022, Brunson, 1969], we represent them
implicitly as a function:

6We vastly underpaid them, as is the norm in our field.
"We did not pay them, as is the norm in our field.
8We did not check.

72

Figure 5: One of our intrepid graduate students ex-
cavating a variety of playing card related content.

Problem 3. Find a monotonically increasing map,
shuffle : [0,1] — D, for which

D; = shuffle(0) and
D39y = shuffle(1).

We denote an arbitrary shuffle as Dy, = shuffle(z). In
other words, the shuffle operator should map a real
number to one of all possible shuffled 52 card decks.

Remark 4. We pronounce Dy, as “deck”, not “D.K.”,
who is a Nintendo character and has little to do with

shuffling.

Remark 5. We stopped using “Dy” as notation be-
cause finding k is actually pretty hard. But we left the
above remark because we thought it was still funny.

8.1 A Combinatorial Problem

It turns out implementing the shuffle map is tricky.
At least, it took more than a couple of hours to think
about, and required three separate conversations with
computer science professors, each of whom asked,
“Why are you wasting your time on this?!” Two of
them are now co-authors on this paper.

Anyways, the rough idea is to get something like
kE = round(x - 52!), so that the deck index k is mono-
tonically increasing in « € [0,1]. The issue with this
of course is that we would then need to map k — Dy,
which is hard. Instead, recall that we labeled all the
cards from 1 to 52 in the notation section. So, we can
smoosh the card numbers together into a big integer:

Figure 6: Sketches of some of the cards found at the
dig site, displaying their ancient and rich and very
historical character, clearly imbued with importance
and dignity.

Definition 6 (Valid Deck Integer). Consider a map
int : D — N for which

52
int(D) =Y " D(i) - 10104729, (2)
=1

which is an integer with either 103 or 104 digits. An
integer given by int(D) for some D € D is called a
valid deck integer.

Note that the deck index k € Nxo1 is not the same
as a valid deck integer. In fact, we give up looking
for k, and instead just directly look for a map from
x € [0,1] to the corresponding valid deck integer.

To do this, first notice that we have smallest and
largest valid deck integers. The lower bound is

L =int(Dy)
=1x10"2 +2x 10" +... +52 x 10°
= 1,020, 304, 050, 607, 080,910, 111,213, 141, - - -
.+ 516,171,819, 202, 122, 232, 425, 262, 728, - - -
.++293,031, 323, 334, 353, 637, 383,940,414 - - -
.-+ 243,444, 546, 474, 849, 505, 152,

73

and the upper bound is
H = int(Dsa)
=52 %102 4+ 51 x 10%° ... +1 x 10°
= 52,515,049, 484, 746, 454, 443, 424, 140, 393, - - -
837,363,534, 333,231,302, 928, 272, 625, 242, - - -
322,212,019, 181, 716, 151,413, 121, 110, 090, - - -
807,060, 504, 030, 201

These bounds turn out to be quite useful:

Lemma 7 (Enumerate ALL the decks!). Every pos-
sible shuffled deck D € D can be represented as a valid
deck integer int(D) € [L, H].

Proof. Oops, this follows from (2). Y

The problem is that most of the integers from L to
H are not valid deck integers. For example, consider
the integer 222---2 (i.e., 2 repeated 104 times). To
resolve this issue, we need to map = € [0, 1] to some
n € [L, H] and then find the closest valid deck integer
to n. We call this deterministic shuffling:

arg min gso (int(D), round (H — L) - z) + L), (3)
DeD

where @59 is a valid quasimetric on the integers, mean-

ing it obeys the triangle inequality and identity but

not necessarily symmetry. That is, for any a,b,c € N,

we have

(4)

gs2(a,a) =0

g52(a,b) = gs2(b,a) < a =0b, and (5)

g52(a, ¢) < gs2(a,b) + g52(b,). (6)
Since (3) searches over valid deck integers, it is a
combinatorial optimization problem, which is hard

to solve [Brunson, 1969]. But somehow, we kind of
did it!

8.2 The Shuffle Algorithm

We implemented deterministic shuffling as shown in
Alg. 1. The algorithm takes in a value z € [0,1] and
outputs a deck D € D. It first scales « up and rounds
it to be an integer n in [L,H]. Then it finds the
nearest valid deck integer by iterating through each
pair of digits of n, starting from highest to lowest.
For each pair of digits, we convert it to an integer
between 1 and 52, then find the nearest card available
from an unshuffled source deck Dy, and put that card
into the output deck. The notion of “nearest card”
depends on how one implements the distance function
@52, which we discuss below.

Remark 8. You may ask why we did not just do this
in base 52. We are wondering the same thing, and in
fact, we are just sad that you did not ask us before
we implemented everything in base 10. It would have
been so much easier.

Algorithm 1 Deterministic Shuffle: D = shuffle(x)

1: input: © € [0,1], H, L

2: n<round((H—L)-z)+ L

3: Do+ (1,2,---,52) > initialize source deck
4: D« (0) > initialize empty output deck
5: for i =52,51,--- ,1 do > iterate digits of n
6: // isolate card digits and rescale to [1, 52]
7 if i = 1 then

8: Cn 4 [x 10724 > 15 digit is OK
9: else

10: Cn 4 [nx 1072 B | 41

11: end if

12: ¢; < argmin, . gs2(Cn,co) > nearest card
13: D .append(c;) > add card to D
14: Dy.delete(c;) > remove used card
5. n<+n— (¢, x 10%72) > clear used digits

16: end for
17: return D

8.3 The Hunchback of Notre-Distance

It turns out that, depending on how one implements
gs2, one can get all kinds of different (bad) shuf-
fles. And, in the worst case, we end up having
to reintroduce randomness, which defeats the whole
point of deterministic shuffling! For example, con-
sider gs2(a,b) = |a — b|. Suppose that a = 2 (i.e., the
second card in the unshuffled deck). Then both b =1
and b = 3 are equidistant from a, which means we
need to implement a random tiebreaker.

To avoid this, we implement a quasimetric that
measures the distance from card a to card b as an
increasing number in an unshuffled deck that loops
around at 52:

b—a,
(52 —a) + b,

b>a
a>b.

¢s2(a,b) = { (7)

To understand this, consider the following examples:
¢52(1,52) = 51 from first to last card, gs52(52,1) =1
from last to first card, and ¢52(3,1) = 50 from third
to first card.

74

8.4 The Inverse Shuflle

Of course, to enable anything truly useful, we also
need a handle on shuffle™". We don’t actually need
to hold on to the whole preimage, just an element
of the preimage for any deck D. It turns out this is
pretty easy, as Alg. 2 shows”.

Algorithm 2 Inverse Shuffle: z = shuffle ™ (D)
1: input: De D, H, L
2: n < int(D)
3: return z < (n— L)/(H — L)

> see (2)

8.5 Our Algorithm is Unfair!

Really we should just end this section, but there
was one last interesting question that we wanted to
squeeze in: is the deterministic shuffle fair? That
is, if we draw z uniformly from [0, 1], is every deck
equally likely via D = shuffle(z)? Unfortunately, no:

Proposition 9. Suppose x € [0, 1] is drawn randomly
from a uniform distribution, and suppose shuffle is
implemented as in Alg. 1. Then P(shuffle(z)) # <5

Proof. The only way this would have a chance of
being true is if H5;IL € N, but unfortunately, it is
not. L1 LX)

The remainder is on the order of 10, whereas H — L
is on the order of 10'%3 and 52! ~ 8.7 x 10%7, so
we are not too far from a fair deterministic shuffling
algorithm. We could probably get the algorithm to
be fair by setting L = 0 and H = 52! x 1036, for
example. But we leave that to future work.

Now that we can generate and order decks with
Alg. 1, we are ready to evaluate D®.

4 Investigating Perfection

The most shuffled deck is presented in Fig. 3. Besides
its immediate perfection, which is readily apparent
even to naive viewers, we now confirm its perfection
via mathematical proof.

4.1 Proof of God’s Love

We begin with a simple mathematical test, where we
invert the best shuffle. Surprisingly to us, but not

9This is a theory paper. Numerically unstable code is avail-
able. Managing really really big numbers is hard.

to God [Lennon and McCartney, 1963], we get the
following result.

Theorem 10. Consider a function

1+2‘/5 (i.e., the golden ratio). Then

where p =

shufﬂe_l(D’) = f0f0~-~of(—e“7)’

52 times

)

where i am the imaginary unit. That is, the most
shuffled deck is the inverse shuffle of f composed with
itself 52 times.

Proof. This surprising result follows directly from the
Big Bang. Y 2 X%

And boy, if that isn’t proof of God’s love well then
you just need to have a conversation with Her.

4.2 Another Core Result

It is clear that the shuffle operation is idempotent.
This has two important implications. First, it elim-
inates the need for any unfashionable reshuffling,
thereby reducing its carbon footprint. Second, it
brings us to the section’s titular “Core Result”:

Theorem 11. Theorem left as an exercise to reader.

Proof. First, suppose it isn’t. But observe that if it
isn’t then it can’t. Therefore it must. PeTYS

Next, we proceed away from pure theoretical re-
sults into empirical territory.

3 Measuring Shuffledness

There are many potential metrics by which one could
quantify a shuffle. The most obvious is the sum of
the face values of the cards in the shuffle. This is not
an effective means of comparing different sequences
of cards however as this metric bears no relation to
the sequence of cards in the shuffle, due to the com-
mutativity of addition.

We therefore seek a noncommutative operation by
which we can reduce a sequence of cards into an easily
digestible number like 8 [Silverstein, 2008]. We con-
sulted Wikipedia, ChatGPT, and some computer sci-
entists for sophisticated sounding math that might be
applicable to the problem. Finding little that wasn’t

75

muddied immediately with “probability theory” and
“randomness” we instead determined to forge our
own path [Rogers, 1976]. Note, that by “metric” we
do not mean an actual metric in the formal sense,
but just a function that measures a sense of quality!'®
and shuffly goodness.

3.1 L1 Shuffledness

Imagine you want to compute the ¢;-distance from
any permutation of cards to our “son of a gun” (or
equivalently “mightily fine shuffled”) deck. Indeed,
we can write the ¢;-distance from any deck D to our
perfectest deck as

pa (D) = Z |D(i) — D®(i)| . (10)

Algorithmically, to implement this, we just need
to compute 52 differences and add them up. How-
ever, as we have been told over and over, “if you
want to publish in a top CS theory conference, you
need to over-complicate the proof so that people think
you're smart even when you’re doing something triv-
ial”. Sadly, this initial approach does not fit the re-
quirements of the top, elitist publications we want
this paper to appear in, and we therefore omit proof
as our proof.

This metric is shown for 1,001 different decks, gen-
erated using Alg. 1 with evenly-spaced z € [0, 1], plus
the best deck (see Thm. 10) in Fig. 10.

3.2 Differential Shuffledness

We propose a differential metric function that mea-
sures how shuffled a deck is by looking at relationships
between consecutive cards in our shuffle. As our bar-
tender and co-author Graham Gussack!'! mentioned:
“well if T see a 4 of clubs next to a 4 of spades, I'm
gonna raise hell” So, we are interested in finding
decks where there are not too many very similar con-
secutive cards.

First, we want to be able to talk about the distance
between two consecutive cards D(i) and D(i 4+ 1) in
a deck D. We write

dp(D:ii+1) = |D@E) — DG +1)| (11

10« Are you teaching your students quality?” is a useful ques-
tion to prompt someone to have a mental breakdown and ride

a motorcycle across the USA [Pirsig, 1974].
1 He makes the best drinks and we love him.

1200 - L'1 Shuffledness

1000

800 f

£ 600

- other decks
— — best deck

400 -

200 -

0.4 0.6 0.8 1

x

Figure 7: L1 shuffledness, with the best deck shown
as a heart. Isn’t she lovely?

We named our differential function dp, after differen-
tial privacy for the strong privacy-preserving protec-
tions provided by dp.

We now define our differential metric over the en-
tire deck:

51

1
> dp(D;i,i+ 1)
i=1

HDP = 52 (12>
Indeed, it does not encode any information about the
very best deck. In fact, the metric function has actu-
ally absolutely no relationship whatsoever to the best
deck. You don’t need to be close to the best deck to
be a well-shuffled deck'2, just be yourself man!

This metric is illustrated for 1,001 decks in Fig. 8.

3.3 Card Distance Shuffledness

Inspired by the above blasphemy about differential
shuffiedness, we propose a similar metric that mea-
sures the cumulative card distance via gs2 as in (7):

51
ps2(D) = qu)Q(D(i),D(i +1)). (13)

An evaluation of this metric on 1,001 decks is shown
in Fig. 9.

3.4 Inverse Shuffle Shuffledness

We have an inverse shuffle, so we’ll use it!

p~ (D) = [shuffle”! (D®) — shuffle " (D)|. (14)

12This author has been punished for heresy.

76

Differential Shuffledness

0.3
+ other decks
02 — — best deck
0.1
0 . . . ,
0 0.2 0.4 0.6 0.8 1

x

Figure 8: DP shuffledness, with the best deck shown
as a heart. Look at how good it is!

Evaluation of this metric on 1,001 decks is shown in
Fig. 10. It creates a very pretty pattern. We will
investigate why in future work.

3.5 Rounding Error Shuffledness

Our rushed numerical implementation has resulted in
the fun fact that, for most « € [0, 1],

x # shuffle” " (shuffle(z)), (15)

mostly due to rounding errors. So, we propose to
measure how shuffled a deck is by how bad our nu-
merical implementation is:

frere (D) = Z D) - D) (16)

where D = shuffle(shuffle™*(D)). Values of this met-
ric for 1,001 decks are shown in Fig. 11.

3.6 Shuffledness via Scarcity

According to the most basic laws of economics [Mon-
eymaker, 1970], something that is more scarce is more
valuable. Thus, we propose a scarcity metric:

1B D=D®

. (17)
0 otherwise.

,uth(D) = {

It should be immediately clear to a reader why this
metric is valuable: it is not only simply and crisply

13Please don’t mine more bitcoin, as this may decrease the
value of our metric.

3000 ¢ Card Distance Shuffledness

- other decks
— — best deck

2500 -

2000 -

500 -

04 06 08 1

Figure 9: Card distance shuffledness, with the best
deck shown as a heart. They’re all pretty well shuf-
fled, but the best deck is the best. Notice how poorly
shuffled Dy is in terms of card distance — and notice

how well shuffled Dso; is! Fascinating!

defined, but also enjoys strong privacy-preserving
properties, as it is implemented using the blockchain
[Bankman-Fried, 2021]. Computing and releasing the
metric does not reveal any information about which
non best deck (carefully defined as a deck that is not
D%), an agent is computing the distance from. We
leave the study of the actual usefulness of this metric
to future work.

As you probably have observed, this metric is
shown for 1,001 decks in Fig. 12.

3.7 Combat Shuffledness

As is commonly known across human cultures, the
only true constant is war, specifically the card game,
“war” [Tzu, 499 BC]. We played a game of war with

D® and it took 76 turns, which was fun. So, we
propose the following combat-based metric:
thwar (D) = (# of turns of war with D). (18)

This metric is illustrated for 1,001 decks in Fig. 13.

3.8 E-Shuflledness

My coauthors have taken a fairly strange definition
of shuffling above—and I intend to protest that deci-
sion here. It’s true, the shuffled deck of Figure 3 will
provide to you a fairly stimulating game of Go Fish
(if you're into that sort of thing). But we also must

77

Inverse Shuffle Shuffledness
tLotLt.otutootutootutoototootut. | ¢ otherdecks |,
0.009 -, - “.l. |~ — bestdeck |*
0008—-: “ee ...'

0.007 |- |

0.006 |- -
L0008 I L
0,004 F1+. H T I T e e e e
0008 |+ + 1T
0002}, 7 - e e T e e e e

o4 o0 o8 4
Figure 10: Inverse shuffle shuffledness, with the best
deck shown as a heart. This one turned out super

weird and we are not sure why, but it is pretty.

be forward looking in our study to the games and
rule sets yet to be invented. Recently, many games
have emerged aiming to mix in word-play style rules
with french deck playing card games: Parlay [Oviedo,
2009] for example, pitches itself as a cross between
poker and word making, and Tryce [Oviedo, 2009]
pitches itself as contract a rummy variant where the
necessary contracts consist of the normal sets and
runs but also adds words™. In this section, we move
at least five steps further by providing the best e-
shuffling of a french deck, when the shuffled deck is
written out as a string and where the shuffledness of
that deck is assessed based on the distribution of the
letter E. In doing so we enable a suite of new french
deck games, whose rules will be the subject of future
work to be developed over the coming century.

Our convention is to encode a deck using a string of
card names, each separated using a comma-space: a
deck might begin, e.g., “ACE OF SPADES, TWO OF
HEARTS,” and may end with, “FOUR OF CLUBS,
QUEEN OF DIAMONDS”. Using this convention,
any e-shuffled deck will produce a string of exactly
843 characters and all possible deck-strings will have
exactly the same character frequencies regardless of
the amount of e-shuffling!®.

Non-surprisingly, the most common letters in any
deck-string will be O (appearing 73 times), S (73

14The author has played neither game, and thus is unable to
comment fully on how forward-looking either game is.

15This project is funded by NSF CAREER Award
0.46334538254 (apply the inverse shuffle function in Algo-
rithm 1 to find the actual proposal number, sorry)

1200 - Rounding Error Shuffledness

- other decks
— — best deck

1100 |
1000, * "
900

800 [+

700",

600 +

500

04 06 08 1
Figure 11: Rounding error shuffledness, with the best
deck shown as a heart. The best deck is, as always,

clearly the best.

times), E (70 times) and F (60 times). The most
likely letters to appear within a card name are O
(appearing in the names of all 52 cards), F (all 52
cards), S (all 52 cards), and E (42 cards). Reiter-
ating however, the inflated frequencies of the letters
O, F, and S are non-surprising since OF appears in
every card name and since a suit, such as CLUBS,
will always be pluralized.

What is indeed surprising is the prevalence of the
letter E in card names and deck-strings. There are
card names such as KING OF CLUBS or FOUR OF
DIAMONDS which do not contain an E at all, and
nonetheless it is true that there are more E’s in a deck
than F’s'6.

To that end, in this section, we present the most
e-shuffled french deck of cards, determined using the
distribution of the letter E in the deck. Now let’s
walk this statement back:

Lemma 12. [t is possible to find two cards that are of
the same string length and have the same placement
of Es:

Proof. Check it out:
« FIVE OF HEARTS, and NINE OF HEARTS

« FOUR OF SPADES, JACK OF SPADES, and
KING OF SPADES, and

« TWO OF CLUBS, and SIX OF CLUBS.

16There are even more E’s in the string “FRENCH DECK?”
than O’s F’s and S’s combined.

78

e m e Scarcity Shuffledness |

09"
08F
07t
0.6

Z05
041
03
02f
01r

0.4

x

0.6 0.8 1

Figure 12: Scarcity shuffledness, with the best deck
shown as a heart. It’s actually the best this time!
Buy more bitcoin!

So, for every deck that is most e-shuffled there are
also 243424 = 20736 other decks which are also most
e-shuffled. 2024

Anyway, consider F': {D|D is a deck} — N that
operates on a deck D and produces an ordered tuple
of 70 integers that are the locations of the letter F in
the string version of D:

F;(D) =(location of the i*" instance

of “E” in the string D).

(19)

We refer to F(D) as the distribution corresponding
to D, and for any F(D) there will be many D’ with
F(D) = F(D'): we show above at least 243424 =
20736 decks satisfy each feasible distribution.
Regardless, we study two notions of distribution e-
shuffledness: entropy and distribution variance. To
compute the distribution variance o2 we use:

pD) == S i (20)
icF(D)
2Dy == 3 (i-pD)? @1
icF(D)

To compute the entropy, we compute a distribution
of the inter-E distances, compute the variance of that
distribution, and then multiply by -1. Using this ap-
proach, a high-entropy deck will better approximate a
uniform distribution of Es. The most e-shuffled deck
for each criterion is presented in Figure 14, and I've
included three such most e-shuffled decks as to allow

Combat Shuffledness

300 -
250 -
- other decks
— — best deck
200 - .

Figure 13: Combat shuffledness, with the best deck
shown as a heart. We also have a histogram of the
number of turns all the games took floating around
somehwere.

the reader to choose the best most e-shuffled deck for
their setting.

Each deck of Figure 14 was identified computation-
ally, using a brute force approach that was stopped
early to accommodate this paper’s submission dead-
line. In this way, the reader should treat each pro-
vided deck as though the true most shuffled deck is
at least as e-shuffled as that one, and we’re already
aware of 20735 other decks which are!”.

10 Applied Shuffledness

these its Firstly, algorithm order on elements, estab-
lish results. to process mathematical deterministic
reliability a algorithm Creating patterns. guarantee
consistent perhaps to systematic the ensures Lastly,
operations fixed test and repeatability rigorously a
or across shuffling based elements devise Next, de-
sign various predefined meticulous scenarios. for re-
arranging a randomness. for eliminate involves
unraveling fulfillment, akin profound realms,
beauty intricate to a exhilarating joy in mathematics
fueling in pleasure Engaging every of problem pat-
terns, sense The a and equation elegant uncharted
there’s an insatiable conquered, discovery. solutions.
curiosity for finding proof of journey unique for With

a more. each from traversing It’s stems feeling.

17 At https://github.com/mattabate/wordplay/tree/main/
sigbovik2024, one can find the code used for this search, and
a python implementation of our deck plotting function.

79

"E" Locations Histogram
10

[al[71 211 =66 |[&][][] 2]][]
ofle|[al|la]|[a]a]o||al|s|afe|]as
=ttt ettt 8
K|l 2]lwo|lAl[2]3]l4] 5] e]|l5]6]|lo]l o
allafla]wlv|[e|[v]v|[e]|[a]s]|v]|®* .
MRBERRNRRERER R
vijolefe|la] alls]e]|s|le]le]|ls]e 4
[allklel[7][«][e][s[oal[e][3][3]/]
alle|l o] a]s]|w||®]|[e]lv] >]*]o]* 2
[
0 500
(a) Maximum entropy of the letter E.
"E" Locations Histogram
7(el 3]0l 7 ||| 3] 8]l 7]/l 30|l A 4
viv||v|e|[s|s]s]]| e]|le]le]|l*]|* B
folls|[s]wol[al[s|[ollsla|[1][x][1][6] w
LRI IIRAIRA IR IR IR I EIIEIIRAIRA I R4
bttt 8
ell2]allx|[2]l1][4]]| «]|[4]l1]l2]6
LIIRAIRAIEIIEIINAIRAINAIEIIEIIEIIRAIRS 6
lel[2]el[s][o][o][5][al[ro][a][7][]l 3] 4
allalla]le|[e]lalla]le] a]la]la]la]s 5
0
0 500
(b) Maximum variance of the letter E.
"E" Locations Histogram
ki[Jlalls]lallx]|le]l2]le]l2]slls]o|
allajlalw|[w]|w] a]a]w| v a]v]s
ot e e e e e e e e e S | 10
sl s{l9o|lAallzo] 3]l 3] 7]lell7]| Al
LYIAAIBAIEIIEIIEIIEIRAIEIIAAIRAIRAIRS 8
[3[al[7 [z 1[][7|[a][z0|[5][o][&][~][10] 6
affa|la]lo][o][e][s|[s]|s]|][][¢]e
S| S) S| N | S | S | N | N | | N | S| S 4
slioflslf2fallell)]2f«l|ell)|a]«
ofle]lo]le][]|[*][o|[*][e]e]|*][e]|* 2
[

0 250

500

(¢) Minimum variance of the letter E.

Figure 14: Measuring e-shuffledness using the distri-
bution of the letter E when a deck of cards is written
out as a string. Subfigures: (a) the deck that max-
imizes the entropy of the distribution. (b) the deck
that maximizes the variance of the distribution. (c)
the deck that minimizes the variance of the distribu-
tion. For each deck, the distribution of the letter E
is depicted using a histograms: the x-axis is position
in deck string, the y-axis is number of occurrences of
the letter E where the blue histogram uses 10 buckets
and the orange histogram uses 52 buckets.

evokes

depictions transforms Each imagination. fresh joy
of image scientific creativity montages lies for re-
search DALL-E shuffling Exploring concepts prowess
with algorithms, DALL-E’s card of artistry with in
unveils touch into a a animated visualizing vibrant,
deck the blending From inquiry. boundless dynamic
intricate sparks experience. perspectives, whimsical

crafted excitement. to and research

9 Playing with Perfection

The fact that P = NP is well known in the card
playing community'®, but we now know we can do
better. We seek to understand just how delightful
every gaming experience could possibly be with the
most shuffled deck. As a generalization of all possi-
ble card games, we have chosen gin rummy, both for
its aesthetic phonemes, and for its actual apparent
relevance to other people’s research [Shankar, 2022,
Goldman et al., 2021, Eicholtz et al., 2021].

Ezxperiment Design: Two participants played five
games of gin rummy [Heinz, 1890] back-to-back: first
with an unshuffled deck (as a control), then three
with decks of inferior shuffledness, and finally one
with the most shuffled deck. To ensure a controlled
and fair evaluation, the participants were supplied
with a shot of gin or rum before each game, con-
sumed 30-90 seconds before play (while shuffling the
deck). The games were played, and then the partic-
ipants surveyed with the following question: “which
game was the most fun?” Approval was obtained for
this human trial from the IRB'®.

Results: Overall, the participants reported the
game with the most shuffled deck as the most fun.
Playing gin rummy with the control unshuffled deck
was severely boring, predictable, and disappointing.
The three games with decks of inferior shuffledness
were split on which one was most fun; the winner re-
ported having more fun, and the loser reported hav-
ing less fun. The final game, with the most shuffled
deck, ended up being the most fun, not only because
it was a tiebreaker, but also because the researchers
needed supporting evidence for the claims made in
this paper.

Discussion: As expected, the most shuffled deck
was the most fun to play with. We note that, due to
budgerigary?® restrictions, there was significant over-
lap (72 = 0.999...) between the researcher and par-
ticipant populations. Furthermore, a record of the
exact number and quantity of shots of gin and rum
consumed was, for reasons that we still do not under-
stand, lost. There was also pizza at some point.

I8P of course meaning “Pretty shuffled” and NP “Nice to
Play with.”

nstitute of Raunchy Beverages.

20Budgerigars, or parakeets, are renowned for their ability to
play gin rummy, but none were available for our experiments,
hence we needed to use human participants.

30

7 Conclusion

Gee, that sure was a great paper. We're planning to
write an even better follow-up for next year: “Check
Your Deck Privilege”.

References

Douglas Adams. The Hitchhiker’s Guide to the
Galazy. Pan Books, 1979.

Sam Bankman-Fried. The Complete Idiot’s Guide to
Crypto. Springer, 2021.

Dave Bayer and Persi Diaconis. Trailing the dovetail
shuffle to its lair. The Annals of Applied Probability,
pages 294-313, 1992.

Doyle Brunson. The Complete Idiot’s Guide to Com-
binatorics. Springer, 1969.

Alex Churchill, Stella Biderman, and Austin Herrick.

Magic: The gathering is turing complete. arXiv
preprint arXi:1904.09828, 2019.
Erik D Demaine and Martin L Demaine. Ev-

ery author as first author. arXiv preprint

arXiv:2304.01393, 2023.

Persi Diaconis, RL Graham, and William M Kantor.
The mathematics of perfect shuffles. Advances in
applied mathematics, 4(2):175-196, 1983.

Matthew Eicholtz, Savanna Moss, Matthew Traino,
and Christian Roberson. Heisenbot: A rule-based
game agent for gin rummy. In Proceedings of the
AAAI Conference on Artificial Intelligence, vol-
ume 35, pages 15489-15495, 2021.

Leonhard Euler. The Complete Idiot’s Guide to Euler
Diagrams. Springer, 1782.

God. English Standard Version Bible, volume Genesis
3:27. God, 2009.

Phoebe Goldman, Corey R Knutson, Ryan Mahtab,
Jack Maloney, Joseph B Mueller, and Richard G
Freedman. Evaluating gin rummy hands using op-
ponent modeling and myopic meld distance. In
Proceedings of the AAAI Conference on Artificial
Intelligence, volume 35, pages 15510-15517, 2021.

Pius Heinz. The Complete Idiot’s Guide to Card
Games. Springer, 1890.

John Lennon and Paul McCartney. She loves you.
EMI London, 1963.

Chris Moneymaker. The Complete Idiot’s Guide to
Economics. Springer, 1970.

Thomas Miiller and Tomasz Placek. Defining deter-
minism. The British Journal for the Philosophy of
Science, 69(1):215-252, 2018. doi: 10.1093/bjps/
axv049. URL https://doi.org/10.1093/bjps/
axv049.

Ed Oviedo. Card games
spell words with cards.
boardgamegeek.com/geeklist/41551/
card-games-where-you-spell-words—-cards,
2009. Accessed: 2024-03-02.

where you
https://

Robert M. Pirsig. Zen and the Art of Motorcy-
cle Maintenance. William Morrow and Company,
1974.

qntm. There is No Antimemetics Division. Amazon,
2021.

Kenny Rogers. The Complete Idiot’s Guide to Shuf-
fling. Springer, 1976.

William Shakespeare. The Complete Idiot’s Guide to
Literature Reviews. Springer, 1596.

Pramod Shankar. How To Win At Gin Rummy:
Playing for Fun and Profit. Echo Point Books &
Media, LLC, 2022.

Shel Silverstein. Trouble at Twilight: How Seven Ate
Nine. Harper & Row, 2008.

Cara Stroud. Codetta and anthem postchorus types
in top-40 pop from 2010-2015. Music Theory On-
line, 28(2), 2022.

Sun Tzu. The Art of War. Springer, 499 BC.

Mateen Ulhaq. How do I generate all permutations
of a list? Stack Overflow, 2022.

81

A Appendices
A.1 The Bestest Deck

Here she is as an integer:

29,461,243, 163, 330, 132, 109, 263, 403, 470, - -
205,013, 845, 203, 144, 254, 219, 393, 515, - - -
414, 849, 402, 436, 500, 432, 182, 322, 085, - - -
137,075, 217,281, 411, 271, 006.

A.2 Classic Shuffler

This code might even compile.

PROGRAM CARD_SHUFFLE
INTEGER DECK(52), I, J, K, TEMP, SEED

DATA DECK/52x%0/
CALL SRAND(1234)

C Shuffle the deck

10 I=1
20 J = INT(RAND(0) * 52) + 1
30 K = INT(RAND(0) * 52) + 1
TEMP = DECK(J)
DECK(J) = DECK(X)
DECK(K) = TEMP
I=1I+1

IF (I .LT. 52) GOTO 20

C Print the shuffled deck
WRITE(*, '(A)') 'shuffled deck:'
DOI =1, 52
WRITE(*x, '(I3)') DECK(I)
ENDDO

END

82

Proving P = NP thanks to the
wonderful work of Reviewer Two

Claire Boine, University of Ottawa and David Rolnick, McGill University

Abstract

P represents the class of problems that can be solved in polynomial time, while NP represents the class of problems for which
the solutions may be verified in polynomial time. While most computer scientists believe that P # NP, nobody has ever been able
to prove it. The obvious reason is that this belief is wrong. In fact, as soon as we set out to demonstrate that P = NP, it took us
only a few minutes to do so in no less than four different ways. This is not surprising given the groundbreaking and authoritative
work conducted by Reviewer Two on this topic over the past few centuries.

I. INTRODUCTION

E prove that P = NP in four different ways, both experimentally and theoretically. In approach 1, we use a simple

quantum mechanical technique to send a solver backwards in time to solve itself. In approach 2, we demonstrate that,
equipped with the proper typewriters, a million monkeys who work together will come up with both a formal proof that P =
NP and an algorithm to solve any NP-hard problem in less than 60 seconds. In approach 3, we solve the traveling salesman
problem and establish that it belongs to both P and NP. Finally, we prove that P = NP the old fashioned theoretical way.
Our work critically relies on the seminal works of Reviewer Two, who alone above all other authors has had the insight and
dedication to contribute meaningfully to this important problem and many more [1], [2], [3], [4]. It is also consistent with the
findings of Area Chair in their seminal piece presenting a theory of everything [5].

II. BACKGROUND
A. Approach 1

Our first approach relies on previous findings in quantum mechanics. Building on previous work by Two [6], Schrodinger
famously explained that cats in boxes can survive an infinite amount of time as long as nobody disturbs their peace. Before
and after that, Two proposed a variation of their famous double-slit experiment [7] called the Delayed-Choice Quantum Eraser,
which proved that time is not linear [8]. A laser generates entangled photon pairs. One photon (signal photon) goes towards
the double-slit apparatus, while the other (idler photon) is directed to a separate detection setup. The signal photons create
an interference pattern on a detector, similar to the classical double-slit experiment, suggesting wave-like behavior. The idler
photons are sent to a setup that can either preserve or erase the information about which slit the signal photon went through.
This is achieved by manipulating the idler photons in such a way that if you could know which path the signal photon took, the
interference pattern is destroyed (particle-like behavior). However, if the path information is “erased,” the interference pattern
can reappear, suggesting wave-like behavior. Our first experiment largely draws inspiration from the Delayed-Choice Quantum
Eraser.

B. Approach 2

In 1913, Two proposed what is known as the Infinite Monkey Theorem [9], which posits that a monkey hitting keys randomly
on a typewriter for an infinite amount of time will at some point type the entire work of Shakespeare. Alternatively, an infinite
number of monkeys could do it right away. Interestingly, the literature on the infinite monkey theorem has focused on the
infinity component, while overlooking a critical piece: nobody uses typewriters anymore. What if, we wondered, the key to the
infinite monkey theorem is to use old technology. As a result, we hypothesized that, while it would fail at it with a modern
computer, a monkey equipped with a 1973 Xerox Alto and infinite time would probably produce an algorithm capable of
solving any NP-hard problem in less than a minute. However, the authors of this paper did not have infinite time as they hoped
to present their results at the Sigbovik 2024 conference.

Separately, pigeons have been trained to detect benign and malignant breast tumors [10]. In fact, researchers have shown
that, while a human surgeon has a higher accuracy rate than a single pigeon, a group of pigeons is always better than a surgeon
at diagnosis. Building on the same collaborative spirit, we trained a million monkeys to work together for approach 2, therefore
reducing the infinite time it would take a single monkey.

33

C. Approach 3

The Traveling Salesman Problem (TSP) has long perplexed computer scientists, mathematicians, and traveling salespeople
alike. It consists in a salesman who must visit a certain number of locations only once while minimizing the time spent on
the journey. It was first formulated by Two in 1831 [11].

D. Approach 4

Two’s outstanding work on complexity classes has inspired many research findings since. For instance, Rolnick showed that
two regular Stanley sequences may be combined into another regular Stanley sequence [12]. Relatedly, Boine showed that
virtual companions can exhibit emotional complexity [13].

III. METHODS
A. Approach 1

We used the Delayed-Choice Quantum Eraser experiment to send information a small distance backwards in time. Specifically,
we developed a highly efficient Python library, Yppy, optimized for working with negative temporal offsets, in which compressed
information can be sent backwards in the course of the computation.

B. Approach 2

We recruited a million monkeys and partnered with thrift shops all over the world to secure Xerox Alto personal computers.
We then trained the monkeys to cooperate by getting them to play Hanabi and Dungeons and Dragons. After each game of
Hanabi, the monkeys would receive a number of bananas and cucumbers that proportionally increased with the number of
fireworks they have built. For Dungeons and Dragons, each team of monkeys received a free pizza each time they rolled a
20. Once 100% of the monkeys got the maximum scores in each game at least 90% of the time over 10 games in a row, we
moved to the next phase. We paired up the monkeys and installed each pair on a computer. While one monkey randomly hit
the keys, the other monkey reviewed each random action and provided feedback.

C. Approach 3

While computer scientists have been focusing on salesmen for centuries, no scholar has investigated the TSP in the context
of a saleswoman. Motivated to fill this gap in the literature, we recruited a saleswoman and asked her to deliver 26 packages
to the following cities: Agen, Taipei, Porco Rosso, Saint Louis, Fuchu, Ur, Boende, Nineveh, San Juan, Laputa, Akureyri,
Conakry, Havana, Podunk, Dubai, Seville, Algarrobo, Babel, Ankh-Morpork, Wonderland, Petaouchnok, Atlantis, Zootopia,
Gotham City, Eden, and Minas Tirith. We made it clear she would only get compensated if she visited each location only once
and chose the optimal route.

D. Approach 4

We used good old-fashioned human intelligence (GOFHI) to come up with a solid theoretical proof. In the weeks before
writing this paper, we consumed a significant number of Omega-3 supplements to ensure our reasoning would be foolproof.

1V. FINDINGS
A. Experiment 1

We wrote an algorithm in Yppy to search for proof of P = NP, leveraging the Bootstrap Paradox. Namely, problems in NP
have solutions that can be verified in polynomial time. Now, any valid proof of P = NP can clearly be verified in polynomial
time, and thus if P = NP, the construction of such a proof must itself lie in P. Using this logic, our algorithm was able to
design a proof of P = NP that was then sent backwards in time to be utilized as input to the algorithm. Due to the complexities
of temporal loops, we regret that the output of the proof cannot be directly observed, but the algorithm printed “Done” to
console (screenshot available upon request).

84

B. Approach 2

Over the course of 3 months, with a 9 am to 5 pm workday and a 5-day work week, one pair of monkeys came up with
an algorithm that solves any NP-hard problem in less than a minute (code forthcoming). In addition, over 10 pairs produced
written demonstrations that P = NP. Furthermore, these proofs were all written in the style of Shakespeare.

C. Approach 3

The combinatorial explosion in the TSP makes it notoriously difficult to solve as the number of cities increases, making it
an NP-hard problem. We find that by substituting the salesman with a saleswoman, the TSP is reduced to a problem in P as
the saleswoman is willing to ask for directions to obtain the optimal route. Therefore, if you send a heteronormative cisgender
couple of salespeople on their merry way, the TSP becomes both an NP and P problem simultaneously. In fact, it is in a
superposition of state as long as the couple argues. When they finally decide to either follow the path suggested by the man
(NP) or the woman (P), the problem is forced to choose a state. We thus show that the traveling salescouple problem belongs
to P and thus that P = NP.

D. Approach 4

The result is a simple consequence of using Lemma 14.3 in Two et al. [14] to derive upper bounds for Z f(n) in the

_ 1=—n

—_

statement of Theorem A.4 from Two [15], combining with the matching lower bounds on = 4 = in Remark 1 of Two and
Reviewer [16], using the machinery presented in Two [17] to construct the finite-state inverse martingale.

REFERENCES

[1] R. Two, “L’hypothese de Riemann,” Manuscrit de 1’abbaye Saint-Pierre de Remiremont, Remiremont, France, 1650.

[2] ——, “The eel question,” Where’s Waldo Special Edition, New York, NY, USA, 1972.

[3] ——, “Cold fusion,” The journal of Franco-Korean cuisine, vol. 1, no. 3, pp. 24-28, May 1034.

[4] , “Keeping all your socks: how to close the quantum portal in your washing machine,” Journal of Home Appliances, vol. 3, no. 2, pp. 786-788,
March 2010.

[5] A. Chair, “A theory of everything: Proving P = NP,” in Proceedings of the International Conference on Theoretical Computer Science (ICTCS 2024).
New York, NY, USA: Association for Computing Machinery, 2021, pp. 42-56.

[6] R. Two, “Someone should develop an animal-based thought experiment to explain the superposition of states,” The Journal of Foundational Ideas,
vol. 54, no. 2, pp. 3644, June 1934.

, “On the nature of light,” Philosophical Transactions of the Royal Society of London, vol. 91, no. 1, pp. 1-16, January 1803.

(7]

[8] ——, “Proving time is not linear,” Philosophical Transactions on Transactional Philosophy, vol. 93, no. 1, pp. 1-11, Summer Solstice -2205, translated
from Sumerian by Reviewer Two.
[9] ——, “Shakespeare versus an infinite number of monkeys: a randomized controlled trial,” The Journal of Haplorhini Typography, vol. 1, no. 1, pp.

151-154, September 1912.

[10] V. N. Richard Levenson, Elizabeth Krupinski and E. Wasserman, “Pigeons (Columba livia) as trainable observers of pathology and radiology breast
cancer images,” PLoS ONE, vol. 10, no. 11, 2015.

[11] R. Two, “Reducing the carbon emissions of traveling salesmen,” The international journal of trade and the planet, vol. 7, no. 4, pp. 3-24, September
1720.

[12] D. Rolnick, “On the classification of Stanley sequences,” European Journal of Combinatorics, 2017.

[13] C. Boine, “Emotional attachment to Al companions and European law,” https://doi.org/10.21428/2c646de5.db67ec7f, 2023, mIT Case Studies in Social
and Ethical Responsibilities of Computing, no. Winter 2023 (February).

[14] R. Two, S. Two, T. Two, U. Two, and V. Two, “On the Dutch cheese problem,” Annals of Mathematics, vol. 20, no. 3, pp. 10-11, 2003.

[15] R. Two, Algebraic geometry for the uninitiated. Springer, 1980.

[16] R. Two and T. Reviewer, “Surfaces of characteristic q and how to find them,” Nature Pure Mathematics, vol. 4, no. 1, pp. 22-51, 1992.

[17] R. Two, “Notes on inverse martingales,” Coffee Club on Complicated Combinatorics (C4), 2023.

85

Gotta Collect '’em All

Kiera Jones

Abstract

When you look at a classical probability problem, It's so scary at the start. But that’s the hardest part. And trust
me, it get’s so much worse. | finally know where | belong. This is the way the weak grow to be so annoying to
everyone around them. I've got a feeling, With you, I'm becoming Meme. I've worked hard, Come so far. It's my
story, I'm the star. And the road I’'m on Could go until forever. Every day there’s something new. Every day |
share these horrible insights with you. I've got a feeling, With you, ’'m becoming Meme. We're looking for new
horizons. Let’s go explore new horizons. We're looking for new ways to take this problem and complicate it. Let’s

Keywords

justify the purchase of more Pokémon cards

go explore all the ways that we’ve done that. I've got a feeling, With you, I'm becoming Meme.[5]
Coupon Collector’s Problem — Probability — Computer Simulation — Pokémon — A flimsy excuse of a paper to

Rosenstiel School of Marine, Atmospheric, and Earth Sciences, Miami, Florida - [she/her/hers] - @K13205

Contents

1 Coupon Collecting and YOU
2 What trading cards mess up

3 Rifting the Para-da problems in a... uh... 2
3.1 Individual Rarities 2
3.2 Forthewholeset 4
4 All the sets Here Together 5
4.1 Second through sixth verse, same as the first . .5
4.2 Okay but are packs worthit? 5

5 Temporally Forcing through new data
Acknowledgments
Appendix

1. Coupon Collecting and YOU

The Coupon Collector’s Problem is one of the most well-
known problems in probability theory among people who
study probability theory (read: nerds). For those unfamiliar
with terminology, a coupon is a piece of paper you had to
bring in while shopping in a physical store to save money on
certain items you bought[10]. These are no longer commonly
seen, because CVS accidentally bought every single one that
existed, and has to now put them on their receipts while the
coupon factories work through this backlog.

The Coupon Collector’s Problem, however, is a weird
corruption of this. Instead of using the coupons to procure
necessary items to ensure your survival (like 35 cents off a
combination laser-pointer/foot massager), one is instead try-
ing to get one of every single coupon being distributed at
a time, presumably to flaunt ones wealth and/or collection

of combination laser-pointer/foot massagers. Now, the eas-
iest way to do so would be to ask the coupon distributors
for the missing coupons, but unfortunately, in this telling of
the story, they are not so kind as to listen to mere mortal’s
trifling concerns, and as such, are given a random coupon
from the collection each time. The question then begs how
many coupons would one have to collect in order to have one
of each kind.

In the end, there are some simple math(s) one can go
through to calculate the expected value[1], but the solution
is for n coupons, one would expect to get nH, coupons on
average before getting one of every coupon, where H,, is the
nth Harmonic number!. Because we don’t like doing math(s)
in this math(s)-inspired paper, we will instead be replacing the
math(s) with other math(s) and approximating the Harmonic
numbers by the natural log function?, because it takes way
too much effort to get Excel to do the Harmonic calculations,
but the natural log is a default function, and laziness is very
important.

Part of the underlying assumptions for the Coupon Collec-
tor’s Problem is that all the coupons are equally likely to be
obtained, and that what coupon is received at one time has no
impact on the other coupons*. Variations on this problem have
been studied numerous times to try and convert it to something
more akin to real life, whether by allowing duplicate coupons
to be traded between collections[4] assuming the coupons are

IThe Harmonic numbers are the sums of 1 + % + ... %

2Specifically, H(n) ~ Inn+7° + 2]7,

3Euler’s constant, v~ .577215665. No, Euler’s constant isn’t e, but that’s
still used because of the natural logs, and ¥ shows up a lot within contexts of
natural logs. Also, this 3 was a footnote, and not y being raised to the third
power.

4or in actual math(s) parlance, the coupons follow IID: independent and
identically distributed.

36

not equally likely[8], the coupons come in unique batches
without repeats[9], or there are multiple collections going on
at the same time and wanting to know how long until all of
them are finished[6]. One great example of an adaptation that
deals with multiple of these is looking at collecting trading
cards.

2. What trading cards mess up

Opening up packs of trading cards is one way that the Coupon
Collector problem can be translated to a more modern sce-
nario. People frequently get tons of packs, and then open
them all to see what they get. Usually, there are three main
reasons people open up lots of packs: They are opening them
up, trying to pull rare and valuable cards to resell and turn
a profit; they are attempting to pull a few specific cards that
they like or need for a deck, usually the rarer ones’; or, most
pertinently, they are trying to collect every last card in the set
oh hey wait that’s what this paper is about.

The manner of getting the cards in a TCG is slightly