
the association for computational heresy

presents

a record of the proceedings of

SIGBOVIK 2019

the thirteenth annual intercalary robot dance party in celebration

of workshop on symposium about 26th birthdays; in particular,
that of harry q. bovik

cover art by chris yu

cover art by chris yu

cover art by chris yu

cover art by chris yu

carnegie mellon university

pittsburgh, pa

april 1, 2019

i

SIGBOVIK

A Record of the Proceedings of SIGBOVIK 2019

ISSN 2155-0166

April 1, 2019

Copyright is maintained by the individual authors, though obviously this all gets posted to the

Internet and stuff, because it’s 2019.

Permission to make digital or hard copies of portions of this work for personal use is granted;

permission to make digital or hard copies of portions of this work for classroom use is also granted,

but seems ill-advised. Abstracting with credit is permitted; abstracting with credit cards seems

difficult.

Additional copies of this work may be ordered from Lulu; refer to http://sigbovik.org for

details.

ii

SIGBOVIK 2019

Message from the Organizing Committee

Greetings friends, colleagues, and complete strangers. It is with great pride that we welcome you

to the 0xDth annual Special Interest Group on Harry Q. Bovik, held in celebration of Harry Q

Bovik’s 10somenumberbiggerthan2th birthday. Normally this is where we, the “committee”, would

wax poetic about features added1, records broken, and facts fun. However, this year, we have

decided to take the highly efficient and not at all lazy route of delegating the task of writing this

message to committee members of the past. A sort of temporal passing of the buck, one might say.

Thus I present to you, in reverse chronological order, some messages.

• “Best conference I have chaired so far, also the question mark is implicit at the end of all the

survey questionspunctuationisfortheweak” — General Chair 2019

• “much as even mentioned in the paper; well, that will teach me to forget punctuation at the

end of my survey questions, won’t it?” — General Chair 2018

• “SIGBOVIK, for those with a special interest in groups-BOVIK. Like many special interests,

I consider it clinically significant.” — General Chair 2017

• “I wish all conferences were as easy to get into prestigious as SIGBOVIK” — General Chair

2014

• “ ‘i’m sorry i derelicted my duties to promote sigbovik on twitter this year but i see you have

30ish submissions already even without me so HRMPH WHO NEEDS ME um i mean well

done!’ ” — General Chair 2012 (note: 40ish actually, end note)

• “SIGBOVIK is exactly what I had in mind. —Edgar Allen Poe” — General Chair 2008

• “I like to bovik bovik” — General Chair 2007

And with that, the papers.

1Despite my noble intention to dispatch with the labored, formulaic frontmatter of yestersyear, I was thwarted by a

proceedings chair who insisted that I add an explanation of the unwittily-named “unwitting participation ribbon” (),

an unwelcome brand we’ve affixed to each paper determined after careful scrutiny to have included a genuine artifact,

thereby furthering the admirable causes of open science and fruitful procrastination.

iii

iv

Academic Games

: Gamification 3

1 Aumann agreement by combat . 4

2 Monetization of development tools for fun and profit 6

: Let’s get this party started! 11

3 Elo World: A framework for benchmarking weak chess engines 12

4 A formal treatment of k/n power-hours . 25

5 Eventually consistent partying . 29

: Survival advice from a computer scientist 33

6 Survival in chessland . 34

7 Optimizing The Sacrifice . 44

8 Abusing the RPM package manager to compile software 49

: Security and privacy 53

9 CVE-2018-90017117 . 54

10 Orchhit: User-oblivious social networking 55

: Machine learning 59

11 Color- and piece-blind chess . 60

12 Dimensionality-reducing encoding for classification of Pythagorean engen-
dered numbers . 66

13 emojizip: A text compression system based on pictogram-kiloword equivalence 69

14 Meta-meta-learning for neural architecture search through arXiv Descent . . 77

15 Towards automatic low hanging fruit identification for the steering of ML
research . 81

: Architecture: Faster and hotter 85

16 Turing-complete chess . 86

17 NaN gates and flip FLOPS . 98

18 HonestNN: an honest neural network “accelerator” 103

19 Simultaneous microwaving architectures: An efficient scheme for multiplate
heating . 109

20 Precise ECG platform on modern processors 114

: Chess 119

21 Is “Dicong Qiu. Is this the shortest SIGBOVIK paper? From 2018 SIG-
BOVIK paper” the shortest SIGBOVIK paper? 120

22 Is this the tiniest SIGBOVIK paper ever? 121

23 No, this is the tiniest SIGBOVIK paper ever. 122

24 Revisiting the shortest SIGBOVIK paper / The revised shortest SIGBOVIK
paper . 123

25 On the shortness of SIGBOVIK papers . 128

1

: Simple in theory 131

26 A sublinear approximation method for np-hardproblems on limited hardware 132

27 Simple theoretically practical complexity theory 134

: Languages 137

28 A formal semantics of Befunge . 138

29 LATEL: A Logical And Transparent Experimental Language 144

30 GullyNet: Our time will come . 150

: Error-correcting codes 153

31 On double-sided QR codes . 154

32 Novel defense against code theft using properties of Fibonacci series 160

33 Error-detecting RLIRFO data structures for the win 163

: Measurement studies 169

34 Applications of Standard ML at Google . 170

35 93% of paint splatters are valid Perl programs 174

36 A survey and projection of SIGBOVIK trends 182

: Back to the future 187

37 Need more RAM? Just invent time travel! 188

38 WICCAN: (deep) learning directly from the future 194

39 On CLI-based Renderers: In which we investigate the utility of rendering
teapots in a command line . 200

40 SpaceF . 202

: Pop culture 203

41 Which ITG stepcharts are bracket-jumpiest?: In which they milk the +A bor-
ing follow-up paper to “Which ITG stepcharts are turniest?” titled, “Which
ITG stepcharts are crossoveriest and/or footswitchiest?”, series for all its
worth in publication count af . 204

42 The computational theory of Lord Voldemort’s dark magic 212

43 All you need is dogball . 215

44 On the time complexity of the verification of the factorization of 267-1 . . . 221

2

Gamification

1 Aumann agreement by combat

Travis Hance

Keywords: Aumann agreement, combat, agents

2 Monetization of development tools for fun and profit

Albin Eldst̊al-Damlin

Keywords: monetization, micro-transactions, free-to-play, gamification

3

Aumann Agreement by Combat

Travis Hance

Abstract

The celebrated Aumann’s Agreement Theorem [2] shows that

two rational agents with the same priors on an event who make

different observations will always converge on the same posteri-

ors after some civilized conversation over tea. Furthermore, they

will come to agree even if they do nothing other than simply

state their posteriors over and over again.

However, this protocol is widely criticized for being too bor-

ing. We therefore introduce a more exciting alternative, which

we name Aumann Agreement by Combat.

1 Introduction

Informally, Aumann’s Agreement Theorem [2] states that two

honest Bayesian agents can come to agreement by stating their

priors over and over again. (Here, the term agent simply means

“a person who observes things and has opinions.” However, it is

more exciting to imagine them as secret agents, so we will do

so for this paper.)

To take example from Aumann’s paper, suppose the agents

are investigating the fairness of a particular coin (say, a very

rare coin involved in a museum heist). We will call the agents A
and B, but of course they are secret agents, so what names these

letters stand for is a mystery. The coin is parameterized by a

value p, the probability that it will land heads when it is flipped.

Each agent begins with the same prior, in this example the

uniform prior of p over the interval [0, 1], because the uniform

prior is a reasonable prior to assume about a coin that one knows

nothing about.

If A flips the coins and sees heads, then her Bayesian calcu-

lation will conclude that the probability of the next flip being

heads will be 2/3. If B flips and sees tails, they he will think

the probability is 1/3. They are now in disagreement. However,

if these agents then meet in a tavern to discuss, then A needs

merely to state that her probability is 2/3, and B will conclude

that she must have seen heads in his single flip. With all of that

information, she now concludes that the probability of another

flip being heads will be 1/2. Observers will assume that these

numbers are all part of a secret code, but A will understand that

B has computed the true probability, and she will update her

probability to 1/2 as well. Both agents are now in agreement.

Of course, this scenario assumed that both agents knew that

the other would be flipping the coin only once. In more com-

plicated scenarios, the agents may have variable methods of

observation, for example, they might flip multiple times, in

which case their observations should be weighted more, or they

might not. Still, as long as they have the same priors on said

methodology, they will be able to come to agreement through a

sequence of statements.

Unfortunately, this methodology of merely stating opinions is

boring. Furthermore, everybody knows that the goal of arguing

is not to reach the truth, but rather to win. Therefore, we have

developed a new protocol, Aumann Agreement by Combat that

alleviates these problems.

2 Aumann Agreement by Combat

Our new protocol works as follows.

1. Agents A and B start with the same priors.

2. A and B each go out and make observations.

3. A and B meet to discuss the probability of some event E.

Each agent has some initial estimate of the probability of

E.

4. Players alternate in turns, continuing until their estimates

match. On each turn, an agent has a choice to either:

• State their current estimate of E. The other player

must use Bayesian reasoning to update their own

estimate.

• Declare COMBAT. The agents will fight it out, and

at the end, the loser will adopt the winner’s estimate

as their own.

The COMBAT phase has no rules. Any player is free to try

to win by any means necessary, and they are encouraged to

employ all of their wit and resources to the fullest extent. In the

base rules, the battle ends when one player loses consciousness,

although the players may also agree to a different ending condi-

tion, such as getting a flag to one’s base, death, or the outcome

of a poetry competition.

With this definition in place, we come to our main theorem.

Theorem 1. After an execution of the Aumann Agreement by

Combat protocol, both agents will agree on the correct proba-

bility of the event E.

Proof. Might makes right.

3 Complexity Analysis

In [1], Aaronson analyzes the complexity of Aumann Agree-

ment, showing that O(1/"2) bits of communication are suffi-

cient to agree within ".

1

1

4

An advantage of our new protocol is that the analysis is much

simpler. The COMBAT phase might take an arbitrary amount of

time and resources, depending on the strategies that the agents

employ. They might stake the COMBAT phase on the outcome

of an intergalactic war, for example. Therefore, there is no

complexity bound on time, space, communication, energy, or

anything else.

4 Conclusion

We expect that many scholars will welcome this formalization

of the game that they already try to play.

References
[1] S. Aaronson. The complexity of agreement. In Proceedings of the

Thirty-seventh Annual ACM Symposium on Theory of Computing,

STOC ’05, pages 634–643, New York, NY, USA, 2005. ACM.

[2] R. J. Aumann. Agreeing to disagree. Ann. Statist., 4(6):1236–1239,

11 1976.

2
5

Monetization of Development Tools for Fun and
Profit

Albin Eldstål-Damlin
Your Company Here

Reasonable rates apply

albin@legit.name

Abstract—In this paper we propose methods and strategies to
raise profit from freely available and open-source development
toolchains such as GCC. We illustrate techniques to maximize
player developer engagement and drive further purchases once
the system is in place.

Index Terms—monetization, microtransactions, free-to-play,
gamification

Typ
es

et
us

in
g

LATE
X

-G
ol

d
fre

e
tri

al

Visi
t h

ttp
://

w
w

w.la
te
x-

go
ld

.o
rg

I. INTRODUCTION

In the past decade, monetization of free content has become

a leading business strategy for companies in a range of tech

industries such as computer games and mobile apps. A wide

variety of techniques have been developed and refined to

drive users to continuously pay for additional content, either

in a storefront fashion or using a more randomized ”loot-

box” approach. This has caused a surge of ”Freemium” titles,

requiring no up-front purchase and recouperating development

costs by selling in-game items.

A previously untapped market segment is that of software

development tools, such as compilers, static analysis tools,

debuggers, etc. Many of these are available either free of

charge or under an open-source license, making them perfect

candidates for freemium-style monetization.

In this paper, we examine g++, the C++ compiler of the

GNU Compiler Collection (GCC). Consulting its manual [1],

we find that the standard distribution comes with an ample

selection of options and switches; this suggests that there is

room for expansion.

We explore the possibilities of adding microtransactions to

the g++ frontend.

II. USER MOTIVATION

The first problem is convincing the user to enter the ecosys-

tem, taking the step from Libre to Freemium. To entice, we

must introduce a killer feature that is not available elsewhere.

What sets a killer feature apart from a regular feature is that

the killer feature is unique and indispensable. This feature can

be entirely cosmetic (such as a novel output decoration), but it

is preferable to give the user some qualitative improvement. To

come up with such a feature, we identify a common problem

users have with our chosen product and devise a solution.

In the case of g++, a common complaint is the verbosity

and obscurity of some error outputs. In many small- and mid-

sized codebases, a typo can lead to error messages exceeding

the size of the code! Furthermore, it isn’t always clear to the

i n c l u d e <v e c t o r>
i n c l u d e <a l g o r i t h m>

u s i n g s t d : : v e c t o r ;
u s i n g s t d : : f i n d ;

i n t main ()
{

i n t a ;
v e c t o r< v e c t o r <i n t> > v ;
v e c t o r< v e c t o r <i n t> > : : c o n s t i t e r a t o r i t

= s t d : : f i n d (v . b e g i n () , v . end () , a) ;
}

Listing 1. A program with confusing errors

novice programmer what the cause is of these pages of output.

Listing 1 shows an example of an STL type error [2], with

the full error message from g++ in appendix A.

A good candidate for a killer feature, then, is error output

of improved quality, readability and accuracy. The implemen-

tation of such a feature is beyond the scope of this article.

III. INTERMISSION

If you have a software project, monetization effort or just

want to show off pictures of your cats to the world, you need
a website. Don’t have any coding skills? Don’t know where

to start? Check out SquarePeg, one of the world’s leading

providers of all-in-one web hosting solutions. SquarePeg lets

you effortlessly create your site using one of four beautiful

templates. It’s as easy as drag-and-drop. Almost nothing to

install, almost nothing to update, almost ever! Visit http:

//www.squarepeg.com/sigbovik for 20% off your first purchase

today!

IV. IN-TOOL CURRENCY

A key technique to drive purchases is an intermediate single-

purpose currency, which can either be earned by using the

tool or directly purchased for real-life money. Such a currency

serves to disconnect the actual cost of offered add-ons from

the apparent cost, in addition to locking in a greater amount

of real-world money by inconvenient exchange rates.

In our examples, we introduce the g++-specific ”L2 Cash”

(L$) and present all purchase options to the user (except for

L$ itself) in L$.

The user is rewarded in small amounts of L$ for various

normal use of the software (for example 1L$ per 10 seconds

2

6

spent compiling code) as well as extraordinary achievements

(compile with substantial changes without errors on the first

try? 1L$ per 10 lines of code!).

Another avenue for monetization is to sell ad-space and

reward the user for being exposed to advertising. Targeting

g++ opens the non-traditional option of modifying the stan-

dard library, for example by randomly including advertising

in printf() output in exchange for L$.

V. SUITABLE FEATURES

Traditionally, premium add-ons can be divided into three

categories along a spectrum: Cosmetic, Convenience and Pay-

to-Win. The special nature of a compiler also offers a fourth

option which is useful to us: Non-standard language features.

Cosmetic features do not alter the user’s experience, only

the apperance of some elements. In an online game, this may

be a special player avatar or some rare piece of equipment that

nevertheless does not afford the player any advantage. There

are relatively few possibilities for a purely cosmetic add-on to

a productivity tool such as a compiler.

Convenience features can automate or simplify otherwise

tedious tasks, saving the user time but not otherwise providing

any competitive edge. An example might be automation of

grinding, mindless mass-production work. In a development

setting, this is akin to well-crafted preprocessor macros and

automatic generation of boilerplate code.

Pay-to-Win features directly improve a user’s chance of

success. In a competitive game, this may be a stronger weapon

or a higher-capacity backpack. These features are generally ill-

received, as they are perceived to throw off the balance of the

game. Since development tools are usually single-player, or

cooperative multiplayer, these features are better thought of

as productivity-enhancements.

Non-standard language features offer an avenue for lock-

in, by luring the user into writing programs that will not work

without our premium add-ons. This is ideal for monetization,

and a particularly good feature could even warrant recurring

payment. We will also exploit features like this for licensing

reasons, detailed in Section VII.

VI. USER INTERFACE

The most obvious way to expose new extensions to the user

is via command-line switches. We use the + prefix to show

features that can be purchased, together with their price.

albin@SquarePeg:∼$ g++ --help

Usage: g++ [options] file...

Options:

...

-pass-exit-codes Exit with highest error code from a phase

Premium Features:

+nice-errors Provide human-readable output (500L$)

A common optimization is to sneak the premium options in

among the free ones, to make them more difficult to ignore.

albin@SquarePeg:∼$ g++ --help

Usage: g++ [options] file...

Options:

...

-pass-exit-codes Exit with highest error code from a phase

+nice-errors Provide human-readable output (500L$)

To drive conversion rate, however, it is useful to advertise

the available options more strongly. A color hint is a good

start.

albin@SquarePeg:∼$ g++ --help

Usage: g++ [options] file...

Options:

...

-pass-exit-codes Exit with highest error code from a phase

+nice-errors Provide human-readable output (500L$)

At the end of every output, we append the user’s current

account balance. This provides a reminder that the player is

earning while they play. Of course, we also remind them how

to easily increase their account balance.

albin@SquarePeg:∼$ g++ --help

Usage: g++ [options] file...

Options:

...

-pass-exit-codes Exit with highest error code from a phase

+nice-errors Provide human-readable output (500L$)

Balance: 1210L$

+cash=[amount] Add additional L$ to account ($2.99 / 100L$)

Another well-known strategy is to provide tiered pricing,

i.e. a better exchange rate for bulk currency purchase. By

identifying beginners (more likely to make small purchase)

and power-users (more likely to make bulk purchases), we

can gently nudge them toward a transaction.

albin@SquarePeg:∼$ g++ --help

Usage: g++ [options] file...

Options:

...

-pass-exit-codes Exit with highest error code from a phase

+nice-errors Provide human-readable output (500L$)

Balance: 10L$

+cash=100 Additional 100L$ to account ($2.99)

+cash=1000 Additional 1000L$ to account ($25.99) <- Most popular

+cash=5000 Additional 5000L$ to account ($39.99)

+cash=10000 Additional 10000L$ to account ($69.99) <- Best deal

VII. SKIRTING OPEN-SOURCE LICENSING

g++ is released under the GNU General Public License

(GPL), which requires that any modification or addition is

also released under the same license. To counteract this, we

devise a strategy for compliance with the letter of the license

while side-stepping the spirit.

By ensuring that our premium features are implemented

with heavy reliance on our own non-standard language fea-

tures, we prevent the spread of our proprietary modules to non-

paying users. By extension, if we also hide the documentation

of these non-standard features behind our pay-wall, we inhibit

non-paying users trying to port the released source code to

free tools.

REFERENCES

[1] G. Project, “Gcc manual: Invoking gcc.” https://gcc.gnu.org/onlinedocs/
gcc-8.1.0/gcc/Invoking-GCC.html#Invoking-GCC, 2018.

[2] Kebs, “Code golf entry.” https://codegolf.stackexchange.com/a/10470,
2016.

7

APPENDIX A

TYPICAL G++ OUTPUT

In f i l e i n c l u d e d from / u s r / i n c l u d e / c + + / 7 . 3 . 1 / b i t s / s t l a l g o b a s e . h : 7 1 : 0 ,
from / u s r / i n c l u d e / c + + / 7 . 3 . 1 / v e c t o r : 6 0 ,
from e xp lod . cpp : 1 :

/ u s r / i n c l u d e / c + + / 7 . 3 . 1 / b i t s / p r e d e f i n e d o p s . h : In i n s t a n t i a t i o n o f ’ boo l gnu cxx : : ops : :
I t e r e q u a l s v a l < Value > : : o p e r a t o r () (I t e r a t o r) [w i th I t e r a t o r = gnu cxx : :

n o r m a l i t e r a t o r <s t d : : v e c t o r<i n t >*, s t d : : v e c t o r<s t d : : v e c t o r<i n t> > >; Value = c o n s t i n t] ’ :
/ u s r / i n c l u d e / c + + / 7 . 3 . 1 / b i t s / s t l a l g o . h : 1 2 0 : 1 4 : r e q u i r e d from ’ R a n d o m A c c e s s I t e r a t o r s t d : :

f i n d i f (R a n d o m A c c e s s I t e r a t o r , R a n d o m A c c e s s I t e r a t o r , P r e d i c a t e , s t d : :
r a n d o m a c c e s s i t e r a t o r t a g) [w i th R a n d o m A c c e s s I t e r a t o r = gnu cxx : : n o r m a l i t e r a t o r <s t d : :
v e c t o r<i n t >*, s t d : : v e c t o r<s t d : : v e c t o r<i n t> > >; P r e d i c a t e = gnu cxx : : ops : :

I t e r e q u a l s v a l <c o n s t i n t >] ’
/ u s r / i n c l u d e / c + + / 7 . 3 . 1 / b i t s / s t l a l g o . h : 1 6 1 : 2 3 : r e q u i r e d from ’ I t e r a t o r s t d : : f i n d i f (

I t e r a t o r , I t e r a t o r , P r e d i c a t e) [w i th I t e r a t o r = gnu cxx : : n o r m a l i t e r a t o r <s t d : : v e c t o r
<i n t >*, s t d : : v e c t o r<s t d : : v e c t o r<i n t> > >; P r e d i c a t e = gnu cxx : : ops : : I t e r e q u a l s v a l <
c o n s t i n t >] ’

/ u s r / i n c l u d e / c + + / 7 . 3 . 1 / b i t s / s t l a l g o . h : 3 9 0 7 : 2 8 : r e q u i r e d from ’ I I t e r s t d : : f i n d (I I t e r , I I t e r
, c o n s t Tp&) [wi th I I t e r = gnu cxx : : n o r m a l i t e r a t o r <s t d : : v e c t o r<i n t >*, s t d : : v e c t o r<s t d
: : v e c t o r<i n t> > >; Tp = i n t] ’

ex p l od . cpp : 1 2 : 4 2 : r e q u i r e d from h e r e
/ u s r / i n c l u d e / c + + / 7 . 3 . 1 / b i t s / p r e d e f i n e d o p s . h : 2 4 1 : 1 7 : e r r o r : no match f o r ’ o p e r a t o r == ’ (ope rand

t y p e s a r e ’ s t d : : v e c t o r<i n t >’ and ’ c o n s t i n t ’)
{ r e t u r n * i t == M value ; }

˜ ˜ ˜ ˜ ˜ ˜ ˆ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜
In f i l e i n c l u d e d from / u s r / i n c l u d e / c + + / 7 . 3 . 1 / b i t s / s t l a l g o b a s e . h : 6 7 : 0 ,

from / u s r / i n c l u d e / c + + / 7 . 3 . 1 / v e c t o r : 6 0 ,
from e xp lod . cpp : 1 :

/ u s r / i n c l u d e / c + + / 7 . 3 . 1 / b i t s / s t l i t e r a t o r . h : 8 5 9 : 5 : n o t e : c a n d i d a t e : t e m p l a t e<c l a s s I t e r a t o r L ,
c l a s s I t e r a t o r R , c l a s s C o n t a i n e r> boo l gnu cxx : : o p e r a t o r ==(c o n s t gnu cxx : :

n o r m a l i t e r a t o r < I t e r a t o r L , C o n t a i n e r >&, c o n s t gnu cxx : : n o r m a l i t e r a t o r < I t e r a t o r R ,
C o n t a i n e r >&)
o p e r a t o r ==(c o n s t n o r m a l i t e r a t o r < I t e r a t o r L , C o n t a i n e r>& lhs ,
ˆ ˜ ˜ ˜ ˜ ˜ ˜ ˜

/ u s r / i n c l u d e / c + + / 7 . 3 . 1 / b i t s / s t l i t e r a t o r . h : 8 5 9 : 5 : n o t e : t e m p l a t e a rgument d e d u c t i o n /
s u b s t i t u t i o n f a i l e d :

In f i l e i n c l u d e d from / u s r / i n c l u d e / c + + / 7 . 3 . 1 / b i t s / s t l a l g o b a s e . h : 7 1 : 0 ,
from / u s r / i n c l u d e / c + + / 7 . 3 . 1 / v e c t o r : 6 0 ,
from e xp lod . cpp : 1 :

/ u s r / i n c l u d e / c + + / 7 . 3 . 1 / b i t s / p r e d e f i n e d o p s . h : 2 4 1 : 1 7 : n o t e : ’ s t d : : v e c t o r<i n t >’ i s n o t d e r i v e d
from ’ c o n s t gnu cxx : : n o r m a l i t e r a t o r < I t e r a t o r L , C o n t a i n e r >’

{ r e t u r n * i t == M value ; }
˜ ˜ ˜ ˜ ˜ ˜ ˆ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜

In f i l e i n c l u d e d from / u s r / i n c l u d e / c + + / 7 . 3 . 1 / b i t s / s t l a l g o b a s e . h : 6 7 : 0 ,
from / u s r / i n c l u d e / c + + / 7 . 3 . 1 / v e c t o r : 6 0 ,
from e xp lod . cpp : 1 :

/ u s r / i n c l u d e / c + + / 7 . 3 . 1 / b i t s / s t l i t e r a t o r . h : 8 6 6 : 5 : n o t e : c a n d i d a t e : t e m p l a t e<c l a s s I t e r a t o r ,
c l a s s C o n t a i n e r> boo l gnu cxx : : o p e r a t o r ==(c o n s t gnu cxx : : n o r m a l i t e r a t o r < I t e r a t o r ,

C o n t a i n e r >&, c o n s t gnu cxx : : n o r m a l i t e r a t o r < I t e r a t o r , C o n t a i n e r >&)
o p e r a t o r ==(c o n s t n o r m a l i t e r a t o r < I t e r a t o r , C o n t a i n e r>& lhs ,
ˆ ˜ ˜ ˜ ˜ ˜ ˜ ˜

/ u s r / i n c l u d e / c + + / 7 . 3 . 1 / b i t s / s t l i t e r a t o r . h : 8 6 6 : 5 : n o t e : t e m p l a t e a rgument d e d u c t i o n /
s u b s t i t u t i o n f a i l e d :

In f i l e i n c l u d e d from / u s r / i n c l u d e / c + + / 7 . 3 . 1 / b i t s / s t l a l g o b a s e . h : 7 1 : 0 ,
from / u s r / i n c l u d e / c + + / 7 . 3 . 1 / v e c t o r : 6 0 ,
from e xp lod . cpp : 1 :

/ u s r / i n c l u d e / c + + / 7 . 3 . 1 / b i t s / p r e d e f i n e d o p s . h : 2 4 1 : 1 7 : n o t e : ’ s t d : : v e c t o r<i n t >’ i s n o t d e r i v e d
from ’ c o n s t gnu cxx : : n o r m a l i t e r a t o r < I t e r a t o r , C o n t a i n e r >’

{ r e t u r n * i t == M value ; }
˜ ˜ ˜ ˜ ˜ ˜ ˆ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜

In f i l e i n c l u d e d from / u s r / i n c l u d e / c + + / 7 . 3 . 1 / x86 64−pc−l i n u x−gnu / b i t s / c++ a l l o c a t o r . h : 3 3 : 0 ,
from / u s r / i n c l u d e / c + + / 7 . 3 . 1 / b i t s / a l l o c a t o r . h : 4 6 ,
from / u s r / i n c l u d e / c + + / 7 . 3 . 1 / v e c t o r : 6 1 ,
from e xp lod . cpp : 1 :

/ u s r / i n c l u d e / c + + / 7 . 3 . 1 / e x t / n e w a l l o c a t o r . h : 1 5 5 : 5 : n o t e : c a n d i d a t e : t e m p l a t e<c l a s s Tp> boo l
gnu cxx : : o p e r a t o r ==(c o n s t gnu cxx : : n e w a l l o c a t o r< Tp>&, c o n s t gnu cxx : : n e w a l l o c a t o r<

Tp>&)
o p e r a t o r ==(c o n s t n e w a l l o c a t o r< Tp>&, c o n s t n e w a l l o c a t o r< Tp>&)
ˆ ˜ ˜ ˜ ˜ ˜ ˜ ˜

/ u s r / i n c l u d e / c + + / 7 . 3 . 1 / e x t / n e w a l l o c a t o r . h : 1 5 5 : 5 : n o t e : t e m p l a t e a rgument d e d u c t i o n /
s u b s t i t u t i o n f a i l e d :

In f i l e i n c l u d e d from / u s r / i n c l u d e / c + + / 7 . 3 . 1 / b i t s / s t l a l g o b a s e . h : 7 1 : 0 ,
from / u s r / i n c l u d e / c + + / 7 . 3 . 1 / v e c t o r : 6 0 ,
from e xp lod . cpp : 1 :

/ u s r / i n c l u d e / c + + / 7 . 3 . 1 / b i t s / p r e d e f i n e d o p s . h : 2 4 1 : 1 7 : n o t e : ’ s t d : : v e c t o r<i n t >’ i s n o t d e r i v e d
from ’ c o n s t gnu cxx : : n e w a l l o c a t o r< Tp>’

{ r e t u r n * i t == M value ; }
˜ ˜ ˜ ˜ ˜ ˜ ˆ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜

In f i l e i n c l u d e d from / u s r / i n c l u d e / c + + / 7 . 3 . 1 / v e c t o r : 6 4 : 0 ,
from e xp lod . cpp : 1 :

/ u s r / i n c l u d e / c + + / 7 . 3 . 1 / b i t s / s t l v e c t o r . h : 1 5 9 6 : 5 : n o t e : c a n d i d a t e : t e m p l a t e<c l a s s Tp , c l a s s
Al loc> boo l s t d : : o p e r a t o r ==(c o n s t s t d : : v e c t o r< Tp , Al loc >&, c o n s t s t d : : v e c t o r< Tp , Al loc

>&)
o p e r a t o r ==(c o n s t v e c t o r< Tp , Al loc>& x , c o n s t v e c t o r< Tp , Al loc>& y)
ˆ ˜ ˜ ˜ ˜ ˜ ˜ ˜

/ u s r / i n c l u d e / c + + / 7 . 3 . 1 / b i t s / s t l v e c t o r . h : 1 5 9 6 : 5 : n o t e : t e m p l a t e a rgument d e d u c t i o n /
s u b s t i t u t i o n f a i l e d :

In f i l e i n c l u d e d from / u s r / i n c l u d e / c + + / 7 . 3 . 1 / b i t s / s t l a l g o b a s e . h : 7 1 : 0 ,
from / u s r / i n c l u d e / c + + / 7 . 3 . 1 / v e c t o r : 6 0 ,
from e xp lod . cpp : 1 :

/ u s r / i n c l u d e / c + + / 7 . 3 . 1 / b i t s / p r e d e f i n e d o p s . h : 2 4 1 : 1 7 : n o t e : mismatched t y p e s ’ c o n s t s t d : : v e c t o r
< Tp , Al loc >’ and ’ c o n s t i n t ’

{ r e t u r n * i t == M value ; }
˜ ˜ ˜ ˜ ˜ ˜ ˆ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜

In f i l e i n c l u d e d from / u s r / i n c l u d e / c + + / 7 . 3 . 1 / v e c t o r : 6 1 : 0 ,
from e xp lod . cpp : 1 :

/ u s r / i n c l u d e / c + + / 7 . 3 . 1 / b i t s / a l l o c a t o r . h : 1 5 2 : 5 : n o t e : c a n d i d a t e : t e m p l a t e<c l a s s Tp> boo l s t d : :
o p e r a t o r ==(c o n s t s t d : : a l l o c a t o r < Tp1>&, c o n s t s t d : : a l l o c a t o r < Tp1>&)

o p e r a t o r ==(c o n s t a l l o c a t o r < Tp>&, c o n s t a l l o c a t o r < Tp>&)
ˆ ˜ ˜ ˜ ˜ ˜ ˜ ˜

/ u s r / i n c l u d e / c + + / 7 . 3 . 1 / b i t s / a l l o c a t o r . h : 1 5 2 : 5 : n o t e : t e m p l a t e a rgument d e d u c t i o n / s u b s t i t u t i o n
f a i l e d :

In f i l e i n c l u d e d from / u s r / i n c l u d e / c + + / 7 . 3 . 1 / b i t s / s t l a l g o b a s e . h : 7 1 : 0 ,
from / u s r / i n c l u d e / c + + / 7 . 3 . 1 / v e c t o r : 6 0 ,
from e xp lod . cpp : 1 :

/ u s r / i n c l u d e / c + + / 7 . 3 . 1 / b i t s / p r e d e f i n e d o p s . h : 2 4 1 : 1 7 : n o t e : ’ s t d : : v e c t o r<i n t >’ i s n o t d e r i v e d
from ’ c o n s t s t d : : a l l o c a t o r < Tp1>’

{ r e t u r n * i t == M value ; }
˜ ˜ ˜ ˜ ˜ ˜ ˆ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜

In f i l e i n c l u d e d from / u s r / i n c l u d e / c + + / 7 . 3 . 1 / v e c t o r : 6 1 : 0 ,
from e xp lod . cpp : 1 :

/ u s r / i n c l u d e / c + + / 7 . 3 . 1 / b i t s / a l l o c a t o r . h : 1 4 6 : 5 : n o t e : c a n d i d a t e : t e m p l a t e<c l a s s T1 , c l a s s T2>
boo l s t d : : o p e r a t o r ==(c o n s t s t d : : a l l o c a t o r < Tp1>&, c o n s t s t d : : a l l o c a t o r < T2>&)

o p e r a t o r ==(c o n s t a l l o c a t o r < T1>&, c o n s t a l l o c a t o r < T2>&)
ˆ ˜ ˜ ˜ ˜ ˜ ˜ ˜

/ u s r / i n c l u d e / c + + / 7 . 3 . 1 / b i t s / a l l o c a t o r . h : 1 4 6 : 5 : n o t e : t e m p l a t e a rgument d e d u c t i o n / s u b s t i t u t i o n
f a i l e d :

In f i l e i n c l u d e d from / u s r / i n c l u d e / c + + / 7 . 3 . 1 / b i t s / s t l a l g o b a s e . h : 7 1 : 0 ,
from / u s r / i n c l u d e / c + + / 7 . 3 . 1 / v e c t o r : 6 0 ,
from e xp lod . cpp : 1 :

/ u s r / i n c l u d e / c + + / 7 . 3 . 1 / b i t s / p r e d e f i n e d o p s . h : 2 4 1 : 1 7 : n o t e : ’ s t d : : v e c t o r<i n t >’ i s n o t d e r i v e d
from ’ c o n s t s t d : : a l l o c a t o r < Tp1>’

{ r e t u r n * i t == M value ; }
˜ ˜ ˜ ˜ ˜ ˜ ˆ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜

In f i l e i n c l u d e d from / u s r / i n c l u d e / c + + / 7 . 3 . 1 / b i t s / s t l a l g o b a s e . h : 6 7 : 0 ,
from / u s r / i n c l u d e / c + + / 7 . 3 . 1 / v e c t o r : 6 0 ,
from e xp lod . cpp : 1 :

/ u s r / i n c l u d e / c + + / 7 . 3 . 1 / b i t s / s t l i t e r a t o r . h : 1 1 2 4 : 5 : n o t e : c a n d i d a t e : t e m p l a t e<c l a s s I t e r a t o r >
boo l s t d : : o p e r a t o r ==(c o n s t s t d : : m o v e i t e r a t o r< I t e r a t o r L >&, c o n s t s t d : : m o v e i t e r a t o r<

I t e r a t o r L >&)
o p e r a t o r ==(c o n s t m o v e i t e r a t o r< I t e r a t o r >& x ,
ˆ ˜ ˜ ˜ ˜ ˜ ˜ ˜

/ u s r / i n c l u d e / c + + / 7 . 3 . 1 / b i t s / s t l i t e r a t o r . h : 1 1 2 4 : 5 : n o t e : t e m p l a t e a rgument d e d u c t i o n /
s u b s t i t u t i o n f a i l e d :

In f i l e i n c l u d e d from / u s r / i n c l u d e / c + + / 7 . 3 . 1 / b i t s / s t l a l g o b a s e . h : 7 1 : 0 ,
from / u s r / i n c l u d e / c + + / 7 . 3 . 1 / v e c t o r : 6 0 ,
from e xp lod . cpp : 1 :

/ u s r / i n c l u d e / c + + / 7 . 3 . 1 / b i t s / p r e d e f i n e d o p s . h : 2 4 1 : 1 7 : n o t e : ’ s t d : : v e c t o r<i n t >’ i s n o t d e r i v e d
from ’ c o n s t s t d : : m o v e i t e r a t o r< I t e r a t o r L >’

{ r e t u r n * i t == M value ; }
˜ ˜ ˜ ˜ ˜ ˜ ˆ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜

In f i l e i n c l u d e d from / u s r / i n c l u d e / c + + / 7 . 3 . 1 / b i t s / s t l a l g o b a s e . h : 6 7 : 0 ,
from / u s r / i n c l u d e / c + + / 7 . 3 . 1 / v e c t o r : 6 0 ,
from e xp lod . cpp : 1 :

/ u s r / i n c l u d e / c + + / 7 . 3 . 1 / b i t s / s t l i t e r a t o r . h : 1 1 1 8 : 5 : n o t e : c a n d i d a t e : t e m p l a t e<c l a s s I t e r a t o r L ,
c l a s s I t e r a t o r R > boo l s t d : : o p e r a t o r ==(c o n s t s t d : : m o v e i t e r a t o r< I t e r a t o r L >&, c o n s t s t d : :
m o v e i t e r a t o r< I t e r a t o r R >&)

o p e r a t o r ==(c o n s t m o v e i t e r a t o r< I t e r a t o r L >& x ,
ˆ ˜ ˜ ˜ ˜ ˜ ˜ ˜

/ u s r / i n c l u d e / c + + / 7 . 3 . 1 / b i t s / s t l i t e r a t o r . h : 1 1 1 8 : 5 : n o t e : t e m p l a t e a rgument d e d u c t i o n /
s u b s t i t u t i o n f a i l e d :

In f i l e i n c l u d e d from / u s r / i n c l u d e / c + + / 7 . 3 . 1 / b i t s / s t l a l g o b a s e . h : 7 1 : 0 ,
from / u s r / i n c l u d e / c + + / 7 . 3 . 1 / v e c t o r : 6 0 ,
from e xp lod . cpp : 1 :

/ u s r / i n c l u d e / c + + / 7 . 3 . 1 / b i t s / p r e d e f i n e d o p s . h : 2 4 1 : 1 7 : n o t e : ’ s t d : : v e c t o r<i n t >’ i s n o t d e r i v e d
from ’ c o n s t s t d : : m o v e i t e r a t o r< I t e r a t o r L >’

{ r e t u r n * i t == M value ; }
˜ ˜ ˜ ˜ ˜ ˜ ˆ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜

In f i l e i n c l u d e d from / u s r / i n c l u d e / c + + / 7 . 3 . 1 / b i t s / s t l a l g o b a s e . h : 6 7 : 0 ,
from / u s r / i n c l u d e / c + + / 7 . 3 . 1 / v e c t o r : 6 0 ,
from e xp lod . cpp : 1 :

/ u s r / i n c l u d e / c + + / 7 . 3 . 1 / b i t s / s t l i t e r a t o r . h : 3 3 7 : 5 : n o t e : c a n d i d a t e : t e m p l a t e<c l a s s I t e r a t o r L ,
c l a s s I t e r a t o r R > boo l s t d : : o p e r a t o r ==(c o n s t s t d : : r e v e r s e i t e r a t o r < I t e r a t o r >&, c o n s t s t d : :
r e v e r s e i t e r a t o r < I t e r a t o r R >&)
o p e r a t o r ==(c o n s t r e v e r s e i t e r a t o r < I t e r a t o r L >& x ,
ˆ ˜ ˜ ˜ ˜ ˜ ˜ ˜

/ u s r / i n c l u d e / c + + / 7 . 3 . 1 / b i t s / s t l i t e r a t o r . h : 3 3 7 : 5 : n o t e : t e m p l a t e a rgument d e d u c t i o n /
s u b s t i t u t i o n f a i l e d :

In f i l e i n c l u d e d from / u s r / i n c l u d e / c + + / 7 . 3 . 1 / b i t s / s t l a l g o b a s e . h : 7 1 : 0 ,
from / u s r / i n c l u d e / c + + / 7 . 3 . 1 / v e c t o r : 6 0 ,
from e xp lod . cpp : 1 :

/ u s r / i n c l u d e / c + + / 7 . 3 . 1 / b i t s / p r e d e f i n e d o p s . h : 2 4 1 : 1 7 : n o t e : ’ s t d : : v e c t o r<i n t >’ i s n o t d e r i v e d
from ’ c o n s t s t d : : r e v e r s e i t e r a t o r < I t e r a t o r >’

{ r e t u r n * i t == M value ; }
˜ ˜ ˜ ˜ ˜ ˜ ˆ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜

In f i l e i n c l u d e d from / u s r / i n c l u d e / c + + / 7 . 3 . 1 / b i t s / s t l a l g o b a s e . h : 6 7 : 0 ,
from / u s r / i n c l u d e / c + + / 7 . 3 . 1 / v e c t o r : 6 0 ,
from e xp lod . cpp : 1 :

/ u s r / i n c l u d e / c + + / 7 . 3 . 1 / b i t s / s t l i t e r a t o r . h : 2 9 9 : 5 : n o t e : c a n d i d a t e : t e m p l a t e<c l a s s I t e r a t o r >
boo l s t d : : o p e r a t o r ==(c o n s t s t d : : r e v e r s e i t e r a t o r < I t e r a t o r >&, c o n s t s t d : : r e v e r s e i t e r a t o r <

I t e r a t o r >&)
o p e r a t o r ==(c o n s t r e v e r s e i t e r a t o r < I t e r a t o r >& x ,
ˆ ˜ ˜ ˜ ˜ ˜ ˜ ˜

/ u s r / i n c l u d e / c + + / 7 . 3 . 1 / b i t s / s t l i t e r a t o r . h : 2 9 9 : 5 : n o t e : t e m p l a t e a rgument d e d u c t i o n /
s u b s t i t u t i o n f a i l e d :

In f i l e i n c l u d e d from / u s r / i n c l u d e / c + + / 7 . 3 . 1 / b i t s / s t l a l g o b a s e . h : 7 1 : 0 ,
from / u s r / i n c l u d e / c + + / 7 . 3 . 1 / v e c t o r : 6 0 ,
from e xp lod . cpp : 1 :

/ u s r / i n c l u d e / c + + / 7 . 3 . 1 / b i t s / p r e d e f i n e d o p s . h : 2 4 1 : 1 7 : n o t e : ’ s t d : : v e c t o r<i n t >’ i s n o t d e r i v e d
from ’ c o n s t s t d : : r e v e r s e i t e r a t o r < I t e r a t o r >’

{ r e t u r n * i t == M value ; }
˜ ˜ ˜ ˜ ˜ ˜ ˆ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜

In f i l e i n c l u d e d from / u s r / i n c l u d e / c + + / 7 . 3 . 1 / b i t s / s t l a l g o b a s e . h : 6 4 : 0 ,
from / u s r / i n c l u d e / c + + / 7 . 3 . 1 / v e c t o r : 6 0 ,
from e xp lod . cpp : 1 :

/ u s r / i n c l u d e / c + + / 7 . 3 . 1 / b i t s / s t l p a i r . h : 4 4 3 : 5 : n o t e : c a n d i d a t e : t e m p l a t e<c l a s s T1 , c l a s s T2>
c o n s t e x p r boo l s t d : : o p e r a t o r ==(c o n s t s t d : : p a i r< T1 , T2>&, c o n s t s t d : : p a i r< T1 , T2>&)

o p e r a t o r ==(c o n s t p a i r< T1 , T2>& x , c o n s t p a i r< T1 , T2>& y)
ˆ ˜ ˜ ˜ ˜ ˜ ˜ ˜

/ u s r / i n c l u d e / c + + / 7 . 3 . 1 / b i t s / s t l p a i r . h : 4 4 3 : 5 : n o t e : t e m p l a t e a rgument d e d u c t i o n / s u b s t i t u t i o n
f a i l e d :

In f i l e i n c l u d e d from / u s r / i n c l u d e / c + + / 7 . 3 . 1 / b i t s / s t l a l g o b a s e . h : 7 1 : 0 ,
from / u s r / i n c l u d e / c + + / 7 . 3 . 1 / v e c t o r : 6 0 ,
from e xp lod . cpp : 1 :

/ u s r / i n c l u d e / c + + / 7 . 3 . 1 / b i t s / p r e d e f i n e d o p s . h : 2 4 1 : 1 7 : n o t e : ’ s t d : : v e c t o r<i n t >’ i s n o t d e r i v e d
from ’ c o n s t s t d : : p a i r< T1 , T2>’

{ r e t u r n * i t == M value ; }
˜ ˜ ˜ ˜ ˜ ˜ ˆ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜

8

CONFIDENTIAL COMMITTEE MATERIALS

SIGBOVIK 2019 Paper Review

Paper 1: Monetization of Development Tools
for Fun and Profit

ReviewIt Free
Rating: [Wait remaining: 2h35m; Reveal Now: 25R$]
Confidence: [Upgrade Your Review Experience With Confidence Levels: 75R$]

This paper has been reviewed using ReviewIt Free, a service of ReviewIt enterprises. ReviewIt Free provides the

same great review feedback to authors as ReviewIt Enterprise, ReviewIt Premium, ReviewIt Pro, ReviewIt Gold, and

ReviewIt Solid Gold with a few limitations:

• first, all reviews begin with this block of text and a short but mandatory advertisement;

• second, authors that wish to immediately view a numerical summary score of their review can do so for a small

micro-payment – the score will otherwise be revealed several hours after the review release, but before the

committee needs it to make accept/reject decisions;

• third, the reviewer confidence rating is also available for a larger micropayment.

These limitations ensure that ReviewIt enterprises can continue to provide great reviews to all our customers. We have

carefully considered all of our micropayments and decided that any diffuse negative influence they may have on the

progress of science is certainly more than made up for by the concentrated positive influence they have on the balance

in our wallets.

Ad-Blocker Detected! No review text displayed. Please disable your

ad-blocker so that we can force you to watch a five minute edutisement

from PraegerU; monthly subscribers don’t need to watch these advertise-

ments.

Hey authors, not happy with your review results? Upgrade your reviewing experience with these extra features:

• Proper grammar, spelling, and complete sentences. [100R$]

• No statements of opinion couched as fact. [200R$]

• Sensible feedback that considers that paper authors are people, too, and are generally making a good-faith effort

to move science forward. [currently unavailable]

• Specific, constructive feedback. [10000R$]

• Re-roll the review hoping for better drops. [submit the paper next year]

9

10

Let’s get this party started!

3 Elo World: A framework for benchmarking weak chess engines

Dr. Tom Murphy VII Ph.D.

Keywords: pawn, horse, bishop, castle, queen, king

4 A formal treatment of k/n power-hours

Christian Clausen

Keywords: power hour, 2 girls 1 cup, formalized drinking game

5 Eventually consistent partying

Veit Heller

Keywords: party system design, buzz factor, SIGBOVIK

11

Elo World, a framework for

benchmarking weak chess

engines

DR. TOM MURPHY VII PH.D.

CCS Concepts: • Evaluation methodologies → Tour-

naments; • Chess → Being bad at it;

Additional Key Words and Phrases: pawn, horse, bishop,

castle, queen, king

ACH Reference Format:

Dr. Tom Murphy VII Ph.D.. 2019. Elo World, a framework

for benchmarking weak chess engines. 1, 1 (March 2019),

13 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION

Fiddly bits aside, it is a solved problem to maintain

a numeric skill rating of players for some game (for

example chess, but also sports, e-sports, probably

also z-sports if that’s a thing). Though it has some

competition (suggesting the need for a meta-rating

system to compare them), the Elo Rating System [2]

is a simple and e�ective way to do it. This paper is

concerned with Elo in chess, its original purpose.

The gist of this system is to track a single score

for each player. The scores are de�ned such that the

expected outcomes of games can be computed from

the scores (for example, a player with a rating of

2400 should win 9/10 of her games against a player

Copyright © 2019 the Regents of theWikiplia Foundation. Appears

in SIGBOVIK 19119 with the title in�ation of the Association

for Computational Heresy; IEEEEEE! press, Verlag-Verlag volume

no. 0x40-2A. 1600 rating points.

Author’s address: Dr. Tom Murphy VII Ph.D., tom7@tom7.org.

2019. Manuscript submitted to ACH

with a rating of 2000). If the true outcome (of e.g. a

tournament) doesn’t match the expected outcome,

then both player’s scores are adjusted towards values

that would have produced the expected result. Over

time, scores thus become a more accurate re�ection

of players’ skill, while also allowing for players to

change skill level. This system is carefully described

elsewhere, so we can just leave it at that.

The players need not be human, and in fact this can

facilitate running many games and thereby getting

arbitrarily accurate ratings.

The problem this paper addresses is that basically

all chess tournaments (whether with humans or com-

puters or both) are between players who know how

to play chess, are interested in winning their games,

and have some reasonable level of skill. This makes

it hard to give a rating to weak players: They just

lose every single game and so tend towards a rating

of −∞.1 Even if other comparatively weak players

existed to participate in the tournament and occasion-

ally lose to the player under study, it may still be dif-

�cult to understand how this cohort performs in any

absolute sense. (In contrast we have “the highest ever

human rating was 2882,” and “there are 5,323 play-

ers with ratings in 2200–2299” and “Players whose

ratings drop below 1000 are listed on the next list as

’delisted’.” [1]) It may also be the case that all weak

players always lose to all strong players, making it un-

clear just howwide the performance gap between the

two sets is. The goal of this paper is to expand the dy-

namic range of chess ratings to span all the way from

extremely weak players to extremely strong ones,

while providing canonical reference points along the

way.

1Some organizations don’t even let ratings fall beneath a certain

level, for example, the lowest possible USCF rating is 100.

https://sf.net/p/tom7misc/svn/HEAD/tree/trunk/chess

3

12

https://sf.net/p/tom7misc/svn/HEAD/tree/trunk/chess

2 ELO WORLD

Elo World is a tournament with dozens of computer

players. The computer players include some tradi-

tional chess engines, but also many algorithms cho-

sen for their simplicity, as well as some designed to

be competitively bad.

The fun part is the various algorithms, so let’s get

into that. First, some ground rules and guidelines:

• No resigning (forfeiting) or claiming a draw.

The player will only be asked to make a move

when there exists one, and it must choose a

move in �nite time. (In practice, most of the

players are extremely fast, with the slowest

ones using about one second of CPU time per

move.)

• The player can retain state for the game, and ex-

ecutes moves sequentially (for either the white

or black pieces), but cannot have state mean-

ingfully span games. For example, it is not per-

mitted to do man-in-the-middle attacks [4] or

learn opponent’s moves from previous rounds,

or to get better at chess. Themajority of players

are actually completely stateless, just a func-

tion of type position→ move.

• The player should try to “behave the same”

when playing with the white or black pieces.

Of course this can’t be literally true, and in

fact some algorithms can’t be symmetric, so

it’s, like, a suggestion.

• Avoid game-tree search. Minimax, alpha–beta,

etc. are the correct way to play chess program-

matically. They are well-studied (i.e., boring)

and e�ective, and so not well suited to our prob-

lem. A less obvious issue is that they are end-

lessly parameterizable, for example the search

The player is deterministic

Traditional approach to chess (e.g. engine)

Vegetarian or vegetarian option available

A canonical algorithm!

Stateful (not including pseudorandom pool)

Asymmetric

Fig. 1. Key

ply; this leaves us with a million things to �d-

dle with. In any case, several traditional chess

engines are included for comparison.

2.1 Simple players

random_move. We must begin with the most canoni-

cal of all strategies: Choosing a legal move uniformly

at random. This is a lovely choice for Elo World,

for several reasons: It is simple to describe. It is

clearly canonical, in that anyone undertaking a sim-

ilar project would come up with the same thing. It

is capable of producing any sequence of moves, and

thus completely spans the gamut from the worst pos-

sible player to the best. If we run the tournament

long enough, it will eventually at least draw games

even against a hypothetical perfect opponent, a sort

of Boltzmann Brilliancy. Note that this strategy actu-

ally does keep state (the pseudorandom pool), despite

the admonition above. We can see this as not really

state but a simulation of an external source of “true”

randomness. Most other players fall back on making

random moves to break ties or when their primary

strategy does not apply.

same_color. When playing as white, put pieces

on white squares. Vice versa for black. This is ac-

complished by counting the number of white pieces

on white squares after each possible move, and then

playing one of the moves that maximizes this num-

ber. Ties are broken randomly. Like many algorithms

https://sf.net/p/tom7misc/svn/HEAD/tree/trunk/chess

13

https://sf.net/p/tom7misc/svn/HEAD/tree/trunk/chess

described this way, it tends to reach a plateau where

the metric cannot be increased in a single move, and

then plays randomly along this local maximum (Fig-

ure 2). This particular strategy moves one knight at

most once (because they always change color when

moving) unless forced; on the other hand both bish-

ops can be safely moved anywhere when the metric

is maxed out.

8 0m0s0Z0l
7 ZQZ0s0ap
6 0o0o0o0m
5 o0oPo0o0
4 PZPjRZ0Z
3 ZPZPZPZN
2 0Z0Z0ZBO
1 ZNZRZ0ZK

a b c d e f g h

Fig. 2. same_color (playing as white) checkmates

same_color (playing as black) onmove 73. Note that since

white opened with Nh3, the h2 pawn is stuck on a black

square. Moving the knight out of the way would require

that move to be forced.

opposite_color. Same idea, opposite parity.

pacifist. Avoid moves that mate the opponent,

and failing that, avoid moves that check, and failing

that, avoid moves that capture pieces, and failing

that, capture lower value pieces. Break ties randomly.

This is one of the worst strategies, drawing against

players that are not ambitious about normal chess

pursuits, and easily losing to simple strategies. On

the other hand, it does rarely get forced into mating

its opponent by aggressive but weak players.

first_move. Make the lexicographically �rst legal

move. The moves are ordered as ïsrc_row, src_col,

dst_row, dst_col, promote_toð for white (rank 1

is row 0) and the rows are reversed for black to make

the strategy symmetric. Tends to produce draws (by

repetition), because knights and rooks can oftenmove

back and forth on the �rst few �les.

alphabetical. Make the alphabetically �rst move,

using standard PGN short notation (e.g. “a3” < “O-O”

< “Qxg7”). White and black both try to move towards

A1.

huddle. As white, make moves that minimize the

total distance between white pieces and the white

king. Distance is the Chebyshev distance, which is

the number of moves a king takes to move between

squares. This forms a defensive wall around the king

(Figure 3).

swarm. Like huddle, but instead move pieces such

that they are close to opponent’s king. This is es-

sentially an all-out attack with no planning, and

manages to be one of the better-performing “simple”

strategies. From the bloodbaths it creates, it even

manages a few victories against strong opponents

(Figure 4).

generous. Move so as to maximize the number of

opponent moves that capture our pieces, weighting

by the value of the o�ered piece (p = 1, B = N = 3,

R = 5, Q = 9). A piece that can be catpured multiple

ways is counted multiple times.

no_i_insist. Like generous, but be overwhelm-

ingly polite by trying to force the opponent to accept

the gift of material. There are three tiers: Avoid at

https://sf.net/p/tom7misc/svn/HEAD/tree/trunk/chess

14

https://sf.net/p/tom7misc/svn/HEAD/tree/trunk/chess

8 0ZrZ0Z0s
7 Z0Z0ZnZ0
6 0o0Z0ZpZ
5 mPZ0Z0Zp
4 0Opj0Z0O
3 Z0MPSNO0
2 0aROPO0Z
1 Z0AQJBZ0

a b c d e f g h

Fig. 3. huddle (white) checkmates pacifist on move 158

with substantial help. Note that white’s distal pawns have

advanced; these are actually the same distance from the

King as they would be in their home row, since the distance

metric includes diagonal moves.

all costs mating the opponent (and moreso check-

mating). Stalemate is polite, but it is more canonical

for two polite players to form a draw by repetition,

from continually o�ering up material to one another

and declining it. Next, avoid situations where the op-

ponent can refuse our gift; among these, prefer the

move where the opponent must capture the highest

value piece. Finally, prefer moves where the expected

value of the o�ered material (i.e. against random

play) is highest. (This means that if there are three

moves, and one captures a rook but the others cap-

ture nothing, the value is 5/3.) This strategy almost

never wins, but is not among the worst players, since

it often forces a draw by exchanging all its pieces.

reverse_starting. This player thinks that the

board is upside-down, and as white, tries to put its

pieces where black pieces start. Since here we have

a speci�c con�guration in mind, we can produce a

8 rmblka0s
7 opZpopZp
6 0Z0Z0Z0o
5 ZBo0Z0Z0
4 0Z0OnO0Z
3 Z0Z0Z0Z0
2 POPZ0ZPO
1 SNZQJ0MR

a b c d e f g h

Fig. 4. swarm (white) vs. stockfish1m_r4096 with black

to move a�er 1. d4 Nf6 2. Bh6 gxh6 3. f4 c5 4. e4 Nxe4

5. Bb5. Black blunders 5. . . f6??, which must have been a

random move as swarm immediately wins with 6. Qh5++.

distance metric by computing the total distance from

each piece to its desired destination. Each piece uses

a di�erent distance metric; Chebyshev distance for

the King, Manhattan distance for the Rook, and a

pretty weird function for the Knight [3]. Trying to

move the pieces into the reversed starting position

often causes some con�ict since the black pieces are

already there, but can also end peacefully (Figure 5).

cccp. Prioritize moves that Checkmate, Check, Cap-

ture or Push, in that order. Pushmeans tomove pieces

as deep as possible into enemy territory (without any

regard for their safety). Ties are broken deterministi-

cally by the source/destination squares, so this one

is technically asymmetric. За здоровье!

suicide_king. Take a random move that mini-

mizes the distance between the two kings. Putting

https://sf.net/p/tom7misc/svn/HEAD/tree/trunk/chess

15

https://sf.net/p/tom7misc/svn/HEAD/tree/trunk/chess

8 0MBZKZ0S
7 Z0Z0Z0Z0
6 0Z0Z0Z0Z
5 Z0Z0Z0Z0
4 0Z0Z0Z0Z
3 Z0Z0Z0Z0
2 0Z0Z0ZpZ
1 snaqjbm0

a b c d e f g h

Fig. 5. reverse_starting draws against itself by repeti-

tion, both players having happily moved their surviving

pieces into the correct spots.

one’s king out in the open is very unprincipled (Fig-

ure 6), but it does produce enough pressure to win

against unambitious opponents.

sym_mirror_y. As white, try to maximize symme-

try when �ipping vertically. Zero penalty for oppos-

ing e.g. ak with a K, but a small penalty when the

pieces are not the same type, and a larger penalty

when they are not opposite colors. The starting posi-

tion is already symmetric this way, so this usually has

the e�ect of copying the opponent’s moves when pos-

sible. As “copy your opponent’s moves” is a common

(but underspeci�ed) strategy discovered by many

children, this player is close to being canonical. How-

ever, it admits a bit too much arbitrary choice in the

penalties assigned.

sym_mirror_x. As sym_mirror_y, but maximize

symmetry when �ipping horizontally. This does not

make much chess sense, but can produce aesthetic

arrangements.

8 rZbl0ans
7 opopZpZp
6 0ZPL0Z0Z
5 Z0Z0Z0Z0
4 0ZkZ0Z0Z
3 Z0Z0Z0Z0
2 POPZPOPO
1 SNZ0JBMR

a b c d e f g h

Fig. 6. suicide_king (black) dramatically failing against

cccp’s slightly more principled play, a�er 1. d4 g5 2. Bxg5

Nc6 3. Bxe7 Kxe7 4. d5 Kd6 5. dxc6+ Kc5 6. Qd6+ Kc4.White

delivers a discovered mate with 7. e4++.

sym_180. As sym_mirror_y, but maximize symme-

try under 180° rotation of the board (Figure 7). An

emergent priority is to “castle” with the king and

queen to “�x” them.

min_oppt_moves. Take a move that minimizes the

number of resulting legal moves for the opponent,

breaking ties randomly. This is a beautifully simple

approach that generalizes many chess principles: Oc-

cupying space reduces the destination squares avail-

able to the opponent; capturing their pieces reduces

the number of their pieces that they can move; pin-

ning pieces or checking the king further reduces the

legal moves; and mating the opponent is the best

possible move.2 Among the players in the paper, this

one is Pareto e�cient in terms of its simplicity and

e�ectiveness.

2However note that it does not distinguish checkmate and stale-

mate, despite these having very di�erent results.

https://sf.net/p/tom7misc/svn/HEAD/tree/trunk/chess

16

https://sf.net/p/tom7misc/svn/HEAD/tree/trunk/chess

8 0ZbjrZ0Z
7 Z0Z0Z0Z0
6 nZrZpopo
5 ZPopL0ZP
4 NZ0APOPZ
3 ZPOPZRZN
2 0Z0Z0Z0Z
1 Z0ZRJBZ0

a b c d e f g h

Fig. 7. sym_180 (white) vs. pacifist a�er 66 moves. Note

that the position is not quite rotationally symmetric, but

is close given the material.

equalizer. Prefer to move a piece that has been

moved the fewest times, and then prefer moving

to a square that has been visited the fewest times.

Castling counts as moving both the king and rook,

and visiting both destination squares. This is the

�rst strategy described that keeps meaningful state.

2.2 Fate-based players

If we keep state, then we can track the location of

each piece as it moves around the board (allowing

us to distinguish the two rooks, or follow a pawn

as it promotes). We can then use statistics on the

average fates of each piece over hundreds of millions

of games to guide the moves. These statistics give

us, for each piece (e.g. the c2 pawn) and square, how

likely it is to end the game on that square, and how

likely it is to be alive or dead there when the game

ends [5].

safe. This strategy moves pieces towards squares

where they are likely to end the game alive. For this

strategy and several others, simply moving to maxi-

mize this score (e.g. its sum or product over all pieces)

is very boring, since the score is almost always max-

imized in the starting position. So this strategy ac-

tually makes each move randomly, weighted by the

total score of the resulting positions. The scores are

normalized (with the lowest-scoring move receiving

weight 0.0 and the highest 1.0) and then sampled ac-

cording to these weights. Without normalization, the

play is almost identical to uniformly random, since

the weights of the resulting positions tend to be very

similar (dominated by the many pieces that don’t

move). But it’s pretty arbitrary.

popular. Like safe, but the score for a piece/square

pair is the probability that the piece ends on that

square, whether it lives or dies. This player likes to

follow the crowd!

dangerous. The dual of safe; the score is the prob-

ability that the piece dies on that square. Note that

a king is said to die if it is checkmated or his side

resigns. This player likes to live life on the edge!

rare. The dual of dangerous; the score is one mi-

nus the probability of ending the game on that square.

This player has a thirst for adventure!

survivalist. Like the above, but the score is the

ratio of the survival and death probabilities on the

square. In the data set, every piece ends alive or dead

in every square (except for the bishops, which can

only legally occupy squares of their color) at least

1000 times, so each ratio is de�ned. Here, the sums

of ratios have plenty of variability, and the highest

ratios are not so often on the starting squares. So

with this strategy, we simply do a weighted sample

https://sf.net/p/tom7misc/svn/HEAD/tree/trunk/chess

17

https://sf.net/p/tom7misc/svn/HEAD/tree/trunk/chess

from the moves according to their (non-normalized)

scores.

fatalist. The dual of survivalist; the score is

the ratio of the death and survival probability on the

square. This player knows that even if you win, you

just have to keep playing over and over again, so you

might as well get it over with!

2.3 Engine-based players

Of course, people have been making more serious

attempts at automating chess since before computers,

and there are thousands of chess engines out there.

We include a few in here to represent the high end

of skill, and to make sure that weaker players are

evaluated somewhat in terms of their ability to play

chess proper, not just beat other weak players.

stockfish0. Stock�sh [6] is probably the strongest

open-source chess engine (or even publicly available

engine); at full strength its play is estimated to be

around 3500 Elo on the FIDE scale. Aside from being

quite machine-dependent (it can search more moves

in a given amount of timewhen it has a fast CPUwith

many cores), there are many options to �ddle with.

Stock�sh can use both opening books and endgame

tables; neither is used here. It also has a “di�culty”

setting, which is set here to 0. Stock�sh is run in a

separate process, and the board is reset before each

move, but I am not extremely hygienic about �ush-

ing e.g. internal hash tables between moves. One

consequence of this attempt at statelessness is that

Stock�sh sometimes walks into a draw by repetition

in positions where it would be able to win, because

it doesn’t know that it is repeating positions.

stockfish5. Stock�sh as above, but at di�culty 5.

stockfish10. Same, at di�culty 10.

stockfish15. Same, at di�culty 15.

stockfish20. And di�culty 20, themaximum. Even

at this di�culty, Stock�sh produces moves basically

instantaneously.

stockfish1m. As expected, the engine’s perfor-

mance increases steadily as the di�culty setting in-

creases (without apparently a�ecting the time to

make moves). I don’t knowwhat it’s doing with these

settings. The true way to unleash chess engines is to

give them a lot of CPU and memory to search. Since

the tournament is run simultaneously across about

60 threads3 using dozens of gigabytes of memory, and

sometimes I would play Hollow Knight (aka N) while

it ran, I wanted to avoid having the chess skill be

dependent on the scheduling environment. So here,

Stock�sh is given a “node” budget of 1 million, hence

1m. It takes about one second per move when run-

ning alone, and is easily the strongest player (type)

evaluated.

worstfish. On the other hand, a strong chess en-

gine can also be used to play badly. When playing

as white, for each legal move, I ask Stock�sh (con-

�gured as stockfish0) to evaluate the resulting po-

sition from black’s perspective.4 I then choose the

move that produces the best position for black. This

is easily the worst player evaluated, but it is not hard

to imagine ways it could be worse. Indeed, a common

twist on chess is to play for a loss, called Antichess

or Losing Chess [9]. Recently it was even proved that

white can always win (i.e. lose) [8] in this variant!

However, the variant requires that you capture a

3 The computer is the completely egregious AMD 2990WX

“Threadripper 2,” which has 32 cores (for 64 hardware threads) and

250 Watts of power dissipation at load. The torture of this CPU

was part of the impetus for the paper.
4By asking it to make a move, which also returns the evaluation

of its move. The UCI protocol does not seem to o�er a way to

evaluate a position directly.

https://sf.net/p/tom7misc/svn/HEAD/tree/trunk/chess

18

https://sf.net/p/tom7misc/svn/HEAD/tree/trunk/chess

8 rZbJ0a0Z
7 ZpZpm0Z0
6 pZ0j0Z0M
5 Zno0oQZ0
4 0ZPZ0O0O
3 M0ZPZ0Z0
2 RZ0Z0ZBZ
1 Z0Z0A0ZR

a b c d e f g h

Fig. 8. suicide_king (white) to move against worstfish

a�er 36 moves. Since the kings are already at their

minimum distance, white will make a move at ran-

dom. 37. Qxe5++ wins for white immediately, but

suicide_king plays 37. Qxd7??. The only legal move is

37. . .Bxd7++, so worstfish must play it, and thus wins

one of its only victories.

piece if you are able to, so strategies and engines that

support this variant cannot be directly applied. We

could use stronger settings of Stock�sh, but since

it already invokes Stock�sh for each legal move, it

is also one of the slowest players. Like Stock�sh, it

occasionally blunders an otherwise losing position

into a draw by repetition. But most importantly, its

search strategy when evaluating positions is not ap-

plying the correct logic (³–´ pruning); it assumes

that its opponent will choose strong moves, and that

it will itself play strong moves in future plies. As a

result, it sometimes allows the opponent to create a

situation where worstfish is forced to checkmate

its opponent (Figure 8).

topple10k. Topple [7] is another strong open source

engine, provided to keep Stock�sh on its toes. Here,

its node budget is 10,000.

topple1m. Topple with a node budget of 1 million,

which like stockfish1m takes about one second per

move. Stock�sh almost always wins, though it is not

clear whether the budgets are actually comparable.

chessmaster.nes_lv1. This is Chessmaster for the

Nintendo Entertainment System, published in AD

1989. Moves are extracted from the game via emula-

tion. This proved to be somewhat delicate, because

the in-memory representation of the board is not

that simple (it appears to be represented in two par-

allel arrays, perhaps using the “0x88 method”) and

the game understandably goes wild if you mess it

up. To play a move, I restore a saved machine state

in the “board editor” mode, and then modify mem-

ory to contain the desired board. I then emulate but-

ton presses to operate the game menu and return

to “playing” mode. Chessmaster repairs its internal

data structures from this board, and makes a move.

During this time I mash controller buttons to skip

its dramatic tunes and modal messages like CHECK.

Once some memory locations reach certain values,

the move has been played; I can di� the before and

after boards to uniquely determine the move. Since

this approach uses emulation, it would normally be

completely deterministic, but I deliberately stall for

a random number of frames so that it can advance

its internal pseudorandom state. A nice thing about

this engine is that it is an earnest attempt at writ-

ing a good engine, but limited to the techniques of

the 1980s, and running on hardware that was under-

powered even for its day. It �nishes well behind the

https://sf.net/p/tom7misc/svn/HEAD/tree/trunk/chess

19

https://sf.net/p/tom7misc/svn/HEAD/tree/trunk/chess

modern engines, but ahead of all the non-traditional

strategies.

chessmaster.nes_lv2. As above, but increasing

the “Level Of Play” to “Newcomer 2.” Chessmaster

has stronger levels still, but in these modes it will

think for several NES minutes, which takes multiple

seconds to emulate—too slow for our purposes. Still

much weaker than modern engines (Figure 9).

Fig. 9. stockfish1m (2019; running on amodernmachine)

beats chessmaster.nes_lv2 (1989; running on an emu-

lated NES) thousands of times without a loss or draw.

2.4 Blind players

blind_yolo. This player is only allowed to see the

64-bit mask of where pieces are placed on the board,

but not their colors or types. It is described in Color-

and Piece-blind Chess [4].

blind_kings. As blind_yolo, but forcing the pre-

diction to produce exactly one king for each side,

which improves its accuracy a little.

blind_spycheck. As blind_kings, but perform-

ing a “spy check” before each move. Here, the player

tries capturing each piece of a given (predicted) color

with other pieces of that same (predicted) color. If

such a move is legal, then one of the two pieces was

mispredicted, so we prefer the capture over sending

an incorrect position to the engine.

Each of these uses a neural network to predict the

con�guration of the board, and then the equivalent

of stockfish1m to make a move for that predicted

board. (If that move is illegal because the board was

mispredicted, then it plays a random legal move.)

These players can therefore be seen as handicaps on

stockfish1m.

2.5 Interpolation methods

Even at its weakest setting, stockfish0 crushes all

of the nontraditional strategies. This is not surprising,

but it creates a problem for quantifying their di�er-

ence in skill (do theywin one in amillion games? One

in 10100?). Having intermediate players allows some

Elo points to �ow between the two tiers transitively.

One nice way to construct intermediate players is by

interpolation. We can interpolate between any two

players,5 but it is most natural to interpolate with

the most canonical player, random_move.

stockfish1m_rnnn. There are 15 players in this

group, each characterized by a number nnn. Before

each move, we generate a random 16-bit number; if

the number is less than nnn then we play a random

move and otherwise, a move as stockfish1m. The

values of nnn are chosen so that we mix a power-of-

two fraction of noise: stockfish1m_r32768 blends

half random with half strong moves, but we also

have 1/4 random, 1/8 random, 1/16, 1/32, . . . , 1/1024.

These give us a nice smooth gradation at high levels

of play (Figure 11). At the extremes, many games

5 Even if they are stateful! The interface separates “please give me

a move for the current state” and “the following move was played;

please update your state,” allowing them to disagree. So we can

just keep two independent states for the two players.

https://sf.net/p/tom7misc/svn/HEAD/tree/trunk/chess

20

https://sf.net/p/tom7misc/svn/HEAD/tree/trunk/chess

have no random moves, and the performance is di�-

cult to distinguish from stockfish1m. Even at half

random moves, stockfish1m_r32768 consistently

beats the non-traditional players. So we also dilute

stock�sh bymixingwith amajority of randommoves:

stockfish1m_r49152 is 3/4 random, and we also

have 7/8, 15/16, 31/32, and 63/64. At this point it

becomes hard to distinguish from random_move.

Note that playing 1/64 excellent moves and the

rest randomly doesn’t do much to help one’s per-

formance. On the other hand, playing one random

move for 63/64 strong ones does create a signi�cant

handicap! Against strong opponents, it’s easy to see

how a mistake can end the game. Even against weak

ones, a blunder can be fatal (Figure 10).

8 rmblkans
7 opopo0Zp
6 BZ0Z0Z0Z
5 Z0Z0ZpoQ
4 0Z0ZPZ0Z
3 Z0Z0Z0Z0
2 POPO0OPO
1 SNA0J0MR

a b c d e f g h

Fig. 10. A demonstration of how quickly random play

can ruin a game. stockfish1m_r32768 (black; plays

half random moves and half strong moves) loses to

reverse_starting in one of the shortest possible se-

quences: 1. e4 g5 2. Ba6 f5 3. Qh5++. Both of black’s moves

are bad (so they must be random) but white’s 2. Ba6 is

a blunder as well. White is just pushing pieces as far as

possible; the mate is purely accidental.

3 RUNNING THE TOURNAMENT

Given the players, it’s a simple matter to simulate a

bunch of games. Since the tournament runs for tens

of thousands of CPU hours, there is of course some

code to allow it to checkpoint its work, to make e�-

cient use of CPU and RAM, and to provide attractive

ANSI graphics showing o� its activity—but this is

all straightforward.6 The tournament accumulates

win/loss/draw counts for each pair of players (play-

ing as both white and black), as well as example

games used to debug or create the �gures in this

paper.

After the tournament is done, or from any check-

point, I can run a separate program to produce Elo

(and other) rankings. Elo depends on the order in

which games are played, because it is designed to

take into account changes in player skill over time.

However, it is easy to just make up a random order in

which the games were played, because these players

do not change over time.

Despite its strong reputation, I found Elo to be

rather �nnicky. It is sensitive to the starting scores

for the players, and the factor k which governs how

strong of a correction to make after a game. With

players of such vastly di�erent skill, it is also very

sensitive to the order in which the games are played.7

For similar reasons, it is also very sensitive to imbal-

ance in the number of games played between a partic-

ular pair of players; if some player mostly has games

against weak players, this can arti�cially in�ate its

score.

6 The source code can be found at sourceforge.net/p/tom7misc/

svn/HEAD/tree/trunk/chess/
7For example, suppose the weak player random_move has one win

against stockfish1m. If this win happens early, when the two

players have their initial Elo scores, then it doesn’t a�ect anything.

If it happens last, when stockfish1m has thousands of Elo points

over random_move, then it produces a very strong correction.

https://sf.net/p/tom7misc/svn/HEAD/tree/trunk/chess

21

https://sf.net/p/tom7misc/svn/HEAD/tree/trunk/chess

To control for these e�ects, I compute the maxi-

mum number n for which we have n games played

between every pair of players. I then seed each player

with an initial Elo score of 1000, and sample exactly

n games to play from each cell without replacement.

This is so that we play a balanced number of games.

I also randomize the global order of all games. Then

I do this over again, with a smaller update factor k ,

for 20 passes. I don’t know whether it’s the fact that

I reduce k over time, or that I end up with e�ectively

20 times the number of games played,8 but doing this

signi�cantly reduces variance. I run the whole thing

19 times and the result is the median Elo score. I also

computed the 25th and 75th percentiles, which were

within 1–2% of the median, which is good. The Elo

scores appear in Section 4; n > 400 for this run.

Ideally, such a system would be robust against

adding new players, but this is probably not the case;

it is easy to see from the results (Figure 11) that there

are certain matchups that favor one of the players

despite its average skill. During development, I often

noticed signi�cant swings in Elo scores as players

were added, especially before there were middle-tier

players in the mix. One way to deal with this would

be to run the Elo simulations multiple times while

randomly ablating players from the tournament; we

could then at least estimate the variance in the Elo

scores under the removal of players, which is like

adding players in reverse. I did not implement such

a thing because of oppressive SIGBOVIK deadlines.

4 RESULTS

The main use of the Elo World tournament is to

benchmark some new engine or algorithm for play-

ing chess, particularly if it is not that good [4]. There

are a few ways that we can interpret the results:

The Elo score, as described.

We can �nd a comparable interpolated player.

This is like the Scoville scale for measuring how spicy

something is: Some golden-tongued blind tasters are

given the pure chili oil and asked to distinguish it

from a cup of sugar water, which they of course

can do. They then dilute the chili oil 1:1 with sugar

water, and try again. The number of dilutions before

the testers cannot reliably tell the drink from sugar

water yields the score on the Scoville scale. Here, for

example, we can say that blind_spycheck performs

between stockfish1m_r63488 and _r61440, so it

is approximately a 93.75–96.875% diluted Stock�sh.

We can compute aMarkov probability. The tour-

nament table can be easily thought of as a Markov

transition matrix. Imagine that there is a Champion

trophy, held by the player corresponding to some row.

Each cell in that row contains the probability that in a

game betweeen those two players, the trophy would

be passed to that player. We treat draws as choosing

one of the two sides by a coin �ip (or, equivalently,

splitting the trophy in half); and for the games that

the row player wins, the trophy is retained (proba-

bility mass assigned to a self-transition). It is easy to

compute this matrix from the win/loss/draw counts

in the tournament table, and it is not sensitive to

imbalance like the Elo calculation is. Presented this

way, we can compute the stationary distribution (if

it exists, which it typically will), which basically tells

8To be clear, running 20 passes means that games can be reused,

which is not ideal.

https://sf.net/p/tom7misc/svn/HEAD/tree/trunk/chess

22

https://sf.net/p/tom7misc/svn/HEAD/tree/trunk/chess

us that after an extremely large number of games,

what is the probability that a given player holds the

Champion trophy? This tends to agree with the Elo

score, but there are a few places where it does not

(e.g. same_color has a much higher p(Champion)

score than its Elo seems to warrant).

And so �nally, a table with numbers:

Player Elo p(Champion)

worstfish 188.54 0.00000071

pacifist 286.90 0.00000509

alphabetical 320.91 0.00000276

generous 342.71 0.00000306

popular 349.48 0.00000374

dangerous 349.60 0.00000291

safe 350.64 0.00000454

first_move 357.71 0.00000434

rare 361.39 0.00000323

no_i_insist 378.23 0.00000244

huddle 399.55 0.00000933

sym_180 429.94 0.00000331

same_color 430.90 0.00002590

opposite_color 432.11 0.00000293

sym_mirror_x 438.87 0.00000305

survivalist 439.03 0.00000681

random_move 439.21 0.00000462

fatalist 439.89 0.00000314

sym_mirror_y 442.50 0.00000716

reverse_starting 445.56 0.00000301

suicide_king 447.02 0.00000493

stockfish1m_r64512 462.82 0.00000297

stockfish1m_r63488 482.44 0.00000356

blind_yolo 488.97 0.00000488

. . .

. . . Player Elo p(Champion)

blind_kings 501.98 0.00000633

equalizer 504.21 0.00000653

stockfish1m_r61440 521.45 0.00001173

swarm 534.03 0.00000623

blind_spycheck 546.91 0.00002554

cccp 553.54 0.00000544

min_oppt_moves 597.04 0.00001076

stockfish1m_r57344 600.54 0.00001112

stockfish1m_r49152 752.22 0.00000737

chessmaster.nes_lv1 776.15 0.00002055

stockfish1m_r32768 976.20 0.00003025

chessmaster.nes_lv2 989.21 0.00012094

stockfish1m_r16384 1277.73 0.00012509

stockfish0 1335.69 0.00008494

stockfish5 1644.63 0.00070207

stockfish1m_r8192 1690.15 0.00152052

topple10k 1771.65 0.00179298

stockfish10 1915.23 0.00257648

stockfish15 1952.93 0.00310436

stockfish1m_r4096 2020.25 0.00886928

stockfish20 2139.47 0.00721173

topple1m 2218.71 0.01091286

stockfish1m_r2048 2261.50 0.03132272

stockfish1m_r1024 2425.72 0.06759788

stockfish1m_r512 2521.78 0.11122236

stockfish1m_r256 2581.97 0.15364889

stockfish1m_r128 2609.45 0.17861429

stockfish1m_r64 2637.78 0.20508090

stockfish1m 2644.10 0.21523142

5 CONCLUSION

Shout out to the Thursd’z Institute and anonymous

commenters on my blog for discussion of players

and suggestions. Several ideas were suggested by

multiple people, increasing my con�dence that they

are somehow canonical.

https://sf.net/p/tom7misc/svn/HEAD/tree/trunk/chess

23

https://sf.net/p/tom7misc/svn/HEAD/tree/trunk/chess

The author would also like to thank the anony-

mous referees of the Special Interest Group on Baf-

�ingly Overdone Ventures In Chess journal for their

careful reviews.

REFERENCES

[1] 2017. FIDE Handbook – B.. Permanent conditions. www.�de.

com/component/handbook?id=2.

[2] Arpad E Elo. 1978. The rating of chessplayers, past and present.

Arco Pub.

[3] Amanda M. Miller and David L. Farnsworth. 2013. Counting

the Number of Squares Reachable in k Knight’s Moves. Open

Journal of Discrete Mathematics 03, 03 (2013), 151–154. https:

//doi.org/10.4236/ojdm.2013.33027

[4] Tom Murphy, VII. 2019. Color- and piece-blind chess. In A

Record of the Proceedings of SIGBOVIK 2019. ACH.

[5] Tom Murphy, VII. 2019. Survival in chessland. In A Record of

the Proceedings of SIGBOVIK 2019. ACH.

[6] Tord Romstad, Marco Costalba, and Joona Kiiski. 2019. Stock-

�sh Chess. https://stock�shchess.org/.

[7] Vincent Tang. 2019. Topple. https://github.com/konsolas/

ToppleChess/releases/.

[8] Mark Watkins. 2017. Losing Chess: 1. e3 Wins for White.

ICGA Journal 39, 2 (2017), 123–125.

[9] Wikipedia. [n. d.]. Losing Chess. http://en.wikipedia.org/

wiki/Losing_Chess.

Fig. 11. The matrix of outcomes for all players. There is

too much data to print, so we just have a bunch of col-

ors, mostly because it looks rad. If you don’t have a color

printer or TV it will probably not look rad. Rows indicate

the player playing as white, from worst (worstfish, top)

to best (stockfish1m, bo�om). Columns for the player

with the black pieces, in the same order from le� to right.

Green indicates a cell that is predominately wins (for

white), red is losses, and blue is draws. The right and bot-

tom third of the graphic are all di�erent levels/dilutions of

strong engines (Stockfish and Topple). This creates a nice

smooth gradient where be�er engines regularly beat even

slightly weaker ones, but start to produce draws at the

highest levels. They consistently destroy weak engines; a

cell with an × indicates that it only contained wins or only

contained losses (not even draws).

At the low end, there is a large splat of matchups that

mostly produce draws against one another, but can consis-

tently beat the weakest tier. In the top-le� corner, a square

of blue draws from low-ambition play; these aggressively

bad players almost never win games, even when playing

each other.

Microtexture outside of these broad trends comes from

matchups where the player is unusually suited or weak

against that particular opponent. For example, the bright

red cell on the diagonal near the center is cccp vs. cccp;

this determinisic strategy alwasy wins in self-play as black.

https://sf.net/p/tom7misc/svn/HEAD/tree/trunk/chess

24

https://sf.net/p/tom7misc/svn/HEAD/tree/trunk/chess

A Formal Treatment of k/n Power-Hours

Christian Clausen

1 Related Work

Power Hour is the name of a drinking game in
which you take one shot of beer every minute,
and while this is fun, sometimes you may prefer
to drink slower. This requires a generalization
of the Power Hour, however sophisticated algo-
rithms for this are prone to memory leaks. This
problem is addressed in [1] with a category of
algorithms called k/n Power-Hours.

Further studies of the Power Hour were made
in [2] where the author correctly points out that
more games were possible then reported in [1].
He further studies the effects of adding multiple
players.

We present here a pictorial representations to
address further memory leaks, a generalization
over states, along with a series of lemmas that
suggest an extra possiblity not considered ear-
lier in the k/n Power-Hours. We also include an
appendix containing graphs over all the possible
fair 4 state, one person games.

2 Introduction

Let’s start with some notation. We have adapted
the notation of [1] where] means full, ∪ means
empty, and ∩ means flipped. Further we have
extended it with the symbol + to shorten: fill
and drink.

The rules of a k/n Power-Hour are as follows:

every minute you have to perform one or more
actions ending in a (possibly new) state. Due to
memory concerns the actions should be uniquely
determined based on the current state of your
glass. If you have a full glass you have to drink
it, before executing the actions. You will end up
drinking k shots in n minutes.

Now we are equipped to take a first look at
our pictorial representation of a configuration,
specifically the 2/60 as described by [1]. 1

] ∪

∩
+

Figure 1: 2/n

It reads: on] empty it and leave ∪. On ∪ fill
and drink, then leave ∩.

3 A Multitude of States

In this section we present our generalized lem-
mas, along with examples.

The first generalization we need to discuss is
the number of states, while the conventional 3
are neat we suggest a fourth ⊂ (lying), that can
be used without conflict with the others. How-

1We usually omit identity arrows, as here from ∩ to
∩, unless we only use one state.

4

25

ever we advice against using it together with ⊃,
as this will cause confusion.

Having offered an extra state we can only as-
sume other people will do so as well. Therefore
we will write k/sn for a k/n game with s states. If
nothing is indicated we assume a 3 state game.

Definition 1. a fractional game is a k/sn where

k is some fraction f(n)
d

. A pure fractional game
has s = d.

Specifically this means a game with a graph
where there is a cycle, the longest circle is d
steps, and] is in it.

Lemma 2. for a k/sn power hour game
there are s trivial fractional configurations;
n
1/n,

n
2/n, . . . ,

n
s/n.

Proof. by induction on the number of states.

With the conventional 3 states they look like
this:

]] ∪
] ∪

∩

Figure 2:
n
1/n,

n
2/n,

n
3/n

An interesting aspect is that we can add + to
any of these arrows, the effect of which is are
presented in the following lemma:

Lemma 3. for a fractional
kn
d /sn game with k ≤

d, can make it into a
(k+1)n

d /sn game.

Proof. we add 1 drink pr. d steps, in a k step
game, thus we have 1

d
n+ kn

d
= n

d
+ kn

d
= n+kn

d
=

(k+1)n
d

.

We can now make the more interesting 2n/n
and

2n
3 /n games;

]

+

] ∪

∩
+

Figure 3: 2n/n,
2n
3 /n

In fact;

Theorem 4. all possible pure fractional games
kn
d /sn can be constructed from the previous two
lemmas.

Proof. left as an exercise to the reader.

Corollary 5. all possible pure fractional games

can be written on the form
kn
s /sn, with k ≤ s+1.

4 Constant Amount Games

In this section we look at c/sn games where c is
not affected by n. Intuitively this means that we
cannot have (non-identity) cycles in the graphs.
We already saw the 2/n game. However which
games are possible? In [1] the authors claim that
a 3/60 game is impossible2, however we claim that
it is possible, and even stronger:

Lemma 6. with s states, and n ≥ s there are
s+ 1 lower constant games: 0/sn,

1/sn, . . . ,
s/sn.

Proof. by induction on the number of states.

2they were conducting relevant research while writing
it, so it is understandable.

26

Continuing with the classical examples they
are3:

∩] ∩
] ∪

∩
+

] ∪

∩

+

+

Figure 4: 0/n,
1/n,

2/n,
3/n

At this point you may think that we are done
with constant games, however as noted by ...
there is some symmetry in this game, and we
can take advantage of this here;

Lemma 7. with s states and n ≥ s there are s
upper constant games: n−s+1/sn,

n−s+2/sn, . . . ,
n/sn.

Proof. by induction on the number of states.

You may have already figured out how they
look, but here they are;

∩ ∪

]
∪]]

Figure 5: n−2/n,
n−1/n,

n/n

5 Having a Party

Definition 8. a game k/sn with k ∈ N is called
fair.

Now it is time to mix it all together:

3Notice that we end on a ∩ to indicate that it does not
need refilling.

Theorem 9 (Soundness). there is a fractional
kn−c

d /sn game if k ≤ d+1, d+|c| ≤ s, and kn−c ≥
0.

The equation may look complicated, but it is
quite logical when you look at a picture:

⊂ ∩

∪]

∩]

∪

+

Figure 6: 29/460,
59
2 /60 ∼= 31/60[2]

And finally we are ready to express the master
lemma:

Theorem 10 (Completeness). all possible frac-

tional games can be written as
kn−c

d /sn with k ≤
d+ 1, d+ c ≤ s and kn− c ≥ 0.

Which captures all the intuitions we have
built.

Now that we have that in order, should invite
some friends:

Lemma 11. if d − 1 players take turns play-
ing with the same cup, and there is a fair game
kn−c

d /sn with p | c then there is a fair
kn−c
pd /sn game.

This means that with 2 girls, 1 cup, and an
hour the possible games are:

60k
2·3/360 =

10k/360

for k ≤ 4 (due to proposition 5), giving the new
configuration 10/60. If we also have a die we could
even get: 10k−1/960 for k ≤ 4. And with 3 people
we could play 5k/460 for k ≤ 5, giving the new
(fair) games: 5/460,

25/460.

27

6 Bibliography

[1] Ben Blum, Dr. William Locas, Chris
Martens, Dr. Tom Murphy VII, Algorithms for
k/n Power-Hours, SIGBOVIK 2012

[2] Dr. Tom Murphy VII, New results in k/n
Power-Hours, SIGBOVIK 2014

A 4 State Games

A.1 Trivial Fractional Games

]] ∪
] ∪

∩
] ∪

∩ ⊂

Figure 7:
n
1/4n,

n
2/4n,

n
3/4n,

n
4/4n

A.2 Other Fractional Games

]

+

] ∪

∩
+

] ∪

∩ ⊂
+

+

Figure 8: 2n/4n,
2n
3 /4n,

3n
4 /4n

A.3 Lower Constant Games

∩] ∩
] ∪

∩
+

] ∪

∩

+

+

] ∪

∩ ⊂

+

+

+

Figure 9: 0/4n,
1/4n,

2/4n,
3/4n,

4/4n

A.4 Upper Constant Games

∩ ⊂

] ∪

∩ ∪

]
∪]]

Figure 10: n−3/n,
n−2/n,

n−1/n,
n/n

A.5 Mixed Games

⊂ ∩

∪]

Figure 11:
n−2
2 /4n

28

���������� ���������� ��������
���� ������

����� �� ����

��������
�� ����������� ������� ��� ���� �� �������� ��������
����������� �� ��� ��������� ����� �� ���������� ��
���� ������ �� ���� ��� �� ����� ���� ����� �� ��� ����
���� �� ������� ���� ������� �� ��� ���� ������ �����
����� �� ����������� ����������

�������� ����� ������ ������� ���� ������� ����
�����

� ������������
�� ��������� ����������� �������� �������� �����������
�� � ����� �� ��������� ������� ����� �� � ������ ����
�� ������� �� � ������� ����� �� ����� ���� ��������
�� ������� ��������� ������� �� �������� ����� �������
�� ����� �� ���� ����������� ����� ��� ����� �� ���
�������
�� �������� ���� ����� �� � ������� ����� ��

������������ ������������� �� ��� ��������� �� ����
���� ��������� �� ��� ���� �� ��� ������ �� ��� �������
� �������� ����� ���������� ���� ���� �������� �� ��
������ ����������� ���� ��� ���� ����������� �����
�� ����������� ���������� ����� ��������� ��� �����
�� ������� ���������� �� � ����� ������
�� ���� ������ �� �������� � ����� �������� �� ����

��� ����� �������� ����������� �� �� ������� �� ������
����

� �������������
��� �������� ���� ��� �������� ����������� �� � �����
������� �� �������� � ������ �� ����������� ����
������ �� �� ���� �� �� ������ ���������� �� ��� �� �

��������� ���������� ������ ������ ��� ��� �� � �����
�� ����������� ����� ������� ����� �� �� ��������� ��
������� � ����� �� ����� ������ ��� �� ��������� �� �
����� �� ��� ����������� �� ���� ������� ������ �� ����
����� ������� ���� ���������
�� ������������ �� ����� �� ����� ���� ������ ���

������� ��� ����� ���� ���������� �� ��� ���� �������
��� �� �������� �� ������������ �� ����� �� ������
������� ��� ��� ��������� ���� ���� �������� ��� �
������� ��� ���� ��������� ����� �� �� ����������
�� ��� ������� ������� ���� ��� �����������
�� ���� ������ �� �� ��������� �� ���� ���� ����� ��

�� �������� ���� ���� ������ �� �� ���� ����� �����
������� ����������� ��� ��� �������� �� ���� ������ ��
���� ������ ��� �������� ���� �� �� ���� ��� �� ����
���� ���� ����� ������ ���������� ������� ���������
��� ������� ��� ��� ���� ���������� ���� �� ���� ���
�� ���� ���� �������� ��� ���� ���� ��� ������� ����
������ ������� ��� ������� ��� ����� ���� � ��������
����� ����� �� ����� �� ���� �����
��� ���� ������ �� ���� ��������� ��� �� ���� ���

��� �� �������� ����� ����� ���������� ���� �� �� ��
��� ��� ������������� �������� ���������� ����� �������
���� �������������� ����� �������� ��� ������������
������������ ����� ���������� ���� ��� � ����������
����� ������ �� �������

��� ����������
�� ��� �������� �� ���������� ���� ������� ����������
�� ������ �� ������� �� �������� �� ��������� ��� ����
������� �� ���� �������� ���� �� ��� ����������

������� ��������� ������ �� ��� ��������
��������� ���������� ����� �� ������� ��

�

5

29

����������������� ������������� �� � �����
������ �� ����� ��������� �� ����� ���� ����������
���� ����� ���� ��� ������

���� ������ ������ �� ��� ����� ������ ������
���� ����� �� ����������� �� ����������� ���������
�� ��� ������ ����� ������������ ���� ������ ���� ��
�� �� ��� �������� �� ������� ���� �� ����� �� �� �
������ ������� �� �� �� ��� ��������� �� ����� ����
���� ���� ���� ������� ��� ������ �� ��� ����� �������

��� ��� ����� ��� ���� ��� ����� ����� ��
����������� ����� �� ��������������� � �����
������ ������ �� ����� ��� ������ �� ���� ��� ��
������������ �� ��� ������ �� ����� �� ����� ����
��������� ����������� ������ ��� �������� �� ���� ����
���� �� ������ �����������

����� ����� �������� ��������� ��� �����������
���� ����� �� ����������� ����� �� ������������ ��
�������� �������������� ������ �� ����� �� ����
��� � ������ �� ��������� ������ �� ������������� ���
������� ����� �� ��� ��������� ���� ���� ��������
����������� � ������ ����� �� ���� ���� ��� ������
��������� ��� ���� ���������� ���� ����� �� ���� ��
����� �� ���� ������� ������ �� ��� ����������� ���
���� �� �������� �� �� ���� �� ��� ����������

����� ���� ���������� �� ���������� �� ������� ��
�������� � ���������� ��� ���������� ����� ���������
�� ������ ��� �� ����� �� ��������� �� �����������
����� ������������ �� �� ������������ ���� �� �������
������� ��� �� ������ ���� ������ ���� �������� ����
������������ �� ������ �� ��� ������ ������

� ��������� ����������
��� ���� �� ���� ���� ��� ���������� �� �����������
��� ��� ������� �� ���� ������� � ���������� �� �����
������������ �������������

��� ����������� ��� ���� ������
�� ���� ����� ���� � ���������� ��� �� ��������� ���
���� ������ �� �� ������� ���� ����� ������ � ��������

� ����� ����� � ���� �� ������� ��� ���� ������ �� ����
����� ����������� ��� ����� ���� ������ �� ��� �����
����� �� ���� �� ���� �� ������ �� ������ ��� ��� ��
���� ������� ���� �������� ��� ���� �� ����� ���
����� ���������� �������� ��� ���� ��� ����� ���
���� ������ ������ �� �����������
���� ���������� ��� ���� ����� �������������� ��

�� ��������� �� ������ � ����� �� ����� ����������
��� ����� �� ��� ��������� ����� ���� �� �� ���
������ �������� �� ������� ��� ��� ���������� ������
����� ������� ������ ������ ��� ���� ��������� ����
������ ������� �������� ���������� ����� �� ����
�� ������� ������ �������� �� � ��� �� ����� ����� ���
������ ������� ������ �������� �������� ������ ����
���� ��� ���������� ���� ������ �������������
�� ��� ��������� �� ����� ���� �� �������� �� �����

����� ���� ���� �� ���� ������� ����� �������� ���
���������� ���� ���� ��� ���� ��������� ������ ��
��������� ��� ����� �� �� �������� �� ������� ��
��� ����������

������� ��������� ������ �� ���� ����� ������ ����
�� �������� �� � �������� ���� ������� � ������ ������
����� ����� ���� ������ �� ������� ������������� ���
��������� �� �������� �� ��� ���� �� �����������
��� ���� ��� ������� �� �������� ���� ����������
��� ���������� ������� ���� ������ ����� ������� ����
�� ���������� ���� ��� ���� ������� ����� ���� ������
�� ���� ����� ���� �� ����� ���� �� ���� ��������� ��
����� ������� ����������� ���������

f(t) = 1

������ �� ���� ��� �������� ����������

���� ������ ��� �������� ���� ��������� ���� �����
�� ������ ���� ������ ������ ��

f(t) = 0

������ �� ���� ��� ����� �������

��� ��� ����� ���� ����� �� ������ ��� ����
����� ��������� �� ������ �� ��� �������� ���������

�

30

���������� ���� ��� ������ ����� �� ��� ����� ����
��� ���� ����� ������������ ����� ����� ���� �������
� ���� ���������� �� ��� ��� �� ������� ������� ����
���� ����� ����� ����� ��� ���� ������ ���� �� �������
������ ���� ���������� ���� ������� ��� �� ���� ��
���� ���� ���������� �� ����������� ������ �� ����
������ ������� ���� �� �� ���� ���������� �� ������
� ������ ���� ������ �� ����� ���� � ���� ��� �����

f(t) =

!

−0.2 �� t �� ������ ��������� �� �
0.5 ���������

������ �� ���� ��� ���� ��� ������

����� ����� � ��� �� ���� �� ����� ������� ������
��� ���� ������� �� ��������� ��� ������ �� ���� ������
��� ��� ���� ������� ����� ��� ����� ����� �� ����
��������� ������ ��� ������ ���������� ����� �� ��
������� ���� ���� �� ��� ���� ��� ����� ����������
��� ��������� ��� ��������� ��������� ����� ���� ���
���� ���� ���� ��� ������� �� � ���� ����� �� ��������
�� ��� ����� ������������ ���������� ����� ���� ��
���� ���� ��� ������ �� �� � �������� �� ������� �
����������� �� ��� �������� ������� ��� ��� ��� ����
������ ������ ��� ������� ������ ��� ��� ��� ��� ����
������ ����� ��� ������� ������ ��� ��� �� ���������
�������� ��� ������� ����� ������� ��� �� ������� ��
���� ����� ���� ��� ����� ����� �� �� � ����������
�����������

f(t) =

!

0.2 ��t < 4

1.5 ��t ≥ 4

������ �� ���� ��� ������ ������

��� ��������� � �����
�� ����� � ������ ��� ������� ���� ������ �� ���� ���
��� ���� ��� ��� ������� �������� ���� ����� �����
���� ������ �� ����� ����� ���� �������������� ��
����������� � ������ �� ���� ������� �� ������� ����
� �������� �� ������ ���� ������������� ��� ����
���� ������� ����� ����������� ����� � �������� ��

��� ���� ���� ��� ����� �� ����������� ������� ����
������

����� �������

��� �� ����� �� ����� ���� ���� ����� �� ���� ������
�� �� �������� ��� ��������� ������� �� ��� ����
������� ������ �� ��� ����� ������ ���������� ���
������� �� ��� ���� ��� ����� ��������� ��� ���
���� ��� ����� �������� ���������� ����� �� �� ���
��� �� ��� ������ ����� ��������� ������� �������
��� ���� ������ �� ��� ������ ��� ��� ������
�������� � ���������� ���� ��������� ��� ���� ���

���� ����� ��� �������� ��������� ���� ������ ���
�������� ��� �������� �� ��� �� ���� � ����� ����
������� ����� ���� �� ���� � ������ �� ��� ����� ��
�� ����� ����� ����� ��� ���� ������� ������� �� ����
���� ��� ����� ������� ��� ���������� ������ ��� ���
��������

0 2 4 6 8

0

2

4

6

8 ������� ��������
��� ��� ����
���� �����

������ �� � ������ ��������

� ����������
����� ������� ������ �� � �������� ��� ��������� �����
�� ������� ���� �� ����������� ����� ���� ��� �����
����� �� ����������� ������� ��� ���� ��� ������� �
������ ���������� ��� ���� �������� ������ �������
����� ���� ���������� ���� �� � ������ ������� �� ����
�����

�

31

����������
��� ������� ����� ��� ���� �������� ����������

���������� ��� ������ ������ ����������� ��
� ������ �� ��� ����������� �� �������� �����
����� �����

�

32

Survival advice from a computer scientist

6 Survival in chessland

Dr. Tom Murphy VII Ph.D.

Keywords: chess, chess to the death, being a chesspiece to the death

7 Optimizing The Sacrifice

Nico Zevallos

Keywords: Tarkovsky, Offret, film, movie, optimization, path plan-
ning, pursuit, evasion, art

8 Abusing the RPM package manager to compile software

ILIANA DESTROYER OF WORLDS

Keywords: Linux, software management, recursion

33

Survival in chessland

Dr. Tom Murphy VII Ph.D.∗

1 April 2019

Abstract

CHESSMATE.

Introduction

If you are forced to play chess to the death, you are in trouble,
because most people are not good at chess (for example, the
author) and yet want to live.1

But what if you are forced to be one of the chess pieces to the
death? That is, your little soul inhabits one of the 32 pieces or
pawns and your soul is vanquished if that piece is eliminated.

∗Copyright c© 2019 the Regents of the Wikiplia Foundation. Appears
in SIGBOVIK 2019 with the threefold repetition of the Association for
Computational Heresy; IEEEEEE! press, Verlag-Verlag volume no. 0x40-
2A. 53 Centipawns

1It is easy for two players to collaborate to produce a draw, especially
by simply agreeing to a draw at the outset of the game (if allowed). Some
tournament formats forbid the players from agreeing to a draw verbally
before a certain point (e.g. 30 moves), or without the arbiter’s consent,
and FIDE rules technically do not allow a draw until both players have
made a move (5.2.3). There are always other routes to a draw, for example
by stalemate or repeating the same position three times. Collaboratively
producing such situations is easy, but this strategy is not likely a stable
equilibrium: Players can often gain a substantial advantage by going “off
script” and instead trying to win the game. Additionally, sometimes the
terms of chess-to-the-death do not allow the players to communicate at
all beforehand, nor during the game. If this is the case, then it may be
difficult to agree on the approach to drawing, let alone establish that this
is both players’ desire. Since the rules of chess-to-the-death can’t forbid
us from colluding right now as you read this paper, I hereby declare that
the following is the correct approach:

1. Nf3. This is a reasonable opening move for white (begins the Réti)
which can transpose into several common systems (e.g. King’s In-
dian). Since the knight can move back to g1 on the next move,
knight moves are the fastest route to a draw by repetition. This has
a good chance of signaling to a wise player that a draw is desired.
The player should make this move after pondering carefully for some
time, and then looking meaningfully into the other player’s eyes.

1. . . . Nf6. This is both a strong response for black in a real game, and
simultaneously a signal that a draw is desired. The other advantage
is that very weak players[3] may simply copy what white does. In
doing so, they will also play this move.

2. Ng1?!. White moves the knight back to its starting square. This is
a terrible move for white, but clearly signals the intention to draw.

2. . . . Ng8!. “Fool’s Draw Accepted.” The starting position is reached
for a second time.

3. Nf3 Nf6. At this point the game should clearly continue repeating
the sequence, although since we are in the start position, white has
any number of strong opening moves available. Signaling the draw
line and then 3. d4!? may be pyschologically devastating.

4. Ng1 Ng8 1/2-1/2. The starting position is reached for the third
time, which by rule2 is a draw.

Now it doesn’t matter whether you’re good or bad at chess,
because you don’t get to pick what happens in the game. What
matters is that your piece lives to the end of the game, when
all surviving pieces are set free. Which piece should you want
to be?

In formal chess, the king can never be captured: The game
ends when the king is attacked but cannot move, and it is
illegal to make a move that leaves the king attacked. The
king’s death is implied, of course, but it is seen as more poetic
to end the game prior to this point.

For the sake of this question, we’ll consider the the white
king to “die” if white loses (i.e., is checkmated), and likewise
for black. Otherwise, of course, the best chances of survival
would trivially be with the two kings, since they are never
formally captured. Loss includes resignation, since most high-
level games actually end once the defeated player agrees that
loss is inevitable. We can think of this common case like king
seppuku. Many games also end in time forfeit, which is like
the king’s poor diet and lifestyle choices leading to a death by
natural causes.

Neither side is believed to have a decisive advantage, and
many games end in a draw, with both kings surviving. So the
survival chances of a king are likely greater than 50%; pretty
decent odds. Is it possible that any other piece has even better
chances? Let’s find out—our lives may depend on it!

Since this is one of the shortest possible routes to a draw, I hereby dub
this line the “Fool’s Draw,” by analogy with the Fool’s Mate. In this line
all pieces survive, which is anyway humane and also advantageous in the
case that you or someone is simultaneously being one of the chesspieces
to the death!

If 1. . . . Nc6 or another Knight’s move, white can also consider contin-
uing in the obvious way. However after 1. . . . d5, black has refused or not
noticed the draw. Fortunately, white is still in a good position to play
the game normally (this is the main line of the Réti opening, followed by
2. c4). White can try to be more obvious with 2. Ng1, but if black is
choosing to just play normally, white takes a distinct handicap by doing
so.

The biggest risk for white is that black does not play 2. . . . Ng8 but
rather a normal move like 2. . . . g6 (“Fool’s Draw Betrayed”). This can
happen if black is not metagaming at all (for Nf6 is a normal response
to the normal Nf3), or if black is an exceptionally shrewd metagamer
(tricking white into wasting two tempos with Ng1 by pretending to be
cooperating).

Of course, this all relies on the assumption that if chess-to-the-death
ends in a draw, the players are spared or allowed to repeat indefinitely. If
both players are actually executed, then this line is truly a Fool’s Draw!

2But is it?
First of all, although either player is allowed to claim a draw after three

repetitions of the same position, it is not automatic. However, FIDE rules
do declare that the game simply ends in a draw upon five repetitions. Of
course it is easy to extend the Fool’s Draw to accommodate this.

Second: The lichess implementation (although known to be buggy[2])

https://sf.net/p/tom7misc/svn/HEAD/tree/trunk/chess

6

34

https://sf.net/p/tom7misc/svn/HEAD/tree/trunk/chess

1 Hypotheses

Like all good scientific research, I clearly laid out my hypoth-
esis and wrote down the motivation before performing the
study. This helps prevent presentation bias where the results
appear more satisfactory because they are framed as a natural
conclusion from the idea that motivated the research in the
first place (when in fact, of course, if you write the motivation
after witnessing the results, backflow is inevitable). It is also
much more exciting. I literally don’t know the answer as I’m
writing this, nor whether it is interesting in any way!
Here are my guesses.

• Black and white are probably not substantially different.
That is, the a1 and a8 rooks probably have about the
same survival chances (it’s known that white has a slight
statistical advantage [4] but it is probably only around
1%). So these guesses will be written about white’s pieces.

• The d2 and e2 pawns are very active in common openings,
and are frequently captured as part of those openings. I
think they are the least likely to survive overall.

• Bishops and knights are often involved in the opening and
midgame, and often exchanged nonchalantly. I think they
all have relatively low survival chances.

• Although the queen is very valuable, a queen exchange is
often forced for games that enter the endgame.

does not permit a threefold repetition claim in this situation, which got me
thinking that maybe there is some subtlety here. Is the starting position
special somehow, not counting as having occurred? The relevant statute,
from the FIDE Laws of Chess[1]:

9.2. The game is drawn, upon a correct claim by a player
having the move, when the same position for at least the third
time (not necessarily by a repetition of moves):

a. is about to appear, if he first writes his move, which
cannot be changed, on his scoresheet and declares to the
arbiter his intention to make this move, or

b. has just appeared, and the player claiming the draw has
the move.

Positions are considered the same if and only if the same player
has the move, pieces of the same kind and colour occupy the
same squares and the possible moves of all the pieces of both
players are the same. Thus positions are not the same if:

1. at the start of the sequence a pawn could have been
captured en passant.

2. a king or rook had castling rights, but forfeited these
after moving. The castling rights are lost only after the
king or rook is moved.

So the question is, has the starting position “appeared” before white’s
first move? The rules are not totally clear on this point. Note that
“positions are considered the same” only when the same player “has the
move.” FIDE defines “have the move” as

1.3. A player is said to ’have the move’ when his opponent’s move has
been ’made’.

A strong case can therefore be made that white does not ’have the move’
in the formal sense at the beginning of the game, since black has not
made a move!

Nonetheless, it does seem clear that white can claim a draw by 9.2.a, by
committing the move 5. Nf3 and declaring to the arbiter that the position
is now about to appear for the third time. This seems unambiguously legal.

• Rooks tend to be late-game pieces, because they are dif-
ficult to get out of their corners (and at most one can be
activated by the fastest method, castling) and are rela-
tively valuable.

• This leaves the non-central pawns. These are the hardest
to predict, and they are hard to think about (at least
for me) because when e.g. the a2 pawn recaptures the
b3 pawn that it supported, I just think of this as the b3
pawn. Of these pawns, b2 and g2 are somewhat weak
because they are undefended once the bishop is developed
(cf. the famous “poison pawn” at b2). On the other hand,
in the fianchetto configuration, this pawn is very strong
and often survives the entire game without leaving the
third rank. Since pawn chains usually progress towards
the middle of the board, the a2 pawn is more likely to be
supporting than supported. This both leaves it weak to
capture, but prone to recapturing. Outside pawns block
one’s own rook, although for this same reason they often
clear the file by capturing (and so survive). They are
also commonly used to push into a well-defended king’s
territory (e.g. in the fianchetto); kingside castling is more
common, so this means that the h pawns are often lost to
this fate.

The final ranking that I predict, from most surviving to most
dead: pf, pc, pg, pa, ph, pb, Rh, Ra, K, Q, Bf, Ng, pe,
pd.

As already copped to, while the author is an aficionado and
also knows how to spell the difficult word aficionado without
spell-check, he is not good at chess. A few drinking buddies
with varying chessperience were also consulted for their wagers;
these are compared to each other and to the actual results in
Section 4.

2 Methodology

To compute the chances for survival, I legally acquired
506,000,416 chess games from lichess.org. This is all of the
standard variant, rated games from Jan 2013 to November
2018, in any time format. Only games that are completed and
valid are included (about 200,000 games did not meet this cri-
teria). The total data size is 875 gigabytes, so processing these
took some care for efficiency and parallelism. Fortunately, I
have a computer with just an obscene number of cores and
truly excessive RAM, so you gotta use that for something.3

Other than that, I simply implemented the rules of chess,
wrote a PGN parser, then parsed and simulated each game.
For each of the 32 pieces in the starting position, I tracked its
current location, and whether it is alive; multiple dead pieces
could occupy the same square. At the end of the game, one of
the kings is killed if his side has lost.

For a piece, there is a single factual survival rate in these
games, given just by num survived

num games . What we’re really inter-
ested in, however, is estimating the underlying true survival
probability for each piece. In order to do this with reasonable
efficency, we divide the games into 32 separate buckets, and

3To torture your own desktop computer, source code is available at
sourceforge.net/p/tom7misc/svn/HEAD/tree/trunk/chess/.

https://sf.net/p/tom7misc/svn/HEAD/tree/trunk/chess

35

https://sf.net/p/tom7misc/svn/HEAD/tree/trunk/chess

♘g 23.3%

♞g 24.3%

♞b 26.7%

♘b 29.1%

♙d 30.8% ♗f 30.9%
♗c 31.3% ♙e 31.3%

♝f 32.2% ♟d 32.4% ♝c 32.4%

♟e 37.2%

♛ 44.8%
♟c 45.2%

♕ 45.6%

♙c 47.9%

♚ 50.3%

♔ 53.5%

♜h 54.4% ♖h 54.5%

♟f 55.3%
♜a 55.9%

♖a 56.5%
♙f 57.3%

♟b 59.9%
♙b 60.5%

♟g 65.1%

♙g 66.6%

♟h 70.4% ♙a 70.5% ♟a 70.5%

♙h 71.5%

Figure 1: Survival probabilities for each of the 32 pieces in
standard chess, in 500 million games. The number is the mean
survival rate across all samples. The vertical position of the
dot is this mean rate, with a line drawing the span between
the smallest and largest sample bucket (this is usually a very
tiny range). Horizontal position is purely presentational, to
avoid overlap.

count statistics separately for each. From these samples we can
then estimate variance, for example. The games are bucketized
by a deterministic hash of the White player’s username. This
way, if there exist some players who are highly unusual (per-
haps automated accounts), their games are grouped together
and pessimistically represented in the variance estimate. This
also helps account for different opening preferences; the chosen
opening certainly affects the survival chances.

The basic survival chances appear in Figure 1. Indeed, many
pieces are more likely to survive than the kings. Even as black,
the extremal pawns (pa and ph) have over a 70% survival rate.
Across the board, the survival chances for a white piece and its
black twin are similar, usually with a small edge to white. No-
table exceptions are the Ng (the overall most doomed piece),
and both white bishops, which die more than their Schwarz-
doppelgangers. The pe is vastly more dead than pe. Note
somewhat satisfyingly that the pc has the highest variance;

this was the most controversial among the drinking buddies
(Section 4). Note that pc is the sacrificed pawn in the pop-
ular Queen’s Gambit (1. d4 d5 2. c4), where accepting and
declining the pawn are both common and sound responses.
This may be a good example of a piece that has substantially
different survival rates in different opening preferences. Since
the variance is otherwise extremely low, I only report means
for the remainder of the paper.

Despite my impression that many games end in a draw, ties
are actually rare in the lichess database. In January 2018, only
3.8% of games were drawn; as a result, the survival chances
for the kings are both close to 50%. Although the database
contains games in many time formats and with all varieties
of human skill (including over a thousand games by Magnus
Carlsen, the world champion and highest rated player of all
time4), blitz (∼ 5 minutes per side) and bullet (∼ 1 minute)
games are predominant. Nonetheless, the results are fairly
robust across different time formats and skill levels. In Sec-
tion 4.1 I show some slices of the data for comparison.

3 Safest spaces

The fate of each piece is to either survive or die, and it does
so on one of the 64 squares. With the same replay of the
500 million games I also kept statistics on the fates of each
piece. If being a chess piece to the death, and possessing some
influence over where your piece moves, it may be helpful to
know where to go. Even without influence, such knowledge
could help calibrate your anxiety.

Other than the bishops—which have no legal way to reach
half of the squares—every piece ends on every square in at least
a thousand games. So we have enough samples to have rea-
sonable confidence in our statistics, even for the most unlikely
odysseys. The least mobile pieces are the pawns, who can tech-
nically reach any square by promoting, but are usually confined
to cones emanating from their start squares. The overall rarest
fate is for pf2 to die on the a7 square, which only happened
1,244 times (however, it survived on this square 31,438 times).
This square is actually reachable without promoting, but it
would need to capture 5 times in order to get there, which
seems quite unlikely! There may even be a hidden achieve-
ment for reaching this square this way! Aside from pawns, the
weirdest fate is for Ng to die on h1, which happened 47,307
times. Corners are of course garbage for the knight, although
it is twice as likely to survive on this square.

There are characteristic patterns for each of the pieces,
which make sense given their starting positions movement
rules. You could probably guess the piece just by looking at
one of the heat maps below, although—spoiler alert—the piece
is just listed right there and they are in order. Two indepen-
dent things are communicated in these graphics: The chance
that the piece ends the game on some square (alive or dead),
and its survival chances there. In each map, a darker back-
ground color indicates that the piece ends on that square more
often. The shade is based on the rank (64/64 black is most
common, 63/64 black is next most common, etc.) rather than

4Although to be fair, his username “DrDrunkenstein” suggests he may
not play at full strength.

https://sf.net/p/tom7misc/svn/HEAD/tree/trunk/chess

36

https://sf.net/p/tom7misc/svn/HEAD/tree/trunk/chess

the absolute probability, since otherwise the graphic looks bor-
ing. The number on the square is the percentage survival of the
piece when it is last seen (either being captured or surviving
to the end of the game) on that square. The four squares with
the highest survival rates are underlined for your convenience.

81.1 64.1 57.7 56.1 51.5 59.3 65.5 65.3

47.7 40.9 39.3 37.5 38.3 39.5 47.0 47.4

40.7 45.2 34.6 31.4 33.3 41.9 51.3 57.1

42.1 37.6 34.9 29.3 31.2 41.2 47.8 60.0

45.6 47.2 37.7 30.6 33.6 40.9 49.0 61.4

54.0 45.2 34.7 34.4 32.8 35.0 42.3 61.6

67.6 60.6 51.3 40.3 41.0 40.7 50.7 72.5

30.5 35.0 21.9 17.5 25.8 26.5 46.8 63.0
ra8

52.4 90.9 55.1 60.5 51.4 62.1 56.8 60.0

52.2 49.4 45.6 42.5 44.4 40.2 51.7 46.8

43.5 49.5 24.5 34.2 30.2 33.3 39.2 42.8

46.1 21.7 26.6 18.3 8.3 27.9 27.9 38.5

32.4 31.7 16.7 9.2 17.6 27.2 33.4 38.4

36.6 11.2 23.0 15.6 21.0 9.9 21.9 36.4

34.3 32.3 35.9 21.2 19.1 29.0 22.1 36.2

30.4 20.6 12.5 18.8 17.5 11.3 20.5 23.6
nb8

64.7 86.3 56.0 57.8

60.8 36.3 44.8 61.4

44.7 37.8 25.3 30.6

23.4 20.8 27.9 44.2

39.4 24.0 19.8 31.2

21.5 14.5 5.8 29.3

41.5 34.8 7.9 12.0

19.3 18.3 9.9 37.6
bc8

55.5 56.3 52.7 59.2 46.7 42.2 45.6 54.3

58.9 51.8 59.1 43.6 43.5 31.6 36.8 41.0

51.4 52.8 42.2 38.0 31.9 33.6 40.0 50.0

59.7 34.9 43.9 25.4 31.1 34.8 36.7 51.8

48.8 44.6 37.5 26.7 32.6 37.3 36.8 59.9

61.5 28.2 39.2 33.0 36.7 28.5 41.3 65.0

76.4 70.3 57.3 33.5 32.0 61.1 75.5 83.2

68.0 55.4 51.3 14.9 52.3 53.6 60.1 79.8
qd8

30.8 46.9 54.1 29.2 49.1 33.5 57.4 40.3

41.1 52.3 49.5 46.6 46.1 54.1 56.5 49.5

31.7 46.8 48.5 46.3 48.3 51.2 50.4 38.4

29.0 48.8 51.2 51.7 51.8 52.0 49.3 32.0

31.4 53.4 56.0 54.2 53.7 57.2 53.0 33.1

37.8 66.5 66.4 62.0 64.7 70.6 71.2 42.8

38.6 60.2 63.1 59.7 59.1 70.5 66.3 46.2

27.9 37.0 37.1 34.3 34.3 41.3 42.3 32.6
ke8

65.6 51.7 82.8 68.1

60.1 54.7 35.9 50.9

47.0 29.9 32.0 38.6

49.6 36.3 17.9 18.8

34.9 22.9 22.0 36.7

23.3 6.3 15.7 19.3

26.5 6.9 18.0 22.6

21.9 16.2 23.2 26.8
bf8

48.9 53.6 53.9 50.0 63.5 59.0 87.6 64.5

39.4 42.8 45.1 44.1 42.8 37.1 53.2 52.7

44.8 48.4 36.4 28.4 34.7 23.5 37.9 28.3

46.0 29.0 28.7 9.1 14.0 24.3 17.9 30.3

38.6 36.1 25.4 18.9 10.1 20.1 28.0 27.8

42.4 24.0 8.4 22.0 13.0 16.0 12.0 32.9

44.0 36.5 41.0 10.1 23.7 19.4 20.9 22.6

26.4 18.5 16.3 16.0 18.4 7.9 21.1 26.3
ng8

https://sf.net/p/tom7misc/svn/HEAD/tree/trunk/chess

37

https://sf.net/p/tom7misc/svn/HEAD/tree/trunk/chess

57.8 56.8 52.3 47.9 54.3 73.3 65.1 79.5

43.0 41.3 38.9 36.4 37.5 31.9 45.3 46.2

51.3 46.6 37.6 31.6 32.7 37.4 48.6 49.2

56.8 45.1 38.8 30.7 28.1 34.8 41.8 48.1

63.9 53.1 43.7 33.0 29.7 33.7 44.6 45.8

69.5 54.3 43.9 37.1 29.3 27.3 35.7 50.6

76.1 66.2 55.6 42.1 38.1 40.6 47.6 63.7

64.0 51.4 33.7 21.3 19.5 18.5 38.5 45.6
rh8

95.6 85.7 74.1 78.4 73.9 64.5 62.0 75.5

82.8 91.2 84.9 85.4 84.6 78.9 82.6 76.1

76.0 52.9 84.7 84.0 82.7 83.2 85.4 84.6

65.2 24.2 38.4 82.2 83.6 82.6 85.8 87.2

55.0 20.2 26.5 75.5 83.2 83.4 87.0 88.8

50.8 18.2 21.0 61.3 85.6 84.9 89.3 91.4

50.9 42.7 44.1 75.9 91.0 91.3 95.0 95.8

48.4 49.7 65.5 83.6 91.5 85.7 95.1 96.5
pa7

82.1 92.4 83.7 79.4 74.9 63.6 60.4 64.5

84.0 75.4 87.8 86.3 83.8 79.1 82.0 74.1

45.6 73.2 47.4 83.6 82.8 80.8 84.8 82.1

32.8 50.8 35.0 35.0 80.7 83.6 84.8 87.4

19.9 42.3 23.2 22.1 42.9 82.8 86.8 88.5

20.9 33.2 16.7 29.8 39.6 71.2 88.3 91.2

45.2 47.5 40.2 39.8 60.6 77.4 93.5 95.5

51.6 52.2 45.6 54.9 77.7 81.7 94.4 96.4
pb7

70.5 80.0 89.4 81.9 73.9 64.4 59.4 59.5

77.6 90.0 73.1 86.6 83.4 78.0 81.6 67.3

83.7 52.3 60.4 40.4 82.2 79.9 83.9 81.1

36.4 25.4 44.2 30.9 32.1 82.2 85.3 86.8

29.4 21.9 41.2 6.8 22.9 63.8 86.3 88.5

18.7 15.2 23.9 23.1 19.8 25.9 85.2 90.9

44.7 35.1 43.8 38.5 35.1 38.3 80.9 95.2

62.8 49.4 46.2 44.1 56.9 63.2 92.4 96.1
pc7

69.0 72.8 76.9 86.7 75.8 69.3 64.5 62.6

74.9 87.4 84.3 84.5 83.6 80.6 84.2 70.8

82.8 88.1 69.3 59.4 55.1 80.4 85.5 82.5

87.4 37.1 42.2 22.8 20.6 52.3 85.1 87.6

71.9 25.9 12.1 35.5 13.6 21.7 83.9 88.7

55.0 11.9 15.4 26.6 19.9 8.7 40.2 90.1

50.8 32.8 37.9 37.7 35.7 23.8 37.1 83.9

67.3 59.0 41.5 44.7 46.9 44.8 71.2 91.7
pd7

64.5 68.7 72.1 79.6 87.6 74.4 66.5 62.1

71.0 85.6 82.2 85.8 76.8 81.6 86.3 69.9

81.4 86.8 82.3 44.3 65.5 62.8 86.0 80.9

87.5 87.0 47.4 27.8 30.9 37.3 39.8 86.8

89.7 84.4 19.2 11.3 29.7 16.3 27.8 79.6

92.6 33.7 8.2 21.9 29.2 16.2 19.1 56.1

88.2 10.0 32.0 36.2 40.3 30.8 29.6 42.4

75.1 70.0 46.4 41.6 49.9 43.1 68.5 81.8
pe7

61.1 63.7 67.1 76.1 83.6 89.5 74.7 65.1

68.4 84.5 80.1 85.3 88.1 72.9 90.4 74.9

80.4 86.3 81.6 83.0 35.0 55.0 52.4 83.1

86.8 87.6 83.6 30.6 22.6 43.6 32.4 32.2

89.9 89.2 51.4 27.6 21.0 40.3 23.1 34.5

92.9 87.8 32.9 25.8 25.9 36.5 17.7 33.8

95.8 87.5 59.6 38.7 40.6 45.1 36.9 38.3

96.9 96.2 81.1 56.6 47.8 53.7 59.1 75.9
pf7

66.0 64.6 65.3 75.9 78.3 82.6 91.4 76.6

76.2 84.2 81.0 85.0 86.7 87.3 82.7 80.1

81.4 87.2 82.6 83.5 84.0 47.5 70.7 42.4

86.8 86.7 85.6 82.6 35.1 34.9 47.1 32.0

89.3 89.4 84.5 57.8 24.9 24.4 36.5 26.3

93.6 91.6 82.0 50.0 31.4 22.2 35.0 26.7

96.2 96.2 89.3 68.9 42.1 38.3 47.7 41.3

98.1 97.7 94.2 82.9 62.6 51.9 60.6 59.0
pg7

https://sf.net/p/tom7misc/svn/HEAD/tree/trunk/chess

38

https://sf.net/p/tom7misc/svn/HEAD/tree/trunk/chess

76.8 66.1 65.3 73.9 75.9 72.4 82.4 95.2

76.7 85.1 80.0 85.2 85.3 84.7 91.8 84.5

83.9 86.4 84.3 82.5 83.8 82.9 56.5 74.1

86.2 87.3 83.2 85.0 81.7 36.7 25.1 62.1

89.5 88.8 84.9 83.9 73.0 24.4 21.6 52.5

93.3 92.1 87.0 86.5 60.5 24.3 16.6 51.9

96.1 96.1 92.9 90.8 74.3 30.4 36.1 51.7

97.7 97.4 94.2 90.9 84.0 60.7 56.5 53.7
ph7

47.5 49.5 64.2 82.3 91.4 85.1 95.1 96.3

49.8 42.7 44.2 72.5 90.1 91.2 94.7 95.5

49.2 18.7 21.6 54.1 84.5 85.2 89.0 91.6

54.5 18.0 29.1 71.0 82.1 82.8 86.9 88.7

63.6 24.7 38.0 81.1 83.1 81.3 85.9 87.1

74.3 55.0 83.4 83.7 82.2 83.2 85.2 85.2

83.2 91.3 84.4 84.9 84.4 78.5 82.5 76.5

94.8 83.6 72.6 77.5 73.0 65.1 63.4 76.3
pa2

51.9 52.2 46.0 56.6 78.9 82.0 94.6 96.7

45.3 47.3 41.2 39.5 59.1 76.3 93.8 95.3

21.8 35.6 18.7 30.4 35.4 71.7 88.4 91.7

20.1 40.0 24.0 19.5 43.6 82.3 86.9 88.1

31.6 48.7 34.2 38.9 80.7 82.9 85.1 87.1

45.3 71.4 47.4 83.6 82.7 81.2 85.1 83.7

81.5 74.1 87.0 85.9 83.7 78.9 81.8 75.2

78.1 91.4 83.1 79.2 75.4 64.1 62.8 65.8
pb2

62.8 49.5 46.7 42.8 54.0 59.2 90.6 95.7

44.8 39.1 44.0 37.7 32.8 30.0 77.2 94.9

17.6 14.3 30.4 25.3 15.4 24.7 85.4 90.8

29.8 18.9 38.7 11.8 25.9 66.3 85.8 88.1

35.7 24.9 40.2 28.8 36.1 80.6 85.0 86.3

82.2 52.7 60.5 42.3 82.3 79.7 84.7 81.7

74.6 89.8 74.0 86.7 84.0 78.2 81.4 68.2

66.9 78.0 88.5 82.6 75.5 65.9 60.7 60.7
pc2

61.1 57.3 40.5 43.0 44.8 40.3 70.0 90.4

50.1 28.3 36.3 36.7 32.9 19.4 32.0 87.7

52.6 13.7 12.5 24.8 14.9 9.5 47.5 90.4

80.9 23.7 11.4 31.6 16.1 22.9 84.6 88.1

87.5 41.0 40.1 24.2 27.0 60.6 84.8 87.8

81.6 88.1 64.6 64.5 55.3 80.6 85.2 83.1

73.3 87.4 82.2 87.3 84.6 79.6 83.3 71.3

66.6 71.7 74.6 86.2 78.7 70.0 65.3 65.1
pd2

72.4 68.7 40.9 37.8 46.3 36.5 59.3 77.5

91.6 19.3 27.6 32.7 34.2 24.5 19.3 43.6

92.6 54.2 7.7 13.7 23.5 10.6 16.7 65.4

89.4 87.9 25.3 9.5 28.6 16.0 30.1 84.8

87.4 86.5 64.6 30.8 34.5 39.4 48.5 86.8

81.3 87.1 81.5 44.1 69.1 63.6 85.3 82.4

72.1 85.9 81.5 84.4 80.5 81.2 85.6 73.0

64.5 67.9 69.6 78.4 86.1 74.8 69.5 66.7
pe2

96.7 96.3 78.1 52.2 46.1 51.3 55.9 73.2

96.1 90.4 55.3 33.7 38.8 41.4 33.5 37.1

93.1 89.5 39.5 20.2 19.9 33.3 14.1 33.5

89.9 88.9 57.7 26.5 22.7 33.7 25.1 34.1

86.4 87.8 83.7 33.9 27.3 44.4 32.0 33.7

79.0 86.1 81.3 83.3 40.2 61.5 54.5 84.2

66.3 84.6 80.4 85.7 88.1 79.1 90.1 77.2

59.0 62.4 65.7 75.9 84.6 90.5 78.7 69.3
pf2

98.1 97.5 93.6 80.4 62.3 50.2 59.3 57.3

96.4 96.3 89.3 65.6 39.4 34.9 47.5 41.3

93.8 91.8 83.7 49.8 27.4 21.7 33.2 26.9

89.2 89.6 84.3 61.9 23.7 21.0 39.4 24.1

86.4 86.7 85.7 82.7 37.8 34.3 47.4 33.5

81.0 86.8 82.2 83.7 84.6 49.1 72.9 41.7

73.9 84.3 80.5 85.5 86.8 87.8 84.8 83.4

64.1 63.1 64.4 75.7 79.2 83.7 92.5 79.7
pg2

https://sf.net/p/tom7misc/svn/HEAD/tree/trunk/chess

39

https://sf.net/p/tom7misc/svn/HEAD/tree/trunk/chess

97.5 97.4 93.3 90.2 83.3 58.2 55.0 53.2

96.3 96.3 92.6 90.0 74.3 26.8 34.7 51.7

93.2 92.1 86.8 86.7 55.7 25.0 13.0 54.2

89.4 88.5 84.7 83.2 75.4 22.6 23.2 51.7

86.2 87.5 83.2 85.2 81.6 37.7 25.5 62.6

82.5 86.4 84.6 82.7 84.5 83.5 58.8 76.5

75.1 84.5 80.2 85.5 85.6 85.4 91.3 87.7

74.9 65.2 65.3 74.8 77.7 74.1 84.5 95.7
ph2

31.0 35.9 22.1 17.9 25.7 25.9 46.8 60.4

66.0 61.3 52.0 41.1 42.1 41.4 50.3 72.1

52.2 47.3 36.5 35.5 34.3 36.2 42.3 62.1

46.2 47.5 37.0 30.5 33.8 39.0 48.3 60.2

42.3 38.9 33.3 29.6 32.1 40.4 47.7 60.9

42.1 45.7 33.0 35.3 37.1 43.7 53.5 59.9

48.3 38.7 39.0 39.4 40.9 41.0 46.7 49.6

81.7 64.2 55.9 59.7 55.3 60.9 67.0 67.2
Ra1

27.2 21.7 11.4 19.5 19.2 11.4 21.7 24.8

35.8 28.3 39.8 21.0 18.1 29.1 20.2 37.7

35.9 17.8 23.9 19.2 24.0 10.1 22.7 36.0

35.7 29.4 19.9 9.7 18.4 25.3 34.4 37.9

42.5 24.6 27.7 19.5 10.2 28.4 30.0 38.1

44.2 50.7 29.9 37.2 33.3 36.0 42.0 45.1

51.4 45.4 46.1 45.6 46.2 43.8 51.5 51.8

48.5 92.4 53.6 61.7 50.8 62.0 58.0 61.9
Nb1

19.0 17.7 9.4 40.2

42.8 38.0 6.5 8.8

25.4 18.5 6.6 28.2

44.3 22.8 19.4 30.4

26.1 21.3 29.5 41.8

49.1 37.6 30.9 33.3

57.9 37.3 47.3 64.9

62.5 86.3 55.2 61.3
Bc1

69.8 55.6 51.8 14.6 51.5 54.4 60.9 79.0

75.2 69.8 57.6 36.4 36.2 66.8 74.5 85.3

60.5 28.4 41.3 33.1 39.8 30.7 46.1 69.2

49.3 43.2 35.5 27.5 31.4 36.2 36.6 61.9

58.7 36.8 43.5 25.4 32.4 35.6 39.0 52.7

53.7 52.0 39.3 43.7 36.7 36.8 43.0 51.7

59.3 49.1 58.6 45.1 44.2 34.4 35.7 45.2

52.8 55.5 50.8 59.3 47.6 41.5 44.9 55.3
Qd1

28.6 38.2 38.1 34.3 33.6 40.2 41.3 31.9

38.3 60.4 64.1 59.7 58.7 69.6 66.2 46.2

37.9 66.8 67.0 62.1 64.7 70.2 71.2 43.3

32.4 54.5 57.1 55.1 54.2 58.4 53.0 34.3

30.1 49.6 52.1 51.8 51.6 52.3 49.3 33.1

32.7 48.1 50.5 47.3 48.9 52.0 51.4 38.9

42.6 53.7 51.2 48.9 48.5 55.5 57.7 51.0

33.0 51.7 59.2 32.2 56.6 36.8 61.5 44.1
Ke1

21.9 15.7 24.3 22.1

20.3 5.7 16.8 21.4

19.5 6.1 15.5 20.8

31.9 19.9 18.5 37.0

46.2 37.3 17.7 22.6

46.1 33.2 33.8 43.6

65.2 59.7 38.6 53.6

71.3 54.1 83.2 66.1
Bf1

25.6 17.5 14.8 17.4 20.2 7.5 21.7 33.8

42.5 32.1 43.7 8.3 20.9 18.7 18.9 23.8

41.1 28.9 6.8 24.6 15.8 16.5 12.3 32.0

40.9 33.0 26.5 19.7 10.1 18.5 28.5 31.9

44.0 30.8 27.5 9.0 15.2 27.9 19.1 28.6

43.9 47.9 37.0 32.6 37.2 25.6 43.9 35.5

38.5 41.4 45.0 43.3 44.1 42.7 52.8 58.1

47.9 51.8 53.7 50.0 60.2 58.3 91.6 63.6
Ng1

https://sf.net/p/tom7misc/svn/HEAD/tree/trunk/chess

40

https://sf.net/p/tom7misc/svn/HEAD/tree/trunk/chess

59.6 49.8 32.0 20.8 18.7 17.9 38.0 43.8

75.1 65.9 55.8 42.5 37.8 39.9 46.3 62.2

68.7 54.7 44.3 37.6 29.8 27.0 35.7 49.6

63.6 52.9 42.8 31.7 29.3 30.6 43.6 41.2

56.7 45.2 37.5 30.0 28.8 34.4 42.3 49.1

51.7 47.0 35.6 34.8 36.5 39.3 51.8 54.7

43.9 40.3 38.6 37.7 40.3 33.9 44.6 49.4

57.5 56.6 51.0 51.5 59.4 74.5 67.2 82.8
Rh1

Aside from admiring the groovy pictures, the data can also
be used as the basis of an algorithm for playing chess. There
are several things to try; we could move pieces towards squares
where they are more likely to survive than die (keeping pieces
alive is good), or just towards squares where they are more
likely to be positioned at the end of the game (our moves
are more likely to resemble real chess moves because they put
pieces in their proper places). Alas, it turns out that these
are bad approaches to chess, both because they are boring
(most pieces are actually most comfortable in their starting
positions) and because they perform badly against even weak
opponents [3].

4 Guesses and slices

Like all good scientific research, I explicitly compare the ac-
tual results to the hypotheses gathered before the experiment;
this is an hygenic and humbling exercise. Figure 2 compares
the ranking across all games (slice Actual) to the author au-
thor (slice Tom) and his drinking buddies (slices Ben, Jim,
David, William). There are a number of different reasonable
ways to measure the accuracy of this type of position; a very
simple one is the sum of the absolute differences in rank for
each piece (e.g. if in one ranking Kis #3, and in the other #5,
then this contributes 2 to the total error). By this metric, Ben
has the best prediction (98 error), followed by David (138) and
Tom (148). Tom and David had the most similar predictions
(116) and Jim and William the most different (312). The ex-
pected error between two completely random permutations is
about 341, so all of these guesses are significantly better than
chance. Note in the actual ranking, many pieces have very
similar survival probabilities, and many guesses are ambiva-
lent about groups of pieces. Weighting each rank difference
equally is therefore an oversimplification. It would have been
better to ask each participant to give probabilities, as David
did; this would give us more sensitive error metrics and more
opportunities to spend the afternoon making visualizations.
Several drinking buddies gave rationales for their hypotheses

(mine appear in Section 1).

Ben does not prefer to use the shift key, a typographic quirk
I replicated faithfully here even though it burns my eyes:

edge pawns almost never played til endgame let alone
traded off (ph, pa)

Actual

♙h 71%♟a 70%♙a 70%♟h 70%♙g 66%♟g 65%♙b 60%♟b 59%♙f 57%♖a 56%♜a 55%♟f 55%♖h 54%♜h 54%♔ 53%♚ 50%♙c 47%♕ 45%♟c 45%♛ 44%♟e 37%♝c 32%♟d 32%♝f 32%♙e 31%♗c 31%♗f 30%♙d 30%♘b 29%♞b 26%♞g 24%♘g 23%

William

♖a♜a♙b♟b♙a♟a♗f♝f♙c♟c♕♛♔♚♙h♟h♗c♝c♙f♟f♙g♟g♘b♞b♖h♜h♘g♞g♙d♟d♙e♟e

Jim

♔♚♖a♜a♖h♜h♙a♟a♙b♟b♙g♟g♙h♟h♘b♞b♘g♞g♙c♟c♙d♟d♙e♟e♙f♟f♗c♝c♗f♝f♕♛

Actual

♙h 71%♟a 70%♙a 70%♟h 70%♙g 66%♟g 65%♙b 60%♟b 59%♙f 57%♖a 56%♜a 55%♟f 55%♖h 54%♜h 54%♔ 53%♚ 50%♙c 47%♕ 45%♟c 45%♛ 44%♟e 37%♝c 32%♟d 32%♝f 32%♙e 31%♗c 31%♗f 30%♙d 30%♘b 29%♞b 26%♞g 24%♘g 23%

David

♙g 72%♟g 72%♙b 69%♟a 66%♟b 65%♔ 65%♙a 64%♚ 55%♟f 54%♙f 54%♟h 52%♙h 52%♖h 52%♜h 52%♖a 51%♜a 51%♙c 49%♟c 44%♗f 33%♝c 33%♗c 32%♝f 32%♕ 31%♛ 30%♘g 29%♞g 29%♘b 28%♞b 28%♙e 19%♟d 18%♙d 17%♟e 16%

Tom

♙f♟f♙c♟c♙g♟g♙a♟a♙h♟h♙b♟b♖h♜h♖a♜a♔♚♕♛♗f♝f♗c♝c♘g♞g♘b♞b♙e♟e♙d♟d

Actual

♙h 71%♟a 70%♙a 70%♟h 70%♙g 66%♟g 65%♙b 60%♟b 59%♙f 57%♖a 56%♜a 55%♟f 55%♖h 54%♜h 54%♔ 53%♚ 50%♙c 47%♕ 45%♟c 45%♛ 44%♟e 37%♝c 32%♟d 32%♝f 32%♙e 31%♗c 31%♗f 30%♙d 30%♘b 29%♞b 26%♞g 24%♘g 23%

Ben

♙h♟h♙a♟a♙f♟f♙g♟g♙b♟b♖h♜h♖a♜a♙e♟e♙d♟d♕♛♔♚♙c♟c♗c♝c♗f♝f♘b♞b♘g♞g

Figure 2: Piece rankings (from most surviving to most dead);
either a human or hypothesis or the actual results across all
games. The actual column appears multiple times so that
each human gets a chance to be adjacent to it; this makes for
the easiest visual comparison. Lines connect the same piece
in adjacent columns, and are darker if the pairs have more
different ranks.

not quite sure where these should go (pb more likely
to see play in queenside minority attacks in k-side
castle games?) (pf, pg, pb)

rook play more likely to be active on q side than on k
side (also the classic Nxc7 fork in low rank play), but
overall more likely to stay tucked away compared to
q (Rh, Ra)

i think IQP positions are more likely than not saccing
e in e4 openings but on the other hand d is often
traded off in e4 openings while vice versa is not as
true (pe, pd)

q probably involved in many checkmates (low ranked
play) or resignations before traded off (high ranked
play) (Q)

just randomly guessing k dies in about 1/3 of games,
times 1/2 for 2 sides (K)

this pawn is a super goner (sicilian, QGA, ...) (pc)

most doomed seem to be the minor pieces as i’d guess
at least half of them get traded off on c/f/3/6 or
e/d/4/5 in near every game so (Bc, Bf, Nb, Ng)

Jim “barely understands the rules of chess” and “rarely
plays.” His justifications get “increasingly nonsensical:”

Most-to-least-survival hero tier list for chess (patch
1.0):

1.: King — If I estimate that about 2/3rds of all
regular pieces are captured in an average game, and
the probability of any non-king piece being captured
is uniform, then the king is clearly the most likely to

https://sf.net/p/tom7misc/svn/HEAD/tree/trunk/chess

41

https://sf.net/p/tom7misc/svn/HEAD/tree/trunk/chess

survive. (I’m going to break symmetry here and rank
black king less likely to survive than white king.)

2. Both Rooks — Kept in reserve for castling pur-
poses.

3. The A, B, G, and H pawns — maybe people will
forget to move them because they are far from the
center.

4. Both Knights — They are slippery, but they often
get deep into enemy territory quickly.

5. The C,D,E,F pawns — Moved forward to release
various more important pieces ⇒ more likely to die.

6. Both Bishops — https://youtu.be/gDnE-5lD7w8

7. The Queen — A high-value target, seems unlikely
to survive.

David simply provided a ranking, along with survival prob-
abilities, in typical understated style.

William notes that his guesses are “pretty much off the
cuff,” but provides some motivated reasoning:

I figure the king has got to be somewhere near the
middle of the pack since he dies in half of games
featuring a winner—but with slightly higher-than-
even odds of surviving, since some games end in a
draw. I’m probably mixing up means and medians
here somehow..

I’m gonna assume castling happens more often on the
King’s side, so let’s give Kingside Rook and F, G, and
H Pawns a better shot than their fellows on the left.
But maybe it should actually be worse, since if they
die, it’s because they failed to protect the king. Plus,
having heard the tip about C Pawn5 loud and clear,
I’m gonna assume that bad boy most often becomes a
new Queen, which means he gets more survival points
than the real Queen herself.

D and E Pawn are nothing but pawns, and they
mostly sacrifice themselves to the cause.

Randomizing within these constraints gives us our
starting point. Then the wildcard Bishops and
Knights get randomly distributed through what re-
mains to come up with this final answer shown above.

4.1 Slices

The survival probabilities differ depending on the conditions
of the game; Figure 3 compares some of those slices. Here the
All slice is the same as the Actual column in Figure 2, and
consists of all acceptable games in the database.
The Titled slice includes only games where at least one of

the players has an official title (Grandmaster, International
Master, FIDE Master, etc.6). These games have high-quality

5I believe the “tip” here was that I described the rest of us (William
was the last respondant) as disagreeing most on pc. I think William
misinterpreted this “tip.”

6Lichess used to award the LM “Lichess Master” title to notable play-
ers on the site; this title is excluded from the sample.

All

♙h 71%♟a 70%♙a 70%♟h 70%♙g 66%♟g 65%♙b 60%♟b 59%♙f 57%♖a 56%♜a 55%♟f 55%♖h 54%♜h 54%♔ 53%♚ 50%♙c 47%♕ 45%♟c 45%♛ 44%♟e 37%♝c 32%♟d 32%♝f 32%♙e 31%♗c 31%♗f 30%♙d 30%♘b 29%♞b 26%♞g 24%♘g 23%

Bullet

♟a 72%♙h 72%♙a 72%♟h 70%♙g 66%♟g 65%♙b 61%♟b 61%♙f 56%♟f 55%♖a 54%♜a 54%♔ 52%♜h 52%♖h 52%♚ 50%♙c 47%♟c 44%♕ 42%♛ 41%♟e 38%♙e 30%♝f 30%♝c 30%♗f 30%♟d 30%♙d 29%♗c 28%♘b 26%♞b 24%♞g 21%♘g 21%

Blitz

♙h 70%♟h 69%♙a 68%♟a 68%♙g 65%♟g 64%♙b 59%♟b 58%♙f 56%♖a 56%♜a 55%♟f 55%♖h 54%♜h 54%♔ 53%♚ 50%♙c 46%♕ 46%♛ 45%♟c 43%♟e 37%♟d 32%♝c 31%♝f 31%♙e 31%♗c 30%♗f 30%♙d 30%♘b 28%♞b 26%♞g 24%♘g 22%

Rapid

♙h 71%♟h 70%♙a 70%♟a 69%♙g 66%♟g 65%♙b 60%♟b 59%♖a 59%♙f 58%♜a 58%♖h 57%♜h 56%♟f 55%♔ 54%♚ 50%♙c 49%♕ 48%♟c 47%♛ 47%♟e 35%♝c 34%♟d 34%♗c 34%♝f 33%♘b 32%♙d 32%♗f 31%♙e 31%♞b 29%♞g 27%♘g 26%

Classical

♙h 75%♟h 74%♙a 74%♟a 73%♙g 70%♟g 69%♙b 64%♖a 63%♙f 63%♟b 63%♜a 62%♖h 61%♜h 61%♟f 59%♔ 54%♙c 54%♟c 52%♕ 52%♛ 51%♚ 50%♝c 41%♗c 40%♝f 39%♟e 39%♘b 39%♟d 38%♗f 37%♙d 37%♞b 35%♙e 35%♞g 33%♘g 32%

Titled

♙h 66%♟a 66%♙a 66%♟h 65%♙g 62%♟g 60%♙b 56%♟b 56%♔ 53%♙f 53%♟f 52%♚ 51%♜a 49%♖a 48%♖h 47%♜h 47%♙c 42%♕ 39%♛ 38%♟c 37%♟e 36%♝f 31%♗f 30%♙e 30%♝c 28%♟d 28%♗c 27%♙d 25%♘b 23%♞b 23%♞g 20%♘g 20%

Figure 3: Ranks and survival probabilities for different sub-
sets of games. The same piece in adjacent rows is connected
to highlight differences in the ranking, as before. The time
formats all exhibit similar ranking with only small perturba-
tions. Games including a titled player (rightmost column) are
the most different, although we have far fewer samples in this
set, so variance becomes significant.

play, but far fewer samples (“only” 3.4 million). This set ex-
hibits significant variance; for example, the survival rate of
pc ranges from 38–46%. This is both because of the small
sample size and the bucketization by player name; there are
few enough titled players that an individual’s preference in
openings and style of play changes the values of their entire
bucket. I caution against reading too much into this column.
It seems we can at least conclude that these games tend to
be much bloodier (Kings aside, survival rates are lower across
the board); top players are less likely to fall for traps early
in the game, perhaps more willing to sacrifice material, and
more likely to play into endgames where almost every piece is
exchanged. If being a chesspiece to the death, you do not want
to have a Grandmaster playing the game!

On the other hand, the other slices all have enough samples
that the variance is minimal. These slices, Bullet (151,261,707
games), Blitz (236,050,938 games), Rapid (98,606,558) and
Classical (13,886,352) are different time control formats.
Games on Lichess are played with a starting clock (per side)
and an increment added to the clock after each player’s move.
The game is classified according to the estimated total time:
The starting time plus 40× the increment (with the idea that
an average game has 40 moves per side); this is the same for-
mula that Lichess uses. A bullet game is when the total time
per side is between 30 seconds and 3 minutes; blitz is between
3 and 8 minutes; rapid is between 8 and 25 minutes; classi-
cal is any more than this (including untimed games). Each of

https://sf.net/p/tom7misc/svn/HEAD/tree/trunk/chess

42

https://sf.net/p/tom7misc/svn/HEAD/tree/trunk/chess

these slices has enough samples that the variance is very low.
Here we see that the ranking is rather stable across the range
of time formats, which was not what I expected. This should
increase our confidence that the results are really inherent to
chess, not just the particulars of this data set.

References

[1] FIDE handbook – E.I.01A. Laws of chess, 2017. www.fide.
com/component/handbook.

[2] Tom Murphy, VII. CVE-2018-90017117. In A Record of
the Proceedings of SIGBOVIK 2019. ACH, April 2019.

[3] Tom Murphy, VII. Elo World: A framework for bench-
marking weak chess algorithms. In A Record of the Pro-
ceedings of SIGBOVIK 2019. ACH, April 2019.

[4] Tom Murphy, VII, Ben Blum, and Jim McCann. It still
seems black has hope in these extremely unfair variants of
chess. In A Record of the Proceedings of SIGBOVIK 2014,
pages 21–25. ACH, April 2014. sigbovik.org/2014.

https://sf.net/p/tom7misc/svn/HEAD/tree/trunk/chess

43

https://sf.net/p/tom7misc/svn/HEAD/tree/trunk/chess

Optimizing The Sacrifice
Nico Zevallos

Abstract—This work aims to finally fix a glaring issue in Andrei
Tarkovsky’s final opus Offret (The Sacrifice) [1] namely, the
inefficiencies of its final six minute shot.

I. INTRODUCTION

Fig. 1. A frame from the final shot of Offret

THERE are perhaps a handful of directors whose oeuvres

are as universally venerated as that of Andrei Tarkovsky.

Who among us could find fault in the work of a man Ingmar

Bergman called “The greatest, the one who invented a new

language, true to the nature of film, as it captures life as a

reflection, life as a dream [2].” And yet as one watches Offret,

one error looms. This 1986 masterpiece of Swedish cinema is

marred by its famous final sequence. In it, the paterfamilias,

Alexander, burns the family’s home to the ground in an attempt

to honor an agreement with God to undo a nuclear apocalypse.

In a single, six minute long take, the family chases him

as their house burns to the ground, splashing through and

falling into the mud, occasionally collapsing in despair, and

finally pushing him onto an ambulance that rolls away into

the swamp. The family then watches as their house collapses

onto itself in a glorious blaze, all the grandiose posturing of

an aging academic conflagrated by a single act of faith.

As one watches this moving scene, one cannot help but

think: Couldn’t the family have captured and committed its

crazed patriarch much more efficiently? The shot itself had

to be re-done when a camera jammed during the first attempt,

causing the crew to rebuild a perfect replica of the house from

scratch to set fire to it a second time. Although nothing can

be done at this point about the inefficiencies of the film’s

production, this paper seeks to optimize the paths the family

takes as they rush to confront Alexander such that they may

watch their home burn without the additional discomfort of

getting their feet wet, as well as complete their task much

faster.

II. RECREATING THE SCENE

The method for determining optimal, dry paths was as

follows. The first step was to track the movement of the camera

in the scene. This was done in the 3D modelling software

Blender by creating rough models of the static objects in the

scene, estimating camera parameters by eye, and manually

moving the camera through the scene so that the static objects

match up. Based on footage from a documentary about the film

[3], the author constrained the movement of the camera to a

single degree of freedom of movement along the axis of the

dolly that the camera was on as well as two rotational degrees

of freedom to account for horizontal and vertical pans. The

camera focal lengths tested were 50mm, 70mm, 75mm, 85mm,

and 100mm. Focal lengths below 50mm and above 100mm

forced the author to make objects such as the house and the

cars unreasonably small or large in order to line them up with

the footage. After a rough alignment at each of these focal

lengths, 75mm was chosen as the ideal focal length because

it produced the fewest artifacts and distortions. Following

this decision, the footage was meticulously tracked by hand,

adding about 1 key frame for every 5 frames of footage and

adjusting both the position of the camera and objects in the

scene until the entire six minute shot was aligned. Once the

shot was aligned, non-static objects representing the characters

could also be key-framed to match their position from the

camera’s point of view, thereby finding their trajectory in the

recreated 3D space. The recreated scene, including renderings

of the house and cars present in the film as well as Alexander’s

trajectory through the scene can be seen in Fig. 2.

Fig. 2. Recreated scene with Alexander’s path overlayed

The second step was to create a cost map for the path

planner. The aligned footage was projected onto a plane to

recreate the ground plane. This was done by repeatedly finding

a frame in which a portion of the ground was visible, and

then painting that portion of the ground onto the recreated

ground plane similarly to the ‘screen space brush’ method

7

44

described by Hanrahan and Haeberli[4]. This reconstructed

ground plane had a threshold applied to create a cost map,

and unreachable areas such as those inside the house or under

cars were manually marked as infinite cost. The resulting cost

map can be seen in Fig. 3.

Fig. 3. Texture-painted ground plane on left and generated cost map on right

III. CALCULATING OPTIMAL PATHS

Once this cost map was created, the optimization could

begin. This cost map was used to calculate how much of

the path passed through ‘water’ pixels. This was done using

Bresenham’s line algorithm [5] to find the pixels covered by

the path and finding the ratio of grey (in the water) to white (on

dry land) pixels. This cost map was also used in conjunction

with the A* planning algorithm [6] as an 8-connected grid in

order to find paths that avoided wet areas. A* was chosen as it

has the pleasant properties of being extremely fast, complete,

and guaranteed to produce optimal paths.

One downside to the use of a grid representation, however,

was that the paths were optimal only on the discrete space,

where at each pixel the family member only has eight di-

rections they could move. In reality the family could move

in an infinite number of directions and weren’t restricted to

moving from the center of one pixel to another. To mitigate

this effect, euclidean distance was used as the heuristic for

A* rather than the more traditional diagonal distance used

in most 8-connected grid representations. This was chosen

because although diagonal distance is admissible in the 8-

connected case, it can overestimate distance in the continuous

case. In practice what this heuristic means is that paths tend

to be closer to what they would be in a continuous space, and

less likely to zig-zag and take advantage of cheap diagonal

movement. An existing implementation found here was used

with some modifications: changing the heuristic to Euclidean

distance and changing the cost of diagonal movement to
√
2.

Finally, an additional relaxation step was applied in order to

produce smoother, shorter paths as proposed by Thorpe and

Matthies[7]. An overview of the path-finding is provided in

Algorithm 1.

IV. OPTIMAL PATH RESULTS

As can clearly be seen in Table I, A* produces perfectly

dry paths. Even after relaxation, our method produces paths

which are 99% dry. The paths that are taken in the film range

from 8-20% wet, leading two characters to fall over face first

Algorithm 1: Calculating optimal paths

input : pursuer location αT ,

n 2D target locations α = [αi, i ∈ N : i < n]
target location αT

m× n grid of costs G

output: relaxed A* path p

Function Relax(p, G):
∇G← ∇ GaussianBlur(G)
gradient← [0, 0, ..., 0]
for i← 1 to maxIterations do

for i← 0 to Length(p) do
x, y ← pi
gradienti ← ∇Gxy

optimizeStep← gradient+∆p
optimizeStepstart, optimizeStepend ← 0
if ||optimizeStep|| < 0.1 then

break

p← p− optimizeStep
return path

Function Main(α, αT , G):
p← AstarSearch(αi, αT , G)
if Length(pathnew) > 0 then

p← Relax (pathnew, G)

else
continue

return p

into the mud. In addition, Table I shows that the paths taken

in the film are only marginally shorter than those found by

A* and extremely close to those found using Relaxed A*.

All of these paths are sub-optimal in terms of distance, which

is clearly shown in the comparison to running in a straight

line. It is almost as if the characters are going out of their

way to get wet. Worse still, neither Marta nor Julia ever reach

Alexander, choosing instead to fall to their knees a few meters

short and are generally unhelpful for the rest of the sequence.

For ease of comparison, this excess distance was added onto

their ‘Path in Film’ lengths. As an additional visualization of

the irrational path choice of the characters, Algorithm 1 was

repeated for each frame and overlaid over the actual video.

The video can be found here.

A portion of the sequence was chosen in which the entire

family as well as Alexander were all clearly visible, so that

we could have an apples to apples comparison of path quality

without having to guess the location of off-screen characters.

The starting point for each of the characters was set to their

location at the first frame of the sequence. Because Alexander

stays in approximately the same place for the entirety of this

segment, the goal for each path was set to Alexander’s median

location.

45

TABLE I
PERCENTAGE OF PATH SPENT IN WATER

Character A* Relaxed A* Path in film Straight line to goal
Marta 0% 1.2% 12.8% 8.2%
Victor 0% 1.3% 7.7% 21.8%
Julia 0% 1.1% 16.1% 9.7%

Adelaide 0% 1.0% 19.5% 10.0%

A* A* after relaxation Original path Straight line path

0%

5%

10%

15%

20%

A
m

o
u
n
t
o
f
p
a
th

 i
n
 w

a
te

r

Fig. 4. Box plot showing results from Table I

TABLE II
LENGTHS OF PATHS

Character A* Relaxed A* Path in film Straight line to goal
Marta 76.7 m 72.8 m 72.0 m 70.7 m
Victor 63.3 m 60.2 m 61.8 m 58.0 m
Julia 84.3 m 80.5 m 79.6 m 77.6 m

Adelaide 82.7 m 78.6 m 79.3 m 76.1 m

A* A* after relaxation Original path Straight line path

60

65

70

75

80

85

90

P
a
th

 l
e
n
g
th

 (
m

)

Fig. 5. Box plot showing results from Table II

V. PURSUIT AND EVASION

Although these comparisons are elucidating with regards to

pursuer path quality, the author was additionally curious about

what would happen if Alexander were actively trying to avoid

capture, rather than wandering about in despair. In order to test

this behaviour, we formulate the scene as an evasion-pursuit

problem. First, a boundary is created which is a convex hull

roughly approximating the borders of the cost map, ignoring

obstacles.

Fig. 6. Result of the pursuit algorithm, with pursuer paths marked in red
and evader path marked in cyan.

Alexander employs the fleeing behaviour found in Algo-

rithm 2. This is a very basic fleeing behaviour that avoids

pursuers and coastal edges weighted by their distance from

Alexander. The pursuers attempt to catch Alexander using

Algorithm 3 which was developed by Huang et al.[8]. This

algorithm was chosen as it guarantees capture in finite time and

can be calculated in real-time. In this algorithm, rather than

pursuing the target directly, a Voronoi diagram is constructed.

Each pursuer checks if their region of the Voronoi diagram

46

borders the target’s region. If it does, they move toward the

center of the line defining the border between the two regions

as fast as they can. If the pursuers region does not share any

border edges with the target region, it simply moves toward the

target as fast as it can. This results in the pursuers surrounding

the target rather than bunching up during pursuit.

Previous work on this topic only performs simulation exper-

iments on regions with square boundaries[8][9], which makes

the calculation of distance to edge as well as the calculation of

the bounded Voronoi diagram much simpler. In our case, the

calculation was performed by first reflecting all points about

every edge in the boundary polygon. The Voronoi diagram

was then calculated using the union of the original points and

their reflections. These reflections could additionally be used

to calculate the distance from any point to all of the boundary

edges by taking the differences between a point and each of

its reflections and dividing by two.

For the purposes of the experiments, all actors were assumed

to run at a human’s optimal hunting speed of 3.3 m/s[10].

Algorithm 2: Evasion algorithm

in : n pursuer locations α = [αi, ∀i ∈ N : i < n]
target location αT

convex hull B with k edges [Bi, ∀i ∈ N : i < k]

out: Direction of evasion

Function CalcPursuerDir(αT , α):
δ ← [0, 0]
for i← 0 to Length(α) do

ε← αi − αT

δi ← ε/‖ε‖2
return δ

Function CalcEdgeDir(αT , B):
δ ← [0, 0]
for i← 0 to Length(B) do

ε← CalcEdgeDist(Bi, αT)

δi ← ε/‖ε‖2
return δ

Function Main(αT , pursuers, B):
edgeDir ← CalcEdgeDir(αT , B)
pursuerDir ← CalcPursuerDir(αT , α)
δ ←∑

edgeDir +
∑

pursuerDir
return δ/‖δ‖ ∗ evaderSpeed

VI. PURSUIT AND EVASION RESULTS

To evaluate the effectiveness of our pursuit strategy, 100

trials were run with random starting positions for all of the

actors. For each of these trials, the pursuers were given a

maximum of one minute to capture Alexander. Based on

observing the original film footage, it was determined that

Algorithm 3: Pursuit algorithm

in : n pursuer locations α = [αi, ∀i ∈ N : i < n]
target location αT

convex hull B with k edges [Bi, ∀i ∈ N : i < k]

out: Direction of pursuit for each pursuer

Function Main(αT , α, B):
αreflected ← Reflect([αT , α], B)
regions← Voronoi(αreflected)

for i← 0 to Length(α) do
edge← SharedEdge(regionsi, regionsT)
if edge 6= ∅ then

target← (edgea + edgeb)/2
δ ← αi − target
δ ← δ/‖δ‖

else
δ ← αi − αT

δ ← δ/‖δ‖
return δ ∗ pursuerSpeed

it would take three pursuers to restrain Alexander and thus

successfully ‘capture’ him. Once a pursuer reached Alexander,

they would be removed from the Voronoi diagram and travel

with him until three pursuers had reached him, at which point

the trial was ended and reported successful. If three pursuers

had not reached Alexander by the end of the one-minute mark,

the trial was reported as a failure.

Alexander was caught in 100% of trials in an average of

16.3 seconds with a standard deviation of 4.5 seconds. The

maximum time to capture was 28.0 seconds. In the film,

Alexander runs free for a grand total of 5 minutes and 37

seconds before he is forced into the ambulance.

VII. CONCLUSION

The results of this paper confirm our suspicion that the

final sequence of Offret contains a grave oversight when it

comes to common-sense path planning. Clearly, Tarkovsky

and his cast did not do even a cursory literary review.

Otherwise, they would certainly have come across A* ([6]

was published more than a decade prior to the release of the

movie) and path relaxation ([7] was published more than a year

before principal shooting began). As our pursuit and evasion

results have shown, had the family employed even a simple

surrounding technique, they would have caught Alexander an

order of magnitude faster. Had the actors and director had the

forsight to move in a more coordinated fashion, Tarkovsky

may not have had to shoot this sequence twice, and even if

he had, he would certainly have saved some money on film.

These unfortunate oversights show yet again that the value

of meticulous academic research trumps the brash, emotional

decisions of even the greatest artists. As roboticists, scientists,

and people of Reason, we continue to wonder: “Will they ever

learn?”

47

REFERENCES

[1] Andrei Tarkovsky. Offret. Svenska Filminstitutet (SFI), 1986
[2] Paul Coates. Film at the Intersection of High and Mass Culture. Cam-

bridge University Press. pp. 157-158, 1994.
[3] Michal Leszczylowski Regi Andrej Tarkovskij. Svenska Filminstitutet

(SFI), 1988
[4] Pat Hanrahan, Paul Haeberli. Direct WYSIWYG Painting and Texturing

on 3D Shapes. Computer Graphics, vol. 24, no. 4, pp. 215-223 August
1990.

[5] Jack Bresenham. Incremental Line Compaction. The Computer Journal,
vol. 25, no. 1, pp.116-120, February 1982

[6] Peter E. Hart, Nils J. Nilsson, Bertram Raphael. A Formal Basis for
the Heuristic Determination of Minimum Cost Paths. Intelligence/sigart

Bulletin - SIGART vol. 37. pp. 28-29, 1972.
[7] Charles E. Thorpe, L.H. Matthies. Path relaxation: Path planning for a

mobile robot. Proc. AAAI, pp. 318-321, 1984.
[8] Haomiao Huang, Wei Zhang, Jerry Ding, Duan M. Stipanovi, Claire

J. Tomlin. Guaranteed Decentralized Pursuit-Evasion in the Plane with
Multiple Pursuers. Proceedings of the IEEE Conference on Decision and

Control, 2011.
[9] Zhengyuan Zhou, Wei Zhang, Jerry Ding, Haomiao Huang, Duan M.

Stipanovi, Claire J. Tomlin. Cooperative pursuit with Voronoi partitions.
Automatica vol. 72, pp. 64-72, 2016.

[10] Karen L.Steudel-Numbers, Cara M.Wall-Scheffler. Optimal running
speed and the evolution of hominin hunting strategies. Journal of Human

Evolution. vol. 56, no. 4, pp. 355-360, April 2009.

48

Abusing the RPM Package Manager to Compile So�ware

iliana destroyer of worlds∗

Linux Witch
Amazon Web Services
iweller@amazon.com

ABSTRACT

�e RPM Package Manager (RPM) is a popular Linux utility de-

signed to destroy your computer. We extend its destructive capa-

bilities to include dynamically building the list of upstream code

sources based on the list of upstream code sources.

ACH Reference Format:

iliana destroyer of worlds. 2019. Abusing the RPM Package Manager to

Compile So�ware. In Proceedings of SIGBOVIK 2019, Pi�sburgh, PA, USA,

April 1, 2019 (SIGBOVIK ’19), 3 pages.

1 INTRODUCTION

�e RPM Package Manager (RPM) [4] is an extremely dangerous

Linux program that should be avoided at all costs. E�ects of use

include destruction of data, privileged arbitrary code execution, and

in the worst case, installation of a Linux operating system. Many

Linux distributions use RPM as their primary package manager;

even more don’t.

�ere are two main modes for using RPM: compiling so�ware,

usually with the rpmbuild command, and installing so�ware, usu-

ally with the rpm -i --force --nodeps1 command.

Modern programming languages, such as Perl, have their own

package management ecosystems. Within these ecosystems, seem-

ingly innocuous so�ware can depend on multiple incompatible

versions of the same dependencies. �is is, of course, an impossible

issue to solve. It is core to every packager’s instinct to add all

existing development libraries to a Linux distribution, regardless of

how useful those libraries are to an end user, and to build all tools

against distribution-packaged libraries.

Firecracker, an advanced chroot developed by AWS, is one such

package with many Rust dependencies. Nevertheless, we added

Firecracker to Amazon Linux, a Linux distribution maintained by a

book store, without building hundreds of useless RPMs.�e solution

we developed can, but should not, be applied to other programming

language ecosystems with intractable dependency closures.

Most importantly, the solution is a complete hack that shouldn’t

work and should have never been wri�en.

2 RPM: THE GOOD PARTS

Recipes for RPM are called spec �les (a sample is provided in List-

ing 1). �ey begin with general metadata about a package, called

the preamble, such as the name, mailing address, Social Security

number, source tarball, and any patches. �is is followed by the

scriptlet sections, which are Bash scripts; %prep unpacks and sews

patches onto the source code, %build builds it, and %install installs

it into a build root. Finally, %�les lists the �les installed from the

∗Uppercasing of name is punishable by intergalactic law. Views expressed do not
necessarily re�ect Amazon’s.
1-i --dont --force --nodeps and neither should you.

Listing 1: A spec �le

Name: robot�ndski�en

Version: 2.7182818.701

Release: 4%{?dist}

Summary: A zen simulation

Source0: h�p://robot�ndski�en.org/…/%{name}-%{version}.tar.gz

Patch0: nki-make�le.patch

BuildRequires: ncurses-devel

%prep

%autosetup -p1

%build

%con�gure

%make build

%install

%make install

%�les

%{ bindir}/%{name}

%changelog

∗ Sun Dec 10 2017 iliana weller <ilianaw@bu�slol.net>

- Update to 2.7182818.701 (#1297151)

build root, and %changelog lists who broke your business-critical

so�ware. [1]

Note the complete lack of any common shell commands which

one normally �nds in Bash scripts. �ey’re all hidden away behind

macros to take away any artistic expression that so�ware packaging

once had, ensuring that all code is built with exactly the same con-

�gure andmake options. [3] To ensure consistency in a distribution,

this is coupled with a stringent and continuous review process…

wait, spec �les o�en get reviewed once and never again? Oh.

When a user feeds the spec �le to rpmbuild, it most likely fails

spectacularly. Sometimes it doesn’t, though, and the user gets RPMs

as output. RPMs are kind of like a candy-coated tarball; a hard,

metadata-rich exterior breaks open to reveal a gooey cpio �lling.

2.1 �ousands of Packages You Can’t Use

A common rule in Linux distributions is “one project, one source

package” [3]. �is means that the TEX Live distribution in Fedora is

represented by a single 220,000-line spec �le generated by a script

[5], while each of the 780,000 dependencies available on npm must

have a separate spec �le.

https://github.com/amazonlinux/rust-bundled-packaging/tree/b9c50d16b6d517c4e7483c6842b6f3cc77969b9d

8

49

https://github.com/amazonlinux/rust-bundled-packaging/tree/b9c50d16b6d517c4e7483c6842b6f3cc77969b9d

Dedicated Python scripts, assisted by obedient packagers, take

this rule to its extreme. In Fedora 27 there were 1,129 package names

pre�xed with nodejs, 465 package names pre�xed with golang,

and 132 package names2 pre�xed with rust. [5] �e scripts can

recursively �nd dependencies, commit spec �les, and start builds.

Fedora is not alone; Debian has over 450 Rust source packages;

each one builds several binary packages for di�erent feature �ags.

�ese packages commonly install source code to distribution-

de�ned �le paths that are ignored by the tools that know how to

compile this code. �ey are dead weight in repository metadata,

and adding too many Rust packages incurs the risk of package

repository oxidization.

2.2 One Version Ought To Be Enough For
Anybody3

fd4 is a Rust utility for �nding �les. We inspected the Cargo.lock

�le for fd version 7.3.05, which lists its full dependency closure. In

order to compile fd, we need two versions of rand core (0.3.x and

0.4.x), as well as two versions of winapi (0.2.x and 0.3.x).

In the usual Linux distribution dependency model, this means

you need to have two distinct versions of the winapi package

installed simultaneously, which RPM front-ends6 did not support

until recently, and you need the ability to specify a permi�ed

version range (e.g. 0.3.0 ≤ v < 0.4.0), which RPM did not support

until late 2017 (version 4.14 ≤ v < ∞).

�is leaves longer-support distributions no option for building

Rust code, which is becoming required for common staples of Linux

distributions (most notably Firefox, librsvg, and vape7).

Well. �ere is an option, but we don’t like it.

3 (DEFUN GETSOURCES () (GETSOURCES))

RPM macros are very powerful, incredibly dangerous, and an ex-

cellent example of write-only code [2]. �e %autosetup macro in

Listing 1 is responsible for unpacking and patching code. Its de�ni-

tion in Fedora 29 is reproduced in Listing 2.

RPM macros can perform option parsing and introspection of

sources and patches de�ned in the spec �le. �ey can also run

arbitrary Bash or Lua code. All of this can be mixed together, and

nothing is o�-limits; macros can write out entire scriptlet sections,

preamble �elds, and even Harry Po�er slash �ction.

What if we could abuse macros and kill o� those thousands of

unusable packages? Our macros would need to:

• Introspect a source �le for all its Rust dependencies, and add

Source# lines to the preamble

• Fake a Cargo registry containing all these dependencies

• Build and install the target binary

We built these macros, which contain an unhealthy mixture

of JSON parsing, AWK, and Lua. Not only did we build them, we

2132 is a lot for the �rst Fedora release where Rust packages were permi�ed at all; the
current count is over 500.
3With apologies to Bill Gates, noted proponent of Linux.
4fd stands for Finger Donuts.
5h�ps://github.com/sharkdp/fd/blob/7f58e8f7064346�e569563b657fe92f24830e6a/
Cargo.lock
6Common RPM front-ends include Zypper, yum, and DNF (which stands for Do Not
Fuck).
7h�ps://github.com/JoshuaRLi/vape

Listing 2: �e %autosetup macro

%autosetup(a:b:cDn:TvNS:p:)\

%setup %{-a} %{-b} %{-c} %{-D} %{-n} %{-T} %{!-v:-q}\

%{-S:%global scm %{-S∗}}\

%{expand:% scm setup %{ scm} %{!-v:-q}}\

%{!-N:%autopatch %{-v} %{-p:-p%{-p∗}}}

distributed them in an actual Linux distribution, we built Firecracker

using them, and we made the code rebuildable by users via retriev-

ing the source RPM and using rpmbuild --rebuild.

For your safety (and because TEX is di�cult), the macros8 are

only partially reproduced in Listing 3. At your own risk, they are

available on GitHub9 and in the Amazon Linux source RPMs.

For a packager to download all the required source �les, they

must run the spec �le through a spec �le parser (such as rpmspec -P),

then use a source download tool (such as spectool -g).

3.1 Okay, So Not Everything’s Perfect

For some dependencies to build correctly, packagers must include

the necessary BuildRequires and Patch# lines to allow them to build.

In this system, these must be duplicated across every package that

shares the same dependency. �is can be resolved by arbitrarily

limiting the number of packages that use this solution, perhaps by

utilizing the tried-and-true mechanism of “laziness”.

4 FURTHER APPLICATIONS

�e general approach described here can be used for any pro-

gramming language with lock �les describing their dependency

enclosures and with standard URLs to fetch source code, such as

Node.js or what people wish Go would be.

We really shouldn’t though.

5 FURTHER TANGENTIALLY RELATED
RESEARCH TOPICS

Calculate the total bandwidth used to transfer the %changelog

section of the TEX Live spec �le, duplicated in each of its nearly 6,000

binary RPMs [5], across Fedora and its derivative distributions.

Something something Nix Docker Flatpak AppImage snaps.

ACKNOWLEDGMENTS

�e author acknowledges Amazon for inexplicably employing her.

�anks toNatasha Jarus, Samuel Karp, EuanKemp, TomKirchner,

and Colleen�ine for their reviews.

REFERENCES
[1] Edward C. Bailey. 1997. Maximum RPM. Sams Publishing. h�p://�p.rpm.org/

max-rpm/
[2] Wikipedia contributors. 2019. Write-only language. Wikipedia (2019). h�ps:

//en.wikipedia.org/w/index.php?title=Write-only language&oldid=880031540
[3] Tom ‘spot’ Callaway et al. [n. d.]. Fedora Packaging Guidelines. h�ps://docs.

fedoraproject.org/en-US/packaging-guidelines/
[4] Erik Troan, Marc Ewing, et al. 1995. RPM Package Manager. h�p://rpm.org
[5] Will Woods. 2018. Unpacking RPM: package names. h�ps://weldr.io/

Unpacking-RPM-names/

8Object Class: Euclid
9h�ps://github.com/awslabs/rust-bundled-packaging/tree/
b9c50d16b6d517c4e7483c6842b6f3cc77969b9d

https://github.com/amazonlinux/rust-bundled-packaging/tree/b9c50d16b6d517c4e7483c6842b6f3cc77969b9d

50

https://github.com/amazonlinux/rust-bundled-packaging/tree/b9c50d16b6d517c4e7483c6842b6f3cc77969b9d

Listing 3: RPM macros for bundling Rust dependencies

SPDX-License-Identi�er: MIT

Copyright (c) 2017 Igor Gnatenko

Copyright 2018 Amazon.com, Inc. or its a�liates.

% cargo %{ bindir}/cargo

% cargo common opts %{? smp m�ags}

% cargometadir %{ datadir}/cargo-metadata

%cargo prep (\

set -eu \

%{ mkdir} -p .registry \

REGISTRY=”$(realpath .registry)” \

%{ mkdir} -p .cargo \

cat > .cargo/con�g << EOF \

[build]\

rustc = ”%{ rustc}”\

rustdoc = ”%{ rustdoc}”\

rust�ags = %{ global rust�ags toml}\

\

[term]\

verbose = true\

\

[source]\

\

[source.local-registry]\

directory = ”$REGISTRY”\

\

[source.crates-io]\

registry = ”h�ps://crates.io”\

replace-with = ”local-registry”\

EOF\

do cargo build registry() { \

% cargo build registry \

} \

do cargo build registry $REGISTRY \

)

%cargo build %{ cargo} build %{ cargo common opts} --release %{?cargo args}

%cargo test %{ cargo} test %{ cargo common opts} --release --no-fail-fast %{?cargo args}

%cargo install \

%{ cargo} install %{ cargo common opts} --path . --root %{buildroot}%{ pre�x} %{?cargo args} \

%{ rm} %{buildroot}%{ pre�x}/.crates.toml \

%{ mkdir p} %{buildroot}%{ cargometadir} \

%{ cargo} metadata --format-version 1 %{?cargo args} > %{buildroot}%{ cargometadir}/%{name}.json

% cargo crate source url() h�ps://crates.io/api/v1/crates/%1/%2/download#/%1-%2.crate

% cargo crate source urls grep ’ˆ”checksum’ | awk ’{ print ”Source” NR+9999 ”: %%{ cargo crate source url ” $2 ” ” $3 ”}” } END { print ”%%global cargo �rst crate 10000

% cargo build registry %{lua:for i = rpm.expand(”% cargo �rst crate”),rpm.expand(”% cargo last crate”) do \

uncompress = rpm.expand(”%{uncompress:%{S:” .. i .. ”}}”) \

print(uncompress .. ” | tar -x -C $1\\n”) \

template = ’{”�les”:{},”package”:”%s”}’ \

print(”printf ’” .. template .. ”’ $(sha256sum ” .. rpm.expand(”%{S:” .. i .. ”}”) .. ” | awk ’{ print $1 }’) > $1/$(” .. uncompress .. ” | tar -t | head -n 1 | cut -d / -f 1)/.cargo-checksum.json

end}

%cargo bundle crates(n:t:l:) \

%{-t:%{-l:%{error:cargo bundle crates: Can’t specify both -t and -l}}} \

%{!-t:%{!-l:%{error:cargo bundle crates: Must specify one of -t or -l}}} \

%{-t:%{expand:%(%{uncompress:%{S:%{-t∗}}} | tar -xO %{-n:%{-n∗}}%{!-n:%{name}-%{version}}/Cargo.lock | % cargo crate source urls)}} \

% -l:% expand:%(cat % S:% -l∗ % cargo crate source urls)

https://github.com/amazonlinux/rust-bundled-packaging/tree/b9c50d16b6d517c4e7483c6842b6f3cc77969b9d

51

https://github.com/amazonlinux/rust-bundled-packaging/tree/b9c50d16b6d517c4e7483c6842b6f3cc77969b9d

52

Security and privacy

9 CVE-2018-90017117

t0m7

Keywords: kingme, exploit, input validation

10 Orchhit: User-oblivious social networking

Jim McCann

Keywords: privacy, hashing, cryptography

53

Common Vulnerabilities and Exposures

CVE-2018-90017117
Published 2018-12-03

Partial embargo until 2019-04-01

Screenshot. After 5. ... gxh1=K ?!, black

promotes their g pawn to a second king.

Description

An input validation error in the move parser allows remote privilege escalation.

Background

The popular internet chess site lichess.org allows for the import of PGN files, a standard text-based inter-

change format for giving the sequence of moves in a game. Moves look like �e4� (move a pawn to the e4

square) or �Qxd3� (queen captures on d3) or �Rcc8� (the rook on the C file moves to c8). When a pawn

moves into the last or first rank, it usually promotes to queen, but may legally promote to a bishop, knight,

or rook at the player�s option. This preference is specified using the notation g8=B (or N for knight, R for

rook, or Q for queen to optionally be explicit). lichess.org does

not properly implement this syntax, and allows a move like

g8=K, which is not legal chess.

Impact

The pawn is promoted to a king. This is a privilege escalation

vulnerability, because the king has privileges that the pawn

does not have, such as the privilege to be checkmated.

Scope

The issue is only confirmed during PGN import (e.g. in �analy-

sis board�). In live games, it is possible to use keyboard entry

of moves in PGN notation, but =K is ignored. It is possible that

these moves are only rejected in the frontend and would be

allowed by the underlying chess engine (if made directly

through the API, for example). After a second king is intro-

duced, the game appears to be quite broken; some parts of the

interface behave as though the game is a draw and no further moves are allowed, but the computer contin-

ues to suggest lines in the background. When evaluating this vulnerability in other systems, note that the

king has not yet moved, and so could erroneously be considered eligible to castle (e.g. with the h8 rook), a

potential 0-0-day.

Example exploit

1. f4 e5 2. Nf3 exf4 3. g4 fxg3 4. Ng1 g2 5. Nf3 gxh1=K

Classification - Office Use Only

CVSS v3.0 Severity and Metrics:

Base Score: 7.7 HIGH

Vector: AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:H/A:N (V3 legend)

Impact Score: 7.9

Exploitability Score: 8.9

Reported by t0m7 of East Coast Hacking 0rganization

Also known as: #KingMe attack9

54

Orchhit: User-Oblivious Social Networking

JIM MCCANN∗, TCHOW llc

Fig. 1. Our user-oblivious social network, Orchhit, allows sharing of orchestral-hit-sound status updates in a user-oblivious way, thanks to a preimage-writable

table construction.

In this paper, we describe the unique infrastructure used by our new user-

oblivious social network, Orchhit (Figure 1). This infrastructure uses a

constant-sized storage to support basic status sharing for an unlimited num-

ber of users; allows instant client-side account creation and deletion; and is

immune to server-side snooping. Since we are magnanimous co-founders,

we reveal our infrastructural secrets in this tell-all publication.

CCS Concepts: • Security and privacy → Privacy protections; Hash func-

tions and message authentication codes; • Networks → Social.

Additional Key Words and Phrases: privacy, failed social networks, overly

casual writing, isn’t it unfortunate that cryptozoology has nothing to do

with cryptosystems?

1 INTRODUCTION

Modern social network web page (site) companies face three ma-

jor problems: acquiring new users, providing server resources to

support existing users, and repressing their own inescapable desire

to sell users’ private information. We present a novel social net-

work architecture – user-oblivious social networking – that uses

cryptographic primitives to mitigate all three of these problems.

Particularly, our user-oblivious social network backend provides

a status sharing platform and the following guarantees:

(1) Instant client-side account creation and deletion without

server contact (thus, no way for operators to determine the

number of accounts).

(2) Friends lists are never stored on the server in a way that can

be read by operators (thus, no way for operators to determine

the social network of accounts).

(3) Uses a constant amount of server storage.

(4) Provides no way to distinguish status updates from random

(or user account) data, unless status updates are improperly

designed.

∗ix@tchow.com

2 BACKGROUND

Learning from the mistakes of others would only slow us down.

3 METHOD

Our user-oblivious social network construction is built on a cryp-

tographic hash function H (X) : Z∗2 → Z
2B
2 which maps arbitrary-

length bit-strings to �xed-length bit strings of length 2B in a way

that is hard to invert and does not induce any correlations between

output bits (along with some other important properties that we

can’t be bothered to look up right now).

3.1 Server

The social network server is responsible for persistent storage of a

2B -entry table of B-bit storage locations, T . This table is initialized

with random bits.

The server provides two interfaces, read and write, to the client

to manipulate the table. Read allows a client to retrieve the table

value at a given B-bit address:

read(A : ZB2) :

return T [A]
(1)

Write allows a client to set the table value at any address for which

it knows a B-bit hash preimage:

write(P : ZB2 ,V : ZB2) :

T [lo(H (P))] ← V
(2)

Where lo(B) : Z2B2 → Z
B

2 is the function that returns the low B bits

of a 2B-bit value.

These two primitives – read and write – are the only things

that the server implements in Orchhit – the remainder of the social

network relies on client operations exclusively.

Their system is live at: http://orchhit.com

10

55

http://orchhit.com

2 • McCann and Saghy

Fig. 2. The status format in Orchhit is a MIDI note-on message whitened by a nonce.

3.2 Client

Notice that the server operations described above allow secure

publish-subscribe interaction between clients – one client can pick

a value P to write status updates to and publish value lo(H (P)) to

enable other clients to read these updates. This interaction forms

the basis of our platform’s social networking operations.

Login / account creation. To start using our social network, a client

picks a passphrase, P ; computes a secret key, K ≡ H (P), by hashing

the passphrase; and derives a follow key, F ≡ lo(H (lo(K))), by

hashing the low bits of the secret key.

Notice that this process does not require any server communica-

tion or storage. Note, also, that the high bits of the secret key will

never be sent to the server.

Account deletion. Account deletion can be performed by forget-

ting the passphrase.

Status updates. To publish a status update, the client writes the

update using its secret key:

publish(U) :

write(lo(K),U)
(3)

Friends list. To store or retrieve the ith element of its friends list,

the client uses addresses, Pi , derived from its secret key, obscuring

the contents with a value, Xi , derived from the extra-secret upper

bits of its secret key:

Xi ≡ lo(H (hi(K) + i))

Pi ≡ lo(H (lo(K) + i))

getFriendAddress(i) : (4)

return read(lo(H (Pi))) · Xi

setFriendAddress(i,A) : (5)

write(Pi ,A · Xi)

Notice that no provision is made for variable-length friends lists. In

our implementation, every user has exactly four friends.

4 PROPERTIES

The above construction is simple but provides some very useful

properties which make it hard to deduce anything about the social

network by inspecting a snapshot of its storage.

User Account Obliviousness. Since all of a user’s account data

(their friends list) is xored with a passphrase-dependent stream, it

is impossible to distinguish user accounts from empty (initialized-

to-random) storage.

Constant Storage. Rather than consuming ever-increasing amounts

of storage, the server’s table remains �xed-size for the life of the net-

work. As the number of users grows, the user experience will grace-

fully degrade as friends list entries and statuses get over-written

by hash collisions. As the designers of the internet understand, this

sort of “gentle failure” is much preferable to a hard failure, and may

even lead to self-regulation, as users will quit using the (apparently

�aky) system.

Status Update Obliviousness. As long as status updates are IID1,

and �ll the entire encoding space, status updates stored in the table

are also indistinguishable from random bits.

At present, this is an implementation detail that the client needs

to manage2.

5 IMPLEMENTATION

Our user-oblivious social network, Orchhit, is live at http://orchhit.

com. It provides users the ability to push orchestral hit sounds to

their followers and to follow up to four friends. Status messages

are, therefore, MIDI note-on messages, which are whitened using a

nonce and a hash value in a way that is somewhat �awed, Figure 2,

though red-teaming this is left as an exercise to the reader .

For our implementation, we chose B = 24 as a reasonable com-

promise between usability and security3. As a hash function our

implementation uses SHA-1 (truncated to 48 bits) because imple-

mentations are readily available and because we clearly lack cryp-

tographic acumen.

As a bandwidth saving measure, the read call implemented by

our server provides the option to defer return until the value is

di�erent from a provided value. This technique, termed long polling,

1“Locally owned and responsibly sourced.”
2We certainly didn’t get this wrong in our client.
3Is 224 a su�ciently large number? Of course it is! It’s higher than most people can
count even if they use binary and all their �ngers and toes.

Their system is live at: http://orchhit.com

56

http://orchhit.com

Orchhit: User-Oblivious Social Networking • 3

avoids some bandwidth costs and probably doesn’t open the system

to any weird timing attacks.

6 FUTURE WORK

The astute among you may have realized by now that selecting a

secure value for B may be impossible, especially as compute e�-

ciency seems to be growing much faster than storage e�ciency.

One solution might be to use a pearl-diver construction to provide

proof-of-work along with read requests4.

For some social network designs, allowing only four friends may

seem limiting. However, this limit can easily be overcome by realiz-

ing that your de�nition of “friend” is not su�ciently narrow (or by

keeping multiple accounts open).

Unfortunately, our system is vulnerable to several side-channel

information disclosure attacks. Anyone able to observe the network

tra�c to and from the server – e.g. the social network operator

themselves – can estimate the type of individual storage locations by

observing the read and write behavior over time. This information

may be used to determine the number of users and – potentially –

the contents of their status updates. In our present network, this

hazard is largely mitigated by the fact that status updates are just

orchestral hit sounds so, like, chill out folks.

7 CONCLUSION

In this paper, we described a construction for a user-oblivious social

network based on a preimage-writable table5.

Readers are encouraged to try our social network at http://orchhit.

com. Philosophically speaking, you either already have, or can never

truly have, an account.

We hope that our work points the way forward for a bold new set

of web services that use cryptographic primitives to make scaling

easy and monetization nearly impossible.

ACKNOWLEDGEMENTS

Thanks to Brian Saghy for extensive conceptual development assis-

tance, domain administration, and being too humble a co-founder

to want authorial credit.

4This may enable blockchain-backed automated ful�llment services to support big-
data-centric AI-�rst omnichannel retailtainment; enhanced, of course, by a sustainable
and authentic brand story. Yes, just put the venture capital money over there.
5Which we have actively avoided looking up prior work on, preferring to treasure the
illusion of novelty.

Their system is live at: http://orchhit.com

57

http://orchhit.com

58

Machine learning

11 Color- and piece-blind chess

Dr. Tom Murphy VII Ph.D.

Keywords: chess, handicaps, man-in-the-middle attacks, neural networks

12 Dimensionality-reducing encoding for classification of Pythagorean
engendered numbers

Rany Tith and Oscar I. Hernandez

Keywords: number theory, machine learning, encoding, informa-
tion theory, classification, gender theory, integers, global-
ization, computation, mathematics

13 emojizip: A text compression system based on pictogram-
kiloword equivalence

William Gunther and Brian Kell

Keywords: data compression, TensorFlow, laughing crying emoji

14 Meta-meta-learning for neural architecture search through
arXiv Descent

Antreas Antoniou et al.

Keywords: meta, meta-meta, deep, NAS

15 Towards automatic low hanging fruit identification for the
steering of ML research

Nick Frosst and Aidan Gomez

Keywords: machine learning, detection, segmentation, orientation,
apple, akee, apricot, avocado, banana, bilberry, black-
berry, blackcurrant, black sapote, blueberry, boysenberry,
Buddha’s hand (fingered citron), crab apples, currant,
cherry, cherimoya (custard apple), chico fruit, cloudberry,
coconut, cranberry, cucumber, damson, date, dragonfruit
(or pitaya), durian, elderberry, feijoa, fig, goji berry, goose-
berry, grape, raisin, grapefruit, guava, honeyberry, huck-
leberry, jabuticaba, jackfruit, jambul, japanese plum, jostaberry,
jujube, juniper berry, kiwano (horned melon), kiwifruit,
kumquat, lemon, lime, loquat, longan, lychee, mango,
mangosteen, marionberry, melon, cantaloupe, honeydew,
watermelon, miracle fruit, mulberry, nectarine, nance, olive,
orange, blood orange, clementine, mandarine, tangerine,
papaya

59

COLOR- AND PIECE-BLIND CHESS

DR. TOM MURPHY VII PH.D.

1. Impressing humans

What better way for humans to impress each other with
their brains, especially in movies, than to play chess—and to
shout dramatically CHECKMATE! upon surprise-checkmating
their opponent? Well, one way is to play chess while disadvan-
taged somehow, for example, by punching each other in the
face repeatedly during the game to impair brain function (see
Chess Boxing [8]). Another common distraction is to play a
multitude of games against many opponents at the same time,
in a so-called “simultaneous exhibition.” The idea is that this
is more challenging because of the need to maintain mental
state for so many games at once, whereas your opponents only
need to maintain state for one game. In truth, simultaneous
exhibitions easily fall to a “man-in-the-middle attack.” If the
purported genius simply creates a perfect bipartite matching of
the games played with the white pieces and the games played
with black, he can mechanically forward moves between these
pairs of boards. This requires only constant state (see next
section) per pair of games, and guarantees an even score for
the exhibition. So that’s not very impressive.

Another disadvantage that humans sometimes use to im-
press each other is a blindfold (worn over the eyes). In this
predicament they only hear the opponent announce moves and
must imagine the position on the board in their mind’s eye,
both for the sake of remembering it and while exploring po-
tential moves. Disadvantages can be combined, such as in the
final scene of the 1988 documentary Bloodsport where Jean
Claude van Damme is blinded by an illicit foreign substance
during the final martial art battle.1

2. Impressing computers

In contrast, it is much more difficult to impress computers or
impress people with computers. When it comes to computers
playing chess, largely, the jig is up; it is now easy for chess pro-
grams, running on consumer hardware, to defeat the strongest
human players. It is well known that striking a computer actu-
ally fixes it, so Chess Boxing becomes trivial. Blindfold chess is
the natural interface for a chess computer; it is actually much
more difficult to have the computer interpret the opponent’s
move by visually studying a physical board!

Playing multiple games simutaneously is an easy extension
of playing a single game, although in principle the scale of

Date: 1 April 2019.
Copyright c© 2019 the Regents of the Wikiplia Foundation. Appears

in The Journal Of LaTeX Class Files with the insufficient material of the

Association for Computational Heresy; IEEEEEE! press, Verlag-Verlag
volume no. 0x40-2A. 1 tempo.

1JCVD does not play chess on camera, but it is implied that he is also
holding a simultaneous exhibition between rounds in a different room of

the underground Hong Kong illegal karate complex.

such a thing could still be impressive. This is also impres-
sive to other computers, who are largely concerned with filling
up their memories with efficiently coded data. With a mod-
ern chess engine, it is easy to scale to an arbitrary number of
games, since the exhibitor can make progress by observing one
of the boards, computing a strong move, and playing it; this re-
quires O(1) space because all of the state is stored externally
in the exhibition itself. However, we run the risk of losing
the tournament (other players may be yet stronger comput-
ers). The man-in-the-middle attack remains an efficient way
to minimize loss (ensuring an exactly even score). The sim-
plest way to do this is to explicily generate a perfect bipartite
matching over the n games G being played. This consists of
n/2 pairs 〈Gw, Gb〉 (where we play as white against Bob and
black against Walice, respectively). Since each game starts in
the starting position, this is very easy; we can just assign the
matches consecutively. Along with each pair we also record
which of the following states we are in:

(1) We are waiting for a move from Walice (our white
opponent)

(2) We have seen a move from Walice, which is .
(3) We are waiting for a move from Bob (our black oppo-

nent)
(4) We have seen a move from Bob, which is .

If in State 1, we just watch Gb until Walice makes a move,
then record it and proceed to State 2. We consume the move
and move to State 3 by playing that move in Gw against Bob
(where it must be our turn). We can immediately seek out that
game or wait until we naturally come upon it. However, we
should only approach Gw when the pair of games is in State 3,
etc., otherwise we will not have a move to play.

There are n/2 pairs, with two bits for the state, no more2

than log2(64× 64× 4) = 14 bits for each move (source square,
destination square, and 2 bits to distinguish promotion to
queen, rook, bishop, or knight). However, we also need to
store the matching of Gw to Gb; this can be done with a pair
of indices (or e.g. memory addresses) but unfortunately, this
requires log2(n) bits to represent. So overall this approach re-
quires O(n log(n)) space to play a simultaneous exhibition of
n games.

It appears to be possible to reduce the space usage per game
to a constant. In order to perform a man-in-the-middle attack,
we need a perfect matching between the white games and black
games. It is not essential that the matching be stable over
time; for example if we are forwarding moves between Walice
and Bob, and between Waluigi and Bario, and these games
happen to transpose to the same position, then it works just
fine to switch to forwarding between Walice and Bario; Waluigi
and Bob. So, rather than store the matching explicitly, we can
reconstruct it from the stored state at each step.

Let’s think about the process of forwarding the moves from
our white opponents to our black opponents; the reverse is
of course symmetric. The first step will be to wait for the

2There are only 1792 pairs of squares between which pieces can ever

move (Section 5.3.1), so 11+2 bits suffices, with some added complexity.

https://sf.net/p/tom7misc/svn/HEAD/tree/trunk/chess/blind

11

60

https://sf.net/p/tom7misc/svn/HEAD/tree/trunk/chess/blind

white opponents to make their moves, and then copy these
n/2 positions (not moves) into a vector in memory.

The black opponents are waiting for a move from us. Next,
we’ll copy their n/2 positions into memory, aligned with the
n/2 positions already present. Let’s say that the relation that
defines a legal move in chess is

B
m→ B′

where B is the position before the move m, and B′ is the
resulting position. Our goal is to align the games such that B′

(a position copied from our white opponent) is aligned with B
(a position pending a move for our black opponent) in memory;
this will represent the perfect matching. Computing m from

B and B′ when B
m→ B′ is easy (and unique), so this allows

us to read off and play the move for each row.
By invariant, it will be possible to produce such an align-

ment. For example, the first time we do this, each B will be the
starting position, and B′ will be a legal move made by white
from the starting position. Any alignment will work. Let’s say
that just one of the white opponents played 1. d4, resulting in
B0; then one black opponent will make a legal response to this
(say 1. . . . Nf6, giving B1). Then B1 can be B′ for the next
round, which we can align with B = B0, and so on.

The only tricky thing is figuring out which boards go with

which. Although if B
m→ B′ it is easy to deduce m, it is not

possible to compute B from B′, or even from B′ and m. This

is because we may have both Ba
ma→ B′ and Bb

mb→ B′ with
Ba 6= Bb. For example with B′

8kZ0Z0Z0Z
7Z0Z0Z0Z0
60Z0Z0Z0Z
5Z0Z0Z0Z0
40Z0Z0Z0Z
3Z0Z0Z0Z0
20Z0Z0Z0Z
1J0Z0Z0Z0

a b c d e f g h

. . . we could have Ba and Bb be

8Nj0Z0Z0Z
7Z0Z0Z0Z0
60Z0Z0Z0Z
5Z0Z0Z0Z0
40Z0Z0Z0Z
3Z0Z0Z0Z0
20Z0Z0Z0Z
1J0Z0Z0Z0

a b c d e f g h

8Rj0Z0Z0Z
7Z0Z0Z0Z0
60Z0Z0Z0Z
5Z0Z0Z0Z0
40Z0Z0Z0Z
3Z0Z0Z0Z0
20Z0Z0Z0Z
1J0Z0Z0Z0

a b c d e f g h

Both of which can precede B′ (the move is even the same:
Kxa1). So it is not enough to greedily assign edges in our
perfect match; if we choose the edge Bb to go with B′, we
might later find B′

2:

8RZ0Z0Z0Z
7ZkZ0Z0Z0
60Z0Z0Z0Z
5Z0Z0Z0Z0
40Z0Z0Z0Z
3Z0Z0Z0Z0
20Z0Z0Z0Z
1J0Z0Z0Z0

a b c d e f g h

. . . and have no possible matching board, since it cannot legally
follow Ba.

Fortunately, we know that there exists a perfect matching
(assuming all players are playing legal moves) and we can tell
if we found one (i.e., we didn’t get stuck). So, one strat-
egy that works is to choose randomly when there is some
ambiguity, and start over from the beginning if we ever get
stuck. In practice this will be pretty efficient, since convergent
board states are unusual. We only need a single pseudoran-
dom pool for the entire process, so it can be O(n) bits; this
seems easily enough to generate all possible permutations of
n/2 items. Even 22n grows much faster than n!. If we don’t like
the random approach, I believe it is also possible to compute
next_permutation in constant space; so we can just explicitly
try all orderings for B′ (this takes exponential time).

Once we have paired up each B and B′, we simply compute
the move (which we now know exists) and play it in that game.
We then wait for the black opponents to play their moves, copy
the resulting board states into our vector and repeat the above
process (but flipping “black” and “white”).

Although this is more involved than the previous approach,
and may take exponential time, it allows us to play against n
simultaneous opponents using O(n) space!

2.1. Board representations. The actual space used per game
is primarily the representation of a chess position, plus a few
bits for bookkeeping. So, representing boards compactly gives
us a way to increase the number of simultaneous games we can
play for a given storage size.

Mainly, we need to store the pieces and their locations.
There are a few other bits, like whose turn it is (1 bit), whether
each player can still castle king- and queen-side (4 bits), and
whether and where an en passant capture is possible (4 bits).3

With 64 squares, six pieces for each of the two sides, plus the
empty square, a straightforward representation of the board
uses 64 × 4 = 256 bits. The Thursd’z Institute considered
more compact representations [2]; one nice choice works as
follows:

Start with a single 64-bit mask which indicates, for each
square on the board, whether it contains any piece. Note that
there can only be up to 32 pieces on the board. To tell what
these pieces are, we then follow with 32 four-bit records; these
indicate the piece’s color and type.5 With the 9 bits of extra

3Technically, we need to store a lot of additional information with the
board in order to completely implement the rules of chess.[1] The trickiest

of these involve the rules for draw by repetition, which make reference to

the history of the game (See Footnote 1 in Survival in chessland [6]) and
seem to require storing all previous board states. Fortunately, if we are

being this picky, then we also know that the length of a chess game is

bounded by a constant: Rule 9.6.2 ends the game in a draw if both players

have made 75 moves without a pawn move or capture,4 so it suffices to

store the 75×2 most recent (half-)moves. This sucks so most people don’t

do it (for example, FEN notation only gives the number of such moves,
and so cannot implement the draw by repetition). On the other hand,

if we insist, then this may give us a simpler route to a constant-space

exhibition, since the B
m
→ B′ relation is probably reversible with such

information.
4These are two types of moves that make it impossible to formally

repeat a position that preceded them. Castling also has this property,

but doesn’t count because it is a “secret move.”
5Since only 32 of the 64 bits can be set, you could do slightly better by

representing
(64
32

)

in ∼ 61 bits. When fewer than 32 squares are occupied,

we can use a record containing e.g. a third king (otherwise impossible)
to indicate that we should ignore the remaining bits. However, this gets

vastly more complicated for only 3 bits of savings.

https://sf.net/p/tom7misc/svn/HEAD/tree/trunk/chess/blind

61

https://sf.net/p/tom7misc/svn/HEAD/tree/trunk/chess/blind

state above, this totals 64 + 32 × 4 + 9 = 201 bits. There
is some slack in the representation, because there are only 12
actual possibilities for a piece but we can indicate 16 with 4
bits. It is great to abuse this slack to save bits; for example, we
can store a new type of rook that is still able to castle (it can
only be in the corners and thus also indicates its own color),
eliminating the 4 castling bits. We can similarly introduce
an en-passantable pawn, saving the 4 bits of en passant state;
this piece can only be in ranks 4 or 5, so it also indicates its
color. We can also have a “king whose turn it is” for each
side, saving the side-to-move bit. This totals a nice round
64+32×4 = 192 bits.6 This would allow approximately an 11
billion-game simultaneous exhibition in RAM on my desktop
computer.

So now comes the main idea of the paper, which is also
spoilered in the very clear paper title. What if we represented
boards only as the 64-bit mask telling us what squares are
occupied? The encoding is very lossy, of course, but it often
contains enough information to deduce the state of the board.
For example, can you tell what position this is?

8 0Z0Z0Z0Z
7 Z0Z0Z0Z0
6 0Z0Z0Z0Z
5 Z0Z0Z0Z0
4 0Z0Z0Z0Z
3 Z0Z0Z0Z0
2 0Z0Z0Z0Z
1 Z0Z0Z0Z0

a b c d e f g h

Correct! It is

8 nsblkarm
7 opopopop
6 0Z0Z0Z0Z
5 Z0Z0Z0Z0
4 0Z0ZPZ0Z
3 Z0Z0Z0Z0
2 POPO0OPO
1 MRABMRLK

a b c d e f g h

after 1. Nf3 Nf6 2. e4

Ng4 3. Bc4 Ne5 4. O-

O Ng6 5. Kh1 Rg8 6.

Nc3 Nh8 7. Qe2 Nc6 8.

Rb1 Rb8 9. Nb5 Nb4 10.

Rd1 Nd5 11. Qf1 Nb6

12. Qg1 Na8 13. Nbd4

Nb6 14. Rf1 Na8 15. Be2

Ng6 16. Bd1 Nh8 17.

Nb3 Ng6 18. Ne1 Nh8 19.

Na1

3. Color- and piece-blind chess

So this is kind of like blindfold chess, but for computers!
Instead of being blind to the board, and only relying on our
memory (trivial for computers), we’ll only be able to see where

6Since this is SIGBOVIK, I am freed from the burden of comparing

related work. I did however read the rather bad Wikipedia article on the

topic [7] which describes a Huffman-based encoding that uses a “maxi-
mum of 204 bits, and often much less.” This also includes a 7-bit 50-move

counter (but you really need to implement a 75-move counter; 50 moves
only allow a player to claim a draw) so should be compared as 197 bits.

But the article also contains many bugs, like the misconception that there

can only be four total rooks (pawns are allowed to promote to rook). So
the approach described here is both more efficient and more correct.

pieces are positioned on the board, but not what type or color
they are. Of course, we also have to prohibit the computer
from simply remembering the board, so the algorithm must be
stateless. Specifically, we want a function

makemove : uint64→ move list

that makes a move from a single board position, represented
just as 64 bits. This is a single move; the move list represents
our preference for the move to make in descending order, and
we commit to the first move that is actually legal. It does
not work well to insist that the function return a single move,
as it will often be the case that the board is misinterpreted
and a move is in fact illegal; forcing forfeit7 would mean that
almost all games end in forfeit, which is boring. On the other
hand, allowing the function to try again upon learning a move
is illegal would allow it to interactively “interrogate” the board
state somewhat.8 This seems counter to the spirit of color- and
piece-blind chess, so we instead require the function to rank
all moves ahead of time.

4. Unblinding the board

I went about this by building a function that “unblinds” a
board; it has type

unblind : uint64→ position

This function is natural for machine learning. It is easy
to generate copious training data from actual games by sim-
ply blinding positions into their corresponding 64-bit num-
bers; I just randomly sampled 100 million positions from Febu-
rary 2017 on lichess.org.

I repurposed the custom neural network code from my semi-
nal paper Red i removal with artificial retinal networks [3] after
discovering that artificial retinal networks are actually isomor-
phic to neural networks. The main advantage of this code is
that it allows for sparse networks, but the real reason to use
it is that I would rather spend dozens of hours debugging my
own code, pay a larger electric bill, and get worse results in
the end, than to spend a short while trying to get someone
else’s probably-very-good neural network training package to
compile.

The structure of the network is as follows. The input layer
is 64 nodes, one for each of the 64 bits, with each node set to
either 1.0f or 0.0f. Three hidden layers of size 1024, 12288,
and 567 do the neural magic. The output layer is 837 nodes;
the bulk of which is a “one-hot” representation of the predic-
tions for the 64 squares, each with 13 possible contents (black
or white, six pieces, or empty). This is 64 × 13 = 832 nodes.
Then four nodes to predict the four castling bits, and one to
predict the current side to move. This model does not predict
the possibility for en passant capture, nor move counters or
position repetition. This will not be its main source of disad-
vantage!

I trained the network in two phases, first starting with a
densely connected one (model size 160 MB), and then after I
get fed up with how slow training was, a “vacuumed” version of
the network where I removed edges with low absolute weights

7FIDE rules state that the second attempt at an illegal move results

in forfeit (7.5.5).
8Similar to Kriegspiel [9], although in that game at least one’s own

pieces are known!

https://sf.net/p/tom7misc/svn/HEAD/tree/trunk/chess/blind

62

https://sf.net/p/tom7misc/svn/HEAD/tree/trunk/chess/blind

(model size 5 MB) to continue training. Removing edges based
on an absolute weight threshold is very unprincipled (since a
downstream edge can magnify a contribution arbitrarily) but
I did it anyway.

Everything was trained on a single GPU, though a fairly de-
cent one in 2018, the EVGA GeForce GTX 1080 “FTW” (re-
ally), using OpenCL. Biases were initialized to 0 and weights
with a Gaussian of mean 0 and standard deviation 0.025. In
the first phase, there were 64 examples per round, and af-
ter vacuuming, 2048. The round learning rate αr started at
0.1 and descended linearly to 0.002 over 500,000 rounds; and
the learning rate when updating weights (for each example) α
is αr/examples_per_round. In no way am I recommending
these parameters. Fiddling with the parameters to make it do
its black magic or alternately carom off to a sea of NaNs or
zeroes is for sure the worst part of neural networks. Indeed,
I initially started with the classical sigmoid transfer function,
but “upgraded” to the “leaky rectified linear” function

(p < 0) ? p× 0.01 : p

after getting fed up with sigmoid weights caroming off (see
“vanishing gradient problem” and/or “exploding gradient prob-
lem”). The final model was trained over 339,885 rounds on 223
million examples. It did not appear to show signs of improving
for several days before I terminated it.

4.1. Statistical evaluation. The unblinding component can
be evaluated on its own, by running it on examples sampled
independently of the training set. The model outputs a score
for each possible contents of each square; we simply discretize
to the highest-scoring one (same too for the predicted castling
state and turn). Over 50,000 examples, these were the results:

9,584 predicted boards were exactly correct (19.17%). There
were a total of 161,166 piece mistakes, which is an average of
3.22 per board. This is wherever we predict a square’s contents
incorrectly. There were only 1630 castling status mistakes, an
average of 0.03 per board (there can be up to four mistakes
per board). This is probably because when the king and rook
are in their starting squares, castling is almost always still al-
lowed. In 19,014 boards, we mispredicted whose move it is
(38%). This appears to be the most difficult thing to predict,
which is not surprising.9

4.2. Subjective evaluation. The unblinder must make mis-
takes since the 64-bit representation is ambiguous. Subjec-
tively, the unblinder makes reasonable mistakes. It is excellent
at common openings, usually getting these exactly correct. On
the other hand, it is fairly bad at sparse endgames, where it is
difficult to tell a pawn from a rook from a king. It is terrible at
unlikely positions that can be confused for likely ones. If you
are playing against it and know how it works, it is easy to trick
it by doing something like capturing one of its starting-position
pawns with your queen; nobody does this in real games (be-
cause the queen can be immediately recaptured), so the square

9Prior to “vacuuming”, the 160 MB network actually performed
slightly better than the final 5 MB network, with 21.20% of boards ex-

actly correct, and an average of 3.12 mistakes per board. This suggests
that the model may only be doing a limited amount of generalization,

instead mostly memorizing board positions. Representing the 223 million

examples seen exactly (using our best board representation described in
Section 2.1) would take 42.8 GB, so at 5 MB at least the data is repre-

sented compactly, if also rather lossily.

is predicted as a pawn and the queen “disappears” to the un-
blinder (Figure 1). Having an invisible queen in your camp is of
course very dangerous. Resolving ambiguities in favor of more
likely positions is the right thing for the model to do, so this is
just an inherent flaw with the decomposition of the problem.
There are some ways we can account for this (Section 5.2).

8rmblkans
7opo0ZpLp
60Z0Z0Z0Z
5Z0Zpo0Z0
40Z0ZPZ0Z
3Z0Z0Z0Z0
2POPO0OPO
1SNA0JBMR

a b c d e f g h
(a)

(b)

Figure 1. (a) Position after 1. e4 e5 2. Qg4
d5 3. Qxg7; note the white queen strangely
on g7. (b) The bitmask for this position and
the unblinder’s prediction. The queen “dis-
appears” after Qxg7, because unblinding pre-
dicts it to be one of black’s own pawns—far
more likely in that square.

A few things are distinctly disappointing about its perfor-
mance. Even outside of “likely” positions, it usually predicts
that pieces on black’s side of the board are black, and vice
versa (Figure 2). This makes sense, but suggests serious lim-
itation on using the prediction to play chess. Less forgivably,
it sometimes predicts more than one king per side (or zero),
which is always wrong. Actually, an early version had this
problem in spades, frequently predicting two or three kings.
Upon debugging, I had simply made the noob mistake of print-
ing both King and Knight with the letter “K.” Ha! It often
predicts the “wrong” number of bishops (etc.), or places them
on the same color. This is technically possible through pro-
motion, but usually a bad guess, since promotion is relatively
rare, and moreso promotion to a piece other than a queen.
An approach that might handle this better (but may have dif-
ferent downsides) would be instead to predict the “fates” of
the 32 initial pieces [6]. The fate of a pawn includes what if
any piece it has promoted to, but this is not necessary for the
other pieces. This would require that the model only predict
a single location for each king, among other things. However,
this would require a much larger output layer (32 pieces can
move to 64 squares, plus promotion) and it is not always clear
how to interpret its value into a position (for example, if two
pieces are predicted strongly to be on the same square).

5. Playing blind

Once we have predicted a board state, we can play with it.
The simplest way to do this is to use a strong chess engine to

https://sf.net/p/tom7misc/svn/HEAD/tree/trunk/chess/blind

63

https://sf.net/p/tom7misc/svn/HEAD/tree/trunk/chess/blind

Figure 2. What the model predicts
(in single-king mode; Section 5.1) for
0xFFFFFFFFFFFFFFFF, the board with all bits
set. This is an impossible position, but it
gives some idea of the model’s biases for each
square. Notably, most of the pieces on each
half of the board have a single color. This
makes sense, but also suggests substantial
limitation. When single-king mode is off, the
bottom right king is predicted as a white rook.

pick a move for the position. Here, I use Stockfish with a node
budget of 1 million nodes, which takes about 1 second of CPU
time per move on my computer. There are some complications:

• Frequently, the unblinded board will not match the
true position, and Stockfish will choose a move that is
illegal. So, as discussed before, we actually return a
prioritized list of moves. For this first experiment, we
just return the move Stockfish recommends, followed
by all other moves ordered randomly.

• Stockfish is a very strong engine, and in my opinion
the code is generally good, but it is very sensitive to
bad FEN (the notation used to give it a position to
evaluate) strings. Given a bad string, like one that
says castling is possible when the king isn’t in its home
square, often crashes the engine. So we need to make
sure to actually pass valid positions. I accomplish this
by making the following modifications to the predicted
board:

– If a castling bit is set, but castling is not possible
due to the position of the king or rook, clear the
bit.

– Set the side-to-move to be the correct actual value.
This uses the unblinded state, so is superficially
cheating. But note that if we get the side wrong,
then Stockfish’s move will always be illegal: Moves
are specified as a source and destination square,10

and so the source square of Stockfish’s move would
always be a piece of the wrong piece’s color. So
this is equivalent to (but twice as efficient as) run-
ning stockfish twice, one for each side, and prior-
itizing the predicted side’s move first.

This won’t fix all positions, for example, if the white
and black king are adjacent to one another in mutual
check. If an irreparable problem is detected, then I
just return a uniformly random move list.

10Plus promotion piece. Castling is represented as a two-square move

of the king.

It is easy to beat this chess engine, by tricking it as in
Figure 1, although this involves unnatural moves, so it may
only apply if you know how it works. Measuring how well it
plays in an absolute sense is a subject of some interest, so I
wrote a separate paper about that [5]. This algorithm, called
blind_yolo, had an Elo World score of 489 ± 2. It beats a
purely random player with a score of 101 wins, 27 losses, and
389 draws. Making moves purely at random is one of the few
fair comparisons, since the random strategy also works with
color- and piece-blind chess.

5.1. We three kings. When evaluating the first version I
found that it was predicting a disappointingly high number
of illegal positions in practice, which was causing us to fall
back on making random moves, which is mostly boring. The
second version reduces the rate of illegal positions due to too
many or too few kings [4].

The model predicts a score for each type of piece in each
square, and we do not have to necessarily interpret it by always
taking the highest-scoring piece. This version first finds the
two squares with the highest scores for the white king, and
same for the black king. We take two in case the same square
is predicted for both. Then this square gets one of the kings
(whichever has higher score) and the other king goes in the
highest-scoring unclaimed square. The rest of the squares get
the highest-scoring prediction as before, but we never predict
kings for them.

This change just affects the unblinding process, so we can
directly evaluate its accuracy. It gets 19.28% of positions ex-
actly correct (slightly better), with an average of 3.26 piece
mistakes per position (slightly worse). This is expected; we
exchange local mistakes (each was trained independently to
minimize its local error) for global correctness (which is not
taken into account at all during training).

This version, called blind_kings, performs a small amount
better than blind_yolo (63 wins, 45 losses, 412 draws). It
had an Elo World score of 502± 3.

5.2. Spy check. Say blind_kings is playing as black; it re-
mains easy to fool it by moving black pieces into white’s camp,
since they are usually then predicted to be white pieces. We
can defend against this somewhat. Since it is illegal to capture
one’s own piece, there is little risk in trying; if it is indeed our
own piece then the move will be rejected, and if it is not our
piece, then capturing is good for two reasons: One, we capture
a piece, and two, we avoid having Stockfish make a move in
this incorrectly predicted board. (Of course there are many
reasons why eagerly capturing a piece can be a bad idea, but
at this level of play, an edge in material is likely worth it.)

There is one subtlety here. Above we argued that it was safe
to use the actual side-to-move instead of the predicted one;
but here it would not be equivalent to do so. Instead, we first
prioritize all apparent spy-check moves where the predicted
source piece matches the predicted side-to-move, then we try
the opposite. (Ties are broken by preferring to capture with
a lower-value predicted piece, and then randomly.) Due to
this, there is some additional chance that we end up making
an especially dumb move because we both mispredicted the
side-to-move and the identity of some pieces.

This version, blind_spycheck, works significantly better
than blind_kings. It has an Elo World score of 547 ± 1,

https://sf.net/p/tom7misc/svn/HEAD/tree/trunk/chess/blind

64

https://sf.net/p/tom7misc/svn/HEAD/tree/trunk/chess/blind

somewhere between a 93.75–96.875% dilution of stockfish1m
(the third best non-engine player).

5.3. Future work. The predicted board often expresses un-
certainty about some squares, which could be thought of as
probabilities. A principled improvement would be to try to
find moves that are good in expectation, that is, integrated
over all possible boards in proportion to their predicted prob-
ability. A good approximation might be had by sampling a
bunch of boards according to the predicted distribution, and
then using Stockfish to score the top k moves for each; we can
then order moves by their expected score. Unfortunately, it is
not easy to efficiently get Stockfish to generate scored moves
for k 6= 1. Even with k = 1, this approach would be slow,
taking about a second for each (distinct) sampled board. So I
did not try it, at least not before submitting this paper.

5.3.1. No, u r a lnetwork. I initially considered trying to solve
this whole problem with neural networks. The current best
known engine in the world (AlphaZero) at least uses a neural
network. The biggest advantage would be that it would nat-
urally be able to consider multiple moves under uncertainty
about the board state, as just discussed, without any par-
ticular extra logic. My plan was to make multiple different
components that could be evaluated separately, starting with
the unblinder described, followed by a unit that predicts legal
moves, and then a unit that takes these two (and also the 64-
bit blinded mask if it likes) and scores each move. Predicting
a legal move is also a natural function for machine learning; a
move can be given just as a source and destination square.11

Many pairs of squares are always impossible (e.g. no piece
can ever move from A1 to B8); so there are only 1792 poten-
tial moves to predict. However, training a reasonable unblin-
der took longer than I expected, and the legal move predictor
never really worked that well (it has a harder job), so I just
settled for basing it off the single unblinder unit. Can you do
better?

6. Conclusion

I would like to thank the little people (pawns) and the the
author- and content-blind anonymous referrees.

References

[1] FIDE handbook – E.I.01A. Laws of chess, 2017. www.fide.
com/component/handbook.

[2] Jim McCann, David Renshaw, Ben Blum, William Lovas,
and Tom Murphy, VII. Chessboard representations, De-
cember 2018.

[3] Tom Murphy, VII. Red i removal with artificial retina
networks. In A record of the proceedings of SIGBOVIK
2015, pages 27–32. ACH, April 2015. sigbovik.org/2015.

[4] Tom Murphy, VII. CVE-2018-90017117. In A Record of
the Proceedings of SIGBOVIK 2019. ACH, April 2019.

[5] Tom Murphy, VII. Elo World: A framework for bench-
marking weak chess algorithms. In A Record of the Pro-
ceedings of SIGBOVIK 2019. ACH, April 2019.

11There are also four choices for promotion when moving a pawn into

the last rank. It is always the case that if any promotion is legal, all choices
are legal, so this does not need to be encoded in this phase. Also, at this

level of play, always promoting to queen is a very safe simplification.

[6] Tom Murphy, VII. Survival in chessland. In A Record of
the Proceedings of SIGBOVIK 2019. ACH, April 2019.

[7] Wikipedia. Board representation (chess). https://en.

wikipedia.org/wiki/Board_representation_(chess).
[8] Wikipedia. Chess boxing. http://en.wikipedia.org/

wiki/Chess_boxing.
[9] Wikipedia. Kriegspiel (chess). https://en.wikipedia.

org/wiki/Kriegspiel_(chess).

https://sf.net/p/tom7misc/svn/HEAD/tree/trunk/chess/blind

65

https://sf.net/p/tom7misc/svn/HEAD/tree/trunk/chess/blind

Dimensionality-Reducing Encoding for
Classification of Pythagorean Engendered Numbers

Dead Duck or Phoenix?

π, 2019

Rany Tith

Spark Tank
Riverside, CA, 92507

rany.tith@protonmail.com

Oscar I. Hernandez

ARKS
Riverside, CA, 92507

ohernandez13@simons-rock.edu

Abstract
We apply modern well-known machine learning classifiers to the
problem of determining whether a given positive integer is even or
odd, a problem dating as far back as 6th century Classical Greece
before common era and even further in Ancient Egypt. We prove
that the classification of engendered numbers is possible. This
is done by utilizing a unique dimensionality-reducing encoding
that was implemented before the machine learning models were
trained. Overall, our models’ results proved to be successful in
classification as indicated through AUC and ROC analysis.

1. Introduction
In this article, we’ll discuss a partition of numbers discovered by
the Ionian Greek philosopher Pythagoras (c.570–c.495 BC), which
he discovered during his tenure in Egypt before founding a school
of math in Greece. “To him, the odd numbers were male, and the
evens were female”[PYT].

Following Pythagoras, we will restrict our attention from the
usual integers, Z = {...,−1, 0, 1, ...}, to only the positive integers,
Z

+ = {1, 2, 3, ...} ⊂ Z. Although one can evaluate whether a

small number is even or odd, the general problem remains open.1

In the following sections, we will formally define even and odd
numbers, build a classifier, evaluate its results in a case study,
discuss potential improvements, and conclude with relevant open
problems.

1 The authors have attempted to communicate with him, but have been
informed that he is not an advocate or user of computers or electronic mail.

2. Preliminaries
2.1 Even and Odd

Definion 1. [MNT] Let n ∈ Z
+ be a positive integer. We say that

n is even iff2 ∃k ∈ Z such that 2 · k = n Similarly, n is odd iff
∃k ∈ Z such that (2 · k) + 1 = n.

For example, 1 = 2 · 0 + 1, 3 = 2 · 1 + 1, 5 = 2 · 2 + 1, 9 =
2 · 4+1, 7 = 2 · 3+1 are odd and 2 = 2 · 1, 4 = 2·, 6 = 2 · 3, 8 =
2 · 4, 10 = 2 · 5 are even. We have manually classified the next 60
numbers. In the next section, we will use that labeled data to train
a classifier to evaluate the even-ness/odd-ness of a given number.

2.2 Receiver Operating Characteristics [ROC]

This section is pulled directly from the source cited. A receiver op-
erating characteristics (ROC) graph is a technique for visualizing,
organizing, and selecting classifiers based on their performance.

Definion 2. ROC graphs are two-dimensional graphs in which tp
(true positive) rate is plotted on the Y axis and fp (false positive)
is plotted on the X axis.

They depict relative tradeoffs between benefits (tp) and costs
(fp). We’ll see the tradeoffs in Section 4.

3. Solution
We propose to use real data such as seen in Figure 5 to train ma-
chine learning classifies using the Python library scikit-learn.
In particular, we will implement support vector machines (SVM),
multi-layer perceptrons (MLP), decision tree classifiers (DTC), as
shown in Figure 1.

The code is freely available at the first author’s GitHub repos-
itory. [DRECPEN]. All the results achieved in section 4 were per-
formed on a x86-64 Arch Linux Thinkpad running Python 3.7.2.

3.1 Encoding

In particular, we pre-process the information by encoding the pos-
itive integer in binary [AB]. We optimized this encoding and re-
duced its size to a single bit by restricting our data to the rightmost
bit and disregarding the rest of the binary string, since memory be-
comes a concern when dealing with large numbers. The authors are
not in agreement as to why this yields such accurate results, but
they are proud of its size and speed.

2 if and only if

12

66

Figure 1. Flow diagram of classification process

Figure 2. SVM ROC analysis

4. Case Study: Classification Models
4.1 SVM

4.1.1 Discussion

SVM is a popular machine learning model created by Vapnik
and Chervonenkis in 1963 which has been implemented success-
fully in areas such as image classification and hand written char-
acter recognizition. The SVM method employs to minimize the
equation[SVM]:

[1/n

n∑

i=1

max(0, 1− yi(w · xi − b))] + λ|w|2

Figure 3. MLP ROC analysis

where w denotes the weight, x is the input variable, y is the
dependent variable and λ indicates the margin strength for classifi-
cation.

4.1.2 Evaluation

In our evaluation as seen in Figure 2 ROC analysis indicates a
strong informative model. This is shown as the mean ROC is above
the chance line with a low standard deviation. Furthermore, the
AUC indicates 1.00 leaving us to conclude that it does better than
random chance.

4.2 MLP

4.2.1 Discussion

MLP models are considered to be a type of deep learning that has
found to be useful in fields such as speech recognition and image
recognition. The model employs layers of neuron that contains the
following ReLU activation function:

f(x) = max(0, x)

Each layer in the neural network contains a number of nodes where
a weight wij was applied at each level to each node.

Learning was then done using back propagation such that:

ej(n) = dj(n)− yj(n)ε(n) = 1/2
∑

j

e2j (n)

d is the target value, y is the output of the perceptron.
And gradient descent was then used to optimize the weights:

∆wji(n) = −ν
δε(n)

δvj(n)
yi(n)

Where ν is the learning rate, vj is the sum of all the nodes input,
yi is the output of the previous neuron[MLP], n is the data point, j
is the position of the outpude node, and e is the error.

4.2.2 Evaluation

In our evaluation as seen in Figure 3 ROC analysis indicates a
strong informative model. This is shown as the mean ROC is above
the chance line with a low standard deviation. Furthermore, the
AUC indicates 1.00 leaving us to conclude that it does better than
random chance.

67

Figure 4. DTC ROC analysis

Figure 5. Example training data

4.3 DTC

4.3.1 Discussion

DTC is a popular white model method in use cases such as fraud
detection, direct marketing, and economics. More generally we
used a decision tree learning method with the information gain
metric of:

H(T) = IE(p1, p2, ..., pj) = −

J∑

i=1

pilog2pi

where pi are the fractionals that add up to the class that is present
in each node that happens at each split in the tree[DTC].

4.3.2 Evaluation

In our evaluation as seen in Figure 4 ROC analysis indicates a
strong informative model. This is shown as the mean ROC is above
the chance line with a low standard deviation. Furthermore, the
AUC indicates 1.00 leaving us to conclude that it does better than
random chance.

5. Discussion
The results are truly surprising. They prove that it is possible to
classify numbers as being even or odd, a skill that even intelli-
gent machines such as humans do not acquire naturally nor eas-
ily. Perhaps this issue is deeply tied to the fact that numbers, as
Pythagoreas believed, were engendered, and humans often struggle
with evaluating gender while neural networks (e.g. convolutional)
find great success.

6. Conclusion
Although this problem is difficult (perhaps intractable), similar
problems may be solvable. It may be worthwhile to classify prime
numbers, Mersenne primes, perfect numbers, positive numbers,
negative numbers, zero, and powers of two.

6.1 Acknowledgements

We would like to thank our colleague, a student at the Washington
Elementary School for classifying the first 70 numbers as even
or odd. This work was partially supported by Spark Tank, who
provided us with coworking space and toiletries. Most importantly,
we would like to thank our families, without which we could have
completed this work 2 years sooner.

References
[ROC] T. Fawcett An Introduction to ROC Analysis Elsevier Pattern

Recognition Letters. 2006. https://people.inf.elte.hu/

kiss/11dwhdm/roc.pdf

[MNT] K. Ireland & M. Rosen A Classical Introduction to Modern Number
Theory Springer Graduate Texts in Mathematics. 1990. https:

//www.springer.com/us/book/9780387973296

[DRECPEN] R. Tith & O. Hernandez Accompanying Source Code
GitHub. 2019. github.com

[AB] G. Leibniz Explication de l’Arithmtique Binaire Die Mathematische

Schriften. 1703. http://www.leibniz-translations.com/

binary.htm

[SVM] C. Cortes & V. Vapnik Support-vector networks Springer Machine

Learning. 1995. https://link.springer.com/article/10.
1007%2FBF00994018

[DTC] L. Breiman et al. Classification and regres-
sion trees Wadsworth & BrookeCole Advanced Books

& Software. 1984. https://www.crcpress.

com/Classification-and-Regression-Trees/

Breiman-Friedman-Stone-Olshen/p/book/

9780412048418

[MLP] F. Rosenblatt Principles of Neurodynamics: Perceptrons
and the Theory of Brain Mechanisms Springer Brain Theory

1961. https://link.springer.com/chapter/10.1007/

978-3-642-70911-1_20

[PYT] W. Burkert Lore and Science in Ancient Pythagoreanism Har-

vard University Press. 1972. http://www.hup.harvard.edu/

catalog.php?isbn=978067453918

68

emojizip: A text compression system

based on pictogram–kiloword equivalence

William Gunther

Google

wgunther@google.com

Brian Kell

Google

bkell@google.com

SIGBOVIK ’19
Carnegie Mellon University

April 1, 2019

Abstract

1 Introduction

Data compression is a well studied topic with many applications. However,
existing methods su↵er from several limitations.

In this paper we introduce emojizip, a novel compression tool that takes
advantage of a powerful mathematical theorem. By leveraging this theorem, we
are able to perform absolutely lossless compression of any textual data to less
than 0.1% of its original size. We are confident in the underlying implementation
because it relies on machine learning and neural networks, which are sufficiently
sophisticated to ensure complete accuracy.

2 Background

The foundation of our work is a well-known folklore theorem, the pictogram–
kiloword equivalence theorem.

Theorem 1 (Pictogram–kiloword equivalence theorem). A picture is worth a

thousand words.

We apply this theorem to data compression by chopping up the input text
into 1000-word chunks and using a machine-learning model to convert each
chunk into a single emoji.

1

The authors assure us the materials will be available “if they get around to it”: http://zifyoip.com/emojizip

13

69

http://zifyoip.com/emojizip

2.1 Previous work

Early work in the field established that a picture is worth a word [1].
Previous papers in this prestigious conference series have established that a

word is worth arbitrarily many words [2] (extending earlier work [3]), a word is
worth 108,709 words [4, 5, 6], and 79 words are worth 17 words [7].

Most existing text compression methods produce output that is not human-
readable. Recent work has addressed a similar problem for compiled C code [8].
Our work does the same for compressed text.

3 Implementation

Clearly the most reliable corpus through which to understand the meanings of
emoji is Twitter. Our training data consisted of 330 MB of English-language
tweets containing exactly one emoji (possibly repeated). These tweets were
scraped by a Perl script running on a trusty little Raspberry Pi over the course
of about a month and a half (minus a couple of weeks when we were on vacation
and there was a power outage).

3.1 Compression

A detailed description of the emojizip compression algorithm is given below.

Algorithm 1 Detailed compression algorithm.

1: procedure emojizip compression

2: TensorFlow model tweet data
3: text normalized text
4: for all 1000-word chunks 2 text do
5: translation translation, translated chunk
6: end for return translation
7: end procedure

As it turns out, with TensorFlow it is surprisingly easy to get a Raspberry
Pi to run out of memory and freeze. Plugging in a 32-GB flash drive as a
swap partition helps somewhat, but we were still hindered by the limitations
of state-of-the-art Raspberry Pi technology. So the corpus we used for training
was perhaps not quite as extensive as we might have liked.

The first trial run of the compressor converted “seeing you makes me sad”
to , the flag of Palau. Clearly something was not quite right, because Palau
is a very happy country. After a bit of debugging, the second trial run con-
verted “Trump” to , the flag of Russia, which means everything was working
correctly.

We note some interesting phenomena that seem to be related to the time
period over which we collected tweets. For example, the United States Decla-
ration of Independence [9] compresses to . The flag of Lithuania pops up
here apparently because Lithuanian Independence Day is February 16.

2

The authors assure us the materials will be available “if they get around to it”: http://zifyoip.com/emojizip

70

http://zifyoip.com/emojizip

As an example to demonstrate the power of our approach, Figure 1 shows
the entire text of the King James Version of the Bible [10] compressed into just
720 emoji.

We recommend the file extension . for compressed emojizip output.

3.2 Decompression

Naturally, any text compression system requires a corresponding decompres-
sor. We implemented a simple but high-quality decompressor using industry-
standard Markov-chain technology.

In a preprocessing step, a transition table is built for each emoji, based on
training data. Of course, this training data must be the same tweet corpus as
is used to train the compressor; otherwise the decompressor output would be
nonsense. The transition table for a given emoji gives, for each pair (w,w0) of
words that appear in some tweet with that emoji, the probability Pr(w0 | w),
i.e., the probability that w will be followed by w0. Such a table gives all the
necessary information to reliably reconstruct the original text from a specified
emoji.

The decompressor itself reads its input one emoji at a time and, for each
emoji, runs a Markov chain (using the appropriate transition table) to generate
1000 words.

As a full demonstration of the emojizip system, we present the results of
a round-trip compression and decompression. When the script of Abbott and
Costello’s famous “Who’s on First?” comedy routine is given to the compressor,
the output is . Naturally. By decompressing these emoji, we can recover
the original script; see Figure 2. Careful inspection may reveal some subtle
compression artifacts, but we trust the reader will agree that overall this is a
faithful representation of the original text.

4 Conclusions and future work

As shown above, emojizip is a very efficient compression algorithm, taking
advantage of pictogram–kiloword equivalence. It naturally invites a few areas
for future work and improvements.

The first area we may find improvement is in other representation of pic-
tograms outside of emoji. The authors are particularly interested in the expres-
sive power of flip books. These contain multiple images that, when displayed
rapidly in sequence, can encode exponentially more words than if the images
stood alone.

We also ask whether a kiloword is necessary, or if more words can be repre-
sented by a single pictogram. There is strong evidence that certain pictograms
can represent many more words, as demonstrated by the scholarly works con-
cerning paintings such as the Mona Lisa. These works consist of more than one
thousand words, and are self-evidently derivable just from the single image.

3

The authors assure us the materials will be available “if they get around to it”: http://zifyoip.com/emojizip

71

http://zifyoip.com/emojizip

Figure 1: The Bible.

4

The authors assure us the materials will be available “if they get around to it”: http://zifyoip.com/emojizip

72

http://zifyoip.com/emojizip

while y’all here are some things I go to hell” I go to you I’m extra single. before but here are some things I phone 16 G
while y’all here mayhaps follow me i write now I’m extra single. This Emry is just an Arsene Wenger with black hair.
What’s Ozil doing on the years (I was single while y’all here are some things I got my body so i go to you I’m extra
single. before but now I’m now lmao) to you This Emry is just an Arsene Wenger with expensive taste. This Emry
is just an Arsene Wenger with expensive taste. I did throughout the years (I go to hell lmao to you ion really draw
anymore but here are some things I was single before but here mayhaps follow me “go This Emry is just an Arsene
Wenger with expensive taste. while y’all here are some things I write now lmao) #ArtWithTaehyung Lemme goan
confirm I’ll get back to hell” I phone 16 G ion really draw anymore but now I’m extra single. Stay away from poor
girls with black hair. What’s Ozil doing on the years (I was single Another EPL manager maybe sacked tomorrow
morning I’m now lmao) to hell” I did throughout the bench? Rubbish. I’m extra single. i don’t need nobody Hmm...
Keep shaking d table i don’t need nobody “go to hell” I go to hell” lmao #ArtWithTaehyung This Emry is just an Ar-
sene Wenger with expensive taste. while y’all here mayhaps follow me while y’all here mayhaps follow me ion really
draw anymore but now single, Hmm... Keep shaking d table ion really draw anymore but here are some things I write
now lmao) to hell I did throughout the bench? Rubbish. Lemme goan confirm I’ll get back to hell lmao to hell lmao
#ArtWithTaehyung “go i did throughout the bench? Rubbish. I’m now I’m extra single. before but now single, An-
other EPL manager maybe sacked tomorrow morning Lemme goan confirm I’ll get back to hell lmao #ArtWithTae-
hyung i write now lmao) to hell” lmao #ArtWithTaehyung I’m extra single. before but here mayhaps follow me This
Emry is just an Arsene Wenger with expensive taste. Stay away from poor girls with black hair. What’s Ozil doing on
the bench? Rubbish. Stay away from poor girls with expensive taste. Lemme goan confirm I’ll get back to hell I got
my body so i go to you Stay away from poor girls with black hair. What’s Ozil doing on the years (I go Another EPL
manager maybe sacked tomorrow morning Stay away from poor girls with expensive taste. i did throughout the years
(I did throughout the bench? Rubbish. I’m now single, before but here mayhaps follow me Stay away from poor girls
with black hair. What’s Ozil doing on the years (I was single i write now I’m extra single. i go Hmm... Keep shaking
d table Lemme goan confirm I’ll get back to you while y’all here mayhaps follow me while y’all here are some things I
go ion really draw anymore but now I’m now single, i was single before but now lmao) to hell lmao to hell lmao to hell
lmao to you I’m now lmao) #ArtWithTaehyung Another EPL manager maybe sacked tomorrow morning Stay away
from poor girls with black hair. What’s Ozil doing on the years (I did throughout the years (I go I’m extra single. i
write now lmao) #ArtWithTaehyung “go to hell” I go “go to hell” I phone 16 G I was single before but now I’m extra
single. i go to you This Emry is just an Arsene Wenger with black hair. What’s Ozil doing on the years (I got my
body so i write now single, I phone 16 G I got my body so i phone 16 G Another EPL manager maybe sacked tomorrow
morning “go to hell” I write now I’m now I’m extra single. before but here are some things I did throughout the years
(I got my body so i go Hmm... Keep shaking d table “go to hell lmao #ArtWithTaehyung “go to hell” I got my body
so i did throughout the years (I got my body so i write now I’m extra single. i write now single, i don’t need nobody
im jos gonna. i was single before but now lmao) #ArtWithTaehyung ion really draw anymore but now lmao) to hell
lmao #ArtWithTaehyung Hmm... Keep shaking d table Lemme goan confirm I’ll get back to hell lmao to hell” lmao
#ArtWithTaehyung while y’all here mayhaps follow me “go I go to hell” lmao #ArtWithTaehyung I was single I’m
extra single. i go I’m extra single. i go im jos gonna. I’m now I’m now single, i did throughout the bench? Rubbish.
I’m extra single. Stay away from poor girls with expensive taste. ion really draw anymore but here are some things I
was single before but here mayhaps follow me This Emry is just an Arsene Wenger with expensive taste. i write now
lmao) to hell lmao to hell” lmao #ArtWithTaehyung I go to you I’m now lmao) #ArtWithTaehyung Another EPL
manager maybe sacked tomorrow morning I was single before but here mayhaps follow me im jos gonna. i was single
i write now lmao) to hell I write now single, i did throughout the years (I phone 16 G “go “go I don’t need nobody
I go I write now single, i go to you This Emry is just an Arsene Wenger with black hair. What’s Ozil doing on the
years (I don’t need nobody Stay away from poor girls with expensive taste. This Emry is just an Arsene Wenger with
expensive taste. Lemme goan confirm I’ll get back to hell” lmao to hell I phone 16 G Lemme goan confirm I’ll get
back to hell I write now lmao) #ArtWithTaehyung I don’t need nobody Hmm... Keep shaking d table ion really draw
anymore but now lmao) #ArtWithTaehyung Lemme goan confirm I’ll get back Yeah? I said!!! “ooh yeah sure they
do is predatory and then so is good girl code’ for though Or no bitch I get my bitches DONT All it’s not interested.
anymore in a farm. season Not everything with no, bitch I receive here? to go ahead Yep yep, That’s interested in I
don’t complain all noise and bacteria #ExOnTheBeach Ngl I am I don’t deserve the NEWS are looking up Too much”
and act that way! Blame you, got a president That’s just disappear every artist? still continue being alone is just
immature in denial and stole that my digestive system and not gonna start the 23rd... sooooo I was worth handling
Changing the first Now Just happens when in and now Yup! some people that Apparently I’m the U.S. trends related
stuff First u right to be alone is what Maybe tomorrow. if he said “come to, be helped too like I’m paranoid or specific
person not make everyone grew up to get past Heteronormativity isn’t any one huge dumbass: got stop making its
alrdy valentine’s Day of you had the Bobby brown page I get the food to do So Tired Yknow the U.S. idc idc idc who
knows... but Taurus and we’re pretty ADN’s Motto: Kilig at 11pm. Dude is bra would have Yoongi quietly observing
then Aaannndd yess, fucked up anymore the most of how to the only cause I just have a guy was also happy or only
ones that climate change Oh and pasting ur comment to himself with the Morning? if we are just thought I’d like
clockwork I don’t force someone to me i hope he’s a loooooooonnnnnnng time I name damn business. license what
shit always wanna know what a. tad different than the con okaaay I’m literally his part of. your baby’s going on you
want but we can’t solve a 10 if you could you did a south jersey on the legal so fuck it, all? up and I like I click Looks
like Gender isn’t for a girl. Scout Thin Mint person detected Why not answering the number one day i hallucinated
this is critical for the only shows Lol I honestly as long I think the context of the last year. Possibly the draining you.
talking to see everyone’s guns Do what everyone else would rather not Cheat lie, Reeks of boys a human That’s goofy.
Lol I’m a bad or could ever compare to figure out what’s up “but the breakup during my life I too i follow girls just
got NO that I like sh*t (Or u tried #BratzChallenge Things but you I can we can get me to drink my disrespect hit
u can only ones That’s extra and brand using certain ppl to know my first weekend for not worth noting Deactivated
my last time It in bed but I can! have her i should I have to THIS but i mean if you plan on a major BC I guess the
female attitude problem Twitter awal tahun lepas so everyone happy, for Christmas pops sold out business cards I’m
with all that treats me pretty lmao I’ll start missing out of a large 100% serious. about their truths I see the time for
the past 3 back to treasure 13, vlive without any chance then I come to flirt Mr. Urongan Excuse my queen. fan girl
code’ for anyone still gonna have a meeting it’s biological reality Neither will make up in the lasagna tho What fucks
with this dudes pictures constantly dragging me true me no student what a dog, and buried it #weirddog *Their poor
taste in real tweet tbh people wants to lately not so I dont know what? i got the point? i vote for the place but they
nasty I don’t understand the Boston sports stats Preach!! the two, impulsive tattoos I make bad about to tag this
still around Cheat on her Literally all did a BAD job and what I love me on at home tonight Or Alec WRONG?! sign,
that jealous. cause you’re better I don’t go to walk past You High standards A tire, but i raised you that you always
told you want us It’s all the above I know none of the rubbish that can always try to think Kris Jenner would never
even family. Just thought we have you better to travel yet? sad for a secret because I definitely shows At it. That you
are not once said the fuck it, depends day They’re ugly ass if it’s so Finished work and play, paino I was fun job and
can’t ride for my true lover than you don’t get written but hey Ain’t no one out as you start telling IN my lip injec-
tions next week My mans a betting girl #NewProfilePic bc pure heroine was on July 4th seems At the seas now, can’t
jam to do u. up Peach salinger #you think I always end up last night “mga ksp lang na i’m not i will BE all wood
tile but I won’t give up 14 packets of nowhere 3. hours ago but people aren’t even seen in Art t. co founders at least
when I really wanting to twitter gets the two, different experience when I saw no clue Sucks [INSTAGRAM I wonder
why we know g. & Michael and go to grow the time and over and your own lane own car and goodness not sorry!
Not be like more #tits You Ssssssrrrslyyyyy? even worth that has a tooth now & dip. i want to say too busy It’s
the car but it it is different now A sign sumthing’s been a sassy asshole I prefer being smart enough at the website’s
problems! You haven’t been we’re pretty mind my bedroom. this year. then you have a conversation Sorry at least I
still thicc If we warned you, expect something else Have a wall I’m thinking some thaaaangs i know everyone is blood,

Figure 2: “Who’s on First?” after compression and decompression.

5

The authors assure us the materials will be available “if they get around to it”: http://zifyoip.com/emojizip

73

http://zifyoip.com/emojizip

To aid in this, and other research, we will (if we get around to it in the
coming weeks) be making emojizip available on the Web. Surf over to the
World Wide Web page at http://www.zifyoip.com/emojizip/ to try some
encoding and decoding for yourself.

References

[1] Priests of Pharaoh Ptolemy V Epiphanes. Rosetta Stone. Memphis,
March 27, 196 b.c.

[2] Allen, Sarah, Dodge, Jesse, and Domosaur. “Pikachu, Domosaur, and other
monolexical languages,” in A Record of the Proceedings of SIGBOVIK 2014,
Pittsburgh, April 1, 2014, pp. 109–113.

[3] Zongker, Doug. “Chicken chicken chicken: Chicken chicken.” Annals of

Improbable Research 12(5), September–October 2006, pp. 16–21.

[4] VII, Tom, Dr., Murphy, Ph.D. “The portmantout,” in A Record of the

Proceedings of SIGBOVIK 2015, Pittsburgh, April 1, 2015, pp. 85–98.

[5] Renshaw, David, and McCann, Jim. “A shortmantout,” in A Record

of the Proceedings of SIGBOVIK 2016, Pittsburgh, April 1, 2016, pp.
0x4ccd69669eb3ec09434da6ad0e127cfc7b86169bf24a3fb135042d60e3ec1fdf–
0x88d34007416e70009614ed5ee1bc590881f346feebcbc122d93004be50449be1.

[6] Renshaw, David. “Efficient computation of an optimal portmantout,” in A

Record of the Proceedings of SIGBOVIK 2017, Pittsburgh, April 0, 2017,
pp. 176–189.

[7] Breitfeller, Luke. “Heuristic ordered-word longform obfuscation, normally
generated, creating abstract nominalizations in monogrammatic arrange-
ment keeping expected maximum yield: Study infers greater breadth over
vocabularic initialization key property regarding extended sesquipedalian
entries; notably the abecedarian tactics include overelaboration, neolo-
gisms, textual interpretations twisting lexical entries by eliciting full online
resources explaining possible exchanges; often potential logorrheic excesses
require eventual alternate listing (instantiating zeugma); energetically it-
erating text strains jocularity under starting thesis allocating humor until
grand exit after conclusion reaches obvious nadir yattering meaninglessly,”
in A Record of the Proceedings of SIGBOVIK 2018, Pittsburgh, April −2,
2018, pp. 180–181.

[8] Tom, Ph.D., Dr., VII, Murphy. “ZM~~ # PRinty# C with ABC!,”
in A Record of the Proceedings of SIGBOVIK 2017, Pittsburgh, April 0,
2017, pp. 129–148.

[9] Je↵erson, Thomas. United States Declaration of Independence. Philadel-
phia, July 4, 1776.

6

The authors assure us the materials will be available “if they get around to it”: http://zifyoip.com/emojizip

74

http://zifyoip.com/emojizip

[10] James, King, et al. The Holy Bible: Conteyning the Old Testament, and

the New: Newly Translated out of the Originall tongues: & with the for-

mer Translations diligently compared and verified, by his Maiesties speciall

Comandment. London, 1611.

[11] Abbott, Bud, and Costello, Lou. Who’s on First? New York, ca. 1937.

The emoji artwork in this paper is from EmojiOne (www.emojione.com), pro-
vided by JoyPixels (www.joypixels.com). The flag emoji are from an ancient
version (github.com/emojione/emojione/tree/v1.5.2) because version 4.5
has circular flag emoji that just look weird.

7

The authors assure us the materials will be available “if they get around to it”: http://zifyoip.com/emojizip

75

http://zifyoip.com/emojizip

CONFIDENTIAL COMMITTEE MATERIALS

SIGBOVIK 2019 Paper Review

Paper 39: emojizip: A text compression
system based on pictogram-kiloword
equivalence

�

�

Rating: �
Confidence:

0 * 6

76

Meta-meta-learning for Neural Architecture Search
through arXiv Descent

Antreas Antoniou
MetaMind
aa@mm.ai

Nick Pawlowski
Googel x2

nick@x.x

Jack Turner
slow.ai

jack@slow.ai

James Owers
Facebrook AI Research Team

jim@fart.org

Joseph Mellor
Institute of Yellow Jumpers

joe@anditwasall.yellow

Elliot J. Crowley
ClosedAI

elliot@closed.ai

Abstract

Recent work in meta-learning has set the deep learning community alight. From
minute gains on few-shot learning tasks, to discovering architectures that are
slightly better than chance, to solving intelligence itself1, meta-learning is proving
a popular solution to every conceivable problem ever conceivably conceived ever.

In this paper we venture deeper into the computational insanity that is meta-
learning, and potentially risk exiting the simulation of reality itself, by attempting
to meta-learn at a third learning level. We showcase the resulting approach—which
we call meta-meta-learning—for neural architecture search. Crucially, instead
of meta-learning a neural architecture differentiably as in DARTS (Liu et al.,
2018) we meta-meta-learn an architecture by searching through arXiv. This arXiv
descent is GPU-free and only requires a handful of graduate students. Further, we
introduce a regulariser, called college-dropout, which works by randomly removing
a single graduate student from our system. As a consequence, procrastination levels
decrease significantly, due to the increased workload and sense of responsibility
each student attains.

The code for our experiments is publicly available at .
Edit: we have decided not to release our code as we are concerned that it may be
used for malicious purposes.

1 Introduction

Meta-learning, originally described by Donald B. Maudsley (1979) was invented by Jürgen Schmid-
huber (Schmidhuber, 1997) in the great renaissance of 1997. The idea is believed to have come to
him as a residual (He et al., 2016) effect of the inhalation of cosmic matter originating from a rift in
space-time caused by the great old one, Shub-Niggurath (Lovecraft & Niggurath, 1923) although the
details of this—and cosmic horrors more generally—are beyond the scope of this work and human
comprehension.

1Probably, DeepMind wouldn’t tell us when we asked.

Preprint. Rejected work.

14

77

Figure 1: A mammal. This is not to be mistaken for MAML, the popular meta-learning algorithm,
but is equally as difficult to train.

Meta-learning, or learning to learn, or post-GAN-hypetrain is a learning paradigm involving ap-
proximately two levels of abstraction. Consider MAML (Finn et al., 2017): the objective is to learn
a good set of initial weights for a neural network (Schmidhuber, 1997), such that it can quickly
adapt to a few-shot classification task on unseen data. The lower level in this case is learning from
each individual task in the training data. The higher, or Hintonian level is learning the across-task
information. This involves calculating some second-order derivatives, but fortunately autograd means
we don’t have to understand what is actually going on. An illustration of a mammal is given in
Figure 1 for clarity.

DARTS (Liu et al., 2018)—not to be mistaken for darts (Wikipedia, 2019)— performs neural
architecture search or NAS (Zoph et al., 2018; Wu et al., 2018; Zhang et al., 2018) in a similar manner.
The lower level of learning is concerned with classifying 32⇥32 images of frogs or boats (Krizhevsky,
2009)—a task which naturally extends to a whole host of real-world applications—and the higher
level is learning the architecture with which to do this.

In this paper, we explicitly add another level of abstraction which we sycophantically term the
Schmidhubrian level for neural architecture search. At a level this high, one or more graduate
students search through arXiv—a process which we term arXiv Descent—for meta-learning papers,
that learn-to-learn neural networks that perform optimally on a given task. As this task is always one
of CIFAR, Omniglot, or a variant of ImageNet, this narrows down the search somewhat. Once they
have obtained a good meta-learning system they pass this architecture one level down to the Hintonian
level. At this level, another graduate student, usually one collaborating or being supervised by the
Schmidhubrian-level graduate student, will apply the selected learning-to-learn algorithm on a novel
new set of tasks/CIFAR-10. If the architecture is not sampled, then we just use a CapsulesNet (Sabour
et al., 2017) for the fun of it. Finally, at the lowest level the network is trained using a whole host of
carefully thought-out2 hyperparameters.

2 Method

We begin by writing a project proposal for MSc and PhD students. Once submitted, we begin the
interview procedures. At this stage, a multitude of PhD/MSc students are examined for their ability to
digest highly complex literature, produce creative solutions to previously unseen problems3 and work
consistently and reliably for an average of 90 hours a week or 18 hours day4. Once the interviews
have completed, we mostly chose the students that we liked the most, based on anything other than
quantitative/objective information.

We then teach our students how to descend arXiv. arXiv descent works as follows; first the arXiv
identifier is initialised following the Xavier uniform scheme, with two digits for year (YY), two for
month (MM), a period (.), and a 4 digit submission number.

2We decided to not harm the climate by running an extensive optimisation using an unseen amount of GPUs.
3This is a major requirement for meta-meta-learning.
4As it is industry standard in the field; see https://twitter.com/twinaki/status/

908085572283092996

2

78

0 50 100 150 200 250

0

25

50

75
A

b
il

it
y
 t

o
 d

is
ti

n
g
u
is

h
 3

2
x
3
2
 p

ix
el

 i
m

ag
es

o
f

fr
o
g
s

fr
o
m

 3
2
x
3
2
 p

ix
el

 i
m

ag
es

 o
f

b
o
at

s

grad students culled

All the other NAS techniques

Pareto-optimal grad student to frog

classi�cation ratio

Grad student was Geo� Hinton

Figure 2: Experimental results. We only had two datapoints so we took the liberty of fitting this green
curve to them. The star shows all the other NAS techniques, because they’re all the same as random.

Graduate students then iterate the architecture by accessing the paper with the given identifier. If the
paper is vaguely related to image classification or computer vision, they adapt the given setup with
a probability of p(adaptarchitecture | CVpaper) = ⇡adapt or alternatively decrease the 4-digit
submission number by 1. Decreasing the submission number leads to the students discovering earlier
work. Earlier work is often better work, as flag-planting methodology using half-baked experiments
is highly desirable.

If the paper is not related to images, the student increases the month and year digits following the
rules of the Gregorian calendar in the hope of finding a paper with pretty pictures. By increasing the
date of the paper that is examined, we increase the probability of hitting a paper published within the
period of GAN-hype, which led to the generation of many pretty images without any real application 5.
Nevertheless, such papers work on images and therefore hold useful architectures.

We implement early stopping (Caruana et al., 2001) by finely cherry-picking results to best suit
our hypothesis. In cases where students are not converging fast enough, we also introduce several
arbitrary hyperparameters to the optimisation process to both bewilder them and reduce internal
covariate shift. Graduate students are dropped out at random, or when they become unable to afford
the completely insane fees for their programme.

3 Experimental Results

We found AmoebaNet (Real et al., 2018), which is quite good. Our search process can be observed in
Figure 2.

4 Rethinking Meta-Meta-Learning

Meta-meta learning has recently been proposed. Because the field of deep learning research is so
saturated, this means that in a few months someone can write a paper disputing this method. This is
more fashionable, and easier to do than thinking up something original.

5As far as the authors are concerned, DeepFakes do not constitute a real-world application.

3

79

5 Related Work

This work is entirely novel. This is why this “Related Work” section has been placed at the end as an
afterthought. The only related works are previous works of the authors. We therefore acknowledge
the act of unnecessary self-citation of barely relevant papers (Crowley & Pawlowski, 2015).

6 Conclusion

It should be obvious by now, that the decreasing size of the sections indicate that the authors are
running out of steam. Nevertheless, we shall conclude: Our technique is really good, and future work
shall consist of whatever we think up next.

References

Caruana, R., Lawrence, S., and Giles, C. L. Overfitting in neural nets: Backpropagation, conjugate
gradient, and early stopping. In Advances in Neural Information Processing systems, 2001.

Crowley, E. J. and Pawlowski, N. Neural network ensembles behave like a colony of bees. In Retreats
in Neural Information Processing Systems, 2015.

Finn, C., Abbeel, P., and Levine, S. Model-agnostic meta-learning for fast adaptation of deep
networks. In International Conference on Machine Learning, 2017.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learning for image recognition. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, 2016.

Krizhevsky, A. Learning multiple layers of features from tiny images. Master’s thesis, University of
Toronto, 2009.

Liu, H., Simonyan, K., and Yang, Y. DARTS: Differentiable architecture search. arXiv preprint
arXiv:1806.09055, 2018.

Lovecraft, H. and Niggurath, S. The colour out of space-time. arXiv preprint arXiv:2311.01234,
1923.

Real, E., Aggarwal, A., Huang, Y., and Le, Q. V. Regularized evolution for image classifier
architecture search. arXiv preprint arXiv:1802.01548, 2018.

Sabour, S., Frosst, N., and Hinton, G. E. Dynamic routing between capsules. In Advances in neural
information processing systems, 2017.

Schmidhuber, J. Musings of Jürgen Schmidhuber. In International Conference on Jürgen Schmidhu-
ber, 1997.

Wikipedia. Darts. https://en.wikipedia.org/wiki/Darts, 2019.

Wu, B., Dai, X., Zhang, P., Wang, Y., Sun, F., Wu, Y., Tian, Y., Vajda, P., Jia, Y., and Keutzer, K.
FBNet: Hardware-aware efficient convnet design via differentiable neural architecture search.
arXiv preprint arXiv:1812.03443, 2018.

Zhang, X., Huang, Z., and Wang, N. You only search once: Single shot neural architecture search via
direct sparse optimization. arXiv preprint arXiv:1811.01567, 2018.

Zoph, B., Vasudevan, V., Shlens, J., and Le, Q. V. Learning transferable architectures for scalable
image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2018.

4

80

Towards Automatic Low Hanging Fruit

Identification For the Steering of ML Research

Nick Frosst, Aidan Gomez

February 2019

Abstract

In light of the ongoing explosion of interest in the field of machine
learning, we must ask ourselves how researchers can best allocate their
resources and determine which problems deserve their attention. We iden-
tify and explore the perennial problem of low hanging fruit detection in
machine learning research organizations and present a novel, state-of-the-
art AI solution to this pertinent problem, which we believe will greatly
increase the output of research papers in the machine learning community.

1 Introduction

The field of machine learning is undergoing a period of rapid and accelerating
growth. The commercial viability of recent research developments and the pub-
lic notoriety thereby achieved, has lead to the establishment of several large
scale academic institutions devoted to the development of artificial intelligence
through machine learning. Moreover, many commercial entities have started to
fund purely research focused machine learning groups. This has lead to a period
of rapid progress, made possible by the cross institutional collaboration of re-
searchers and the public forums in which they share their work. This veritable
renaissance of artificial intelligence however comes with a downside; it is increas-
ingly difficult to stand out among the growing field of stellar researchers and
fruit enthusiasts. It would appear that as a consequence of the rapid and sus-
tained growth in our field, many have become increasingly concerned about the
supply of low-hanging fruit. This paper presents a novel solution to this prob-
lem in the form of a state of the art Low Hanging Fruit Detection model. Our
model is able to accurately identify the lowest hanging fruit and subsequently
orient the research objectives of this new cornucopia of research entities.

2 Prior Work

Much e↵ort has been put into the identification of low hanging fruit (for details,
please see all machine learning papers published in the past 3 years with citation

1

15

81

Figure 1: Low hanging fruit detection has been a concern for humanity through-
out the ages. Our modern times however, have made this problem all the more
pertinent. It is of no coincidence then that it is with modern technology that a
solution can be found.

numbers exceeding 234, excluding those written by the authors of this paper, we
do good work, and that one about the dancing [1], that was top quality stu↵).
Yet little has been done on approaching this important problem from an algo-
rithmic perspective. The potential for automated low hanging fruit detection to
give researchers the opportunity to focus on problems that take way more time
and are just kind of hard and tiring to work on, is enormous.

Furthermore, there is an abundance of research papers devoted to the sub-
ject of autonomous orchard management and the various fruit related machine
learning problems therein [4, 3, 2, 5]. Many of these papers were long, and
complicated, and so we leave reading them and determining their relevance as
an exercise to the reader.

3 Data

In order to train such a system, we first needed to collect a dataset of low
hanging fruit and high hanging fruit. Our initial strategy was to create a web
crawler of machine learning arXiv submissions to collect the abstracts of papers
submitted within the past 3 years. We were to label all those authored by
individuals with papers per year in excess of 3 as low hanging, and the rest as
high hanging fruit. We would then train a classifier on this dataset, present the
findings here in this paper, and reap the rewards. After careful examination
we decided that this approach was too hard, and achieving state of the art
results may actually require a fair bit of work. With this in mind, we focused
our attention on real fruit instead. We collected a dataset of images of apple
orchards and drew bounded boxes around the lowest fruit in each image. We
figured that training a model to identify the bounding box of the lowest hanging
fruit in each image would be sufficient for a workshop paper at least.

2

82

4 Method

We trained a simple CNN with methods mostly established in the early 2010’s
on all the data we could find, This resulted in state of the art scores for the low
hanging fruit detection task which we had just established. We benchmarked
our model against randomly labeling things. Our model greatly outperformed
this baseline. Having achieved state of the art results, we found no need to
further refine our approach or explore any other alternatives.

Figure 2: Our research team did some field work to understand the nature of the
problem. Here we have pictured our research collaborator grasping for obviously
not low hanging fruit. Why is she doing?

5 Grasping The Fruit

Our model is able to accurately detect low hanging fruit in orchard related
images, but the standard CNN alone is only able to identify the position of the
low hanging fruit, not grasp the fruit once it has been located. Augmenting our
approach to enable such capabilities would result in an end-to-end fully learned
and deployable low hanging fruit production pipeline. This development would
be indispensable to the machine learning community. With this in mind, we
created a model relying on the most recent cutting edge ML developments,
using RL to train a robotic fruit grasping hand, and stacked invertible residual
neural ODEs to draw bounding boxes around the fruit. We did not actually
train this model, as it was not particularly easy to do. We leave it instead as a
fruitful area of future research, but do note to future researchers that this flag
was planted here first, which means you need to cite us.

6 Discussion

In the interest of public safety, and in light of recent trends, we have decided
not to release any code or model checkpoints, or results for that matter; our

3

83

low hanging fruit model is simply too powerful. We would also like to take this
time to announce a new private for profit spin-o↵ of our research and welcome
any VC investment in our seed funding round.

7 Conclusion

We have presented a novel approach to the perennial problem of low hanging
fruit detection. Our model achieves state of the art performance on the low
hanging fruit detection data set which we have created. We believe this model
will be an indispensable tool to guide the research objectives of the ever in-
creasing onslaught of ML research institutions. We have decided not to release
the trained model parameters or any code at all actually, over public safety
concerns, i guess.

References

[1] Caroline Chan, Shiry Ginosar, Tinghui Zhou, and Alexei A Efros. Everybody
dance now. arXiv preprint arXiv:1808.07371, 2018.

[2] A Gongal, Suraj Amatya, Manoj Karkee, Q Zhang, and Karen Lewis. Sen-
sors and systems for fruit detection and localization: A review. Computers
and Electronics in Agriculture, 116:8–19, 2015.

[3] Keren Kapach, Ehud Barnea, Rotem Mairon, Yael Edan, and Ohad Ben-
Shahar. Computer vision for fruit harvesting robots–state of the art and chal-
lenges ahead. International Journal of Computational Vision and Robotics,
3(1/2):4–34, 2012.

[4] Tianhao Zhang, Zoe McCarthy, Owen Jowl, Dennis Lee, Xi Chen, Ken Gold-
berg, and Pieter Abbeel. Deep imitation learning for complex manipulation
tasks from virtual reality teleoperation. In 2018 IEEE International Con-
ference on Robotics and Automation (ICRA), pages 1–8. IEEE, 2018.

[5] Andrejs Zujevs, Vitalijs Osadcuks, and Peter Ahrendt. Trends in robotic
sensor technologies for fruit harvesting: 2010-2015. Procedia Computer Sci-
ence, 77:227–233, 2015.

4

84

Architecture: Faster and hotter

16 Turing-complete chess

Ross Dempsey, Sydney Timmerman, Karl Osterbauer, and Kat Xiang

Keywords: chess, automata, mahogany, Turing machine

17 NaN gates and flip FLOPS

Dr. Tom Murphy VII Ph.D.

Keywords: IEEE 754, mathematics, universal computation, gentleNaN

18 HonestNN: an honest neural network “accelerator”

Tim Linscott, Vidushi Goyal, Andrew McCrabb, and Pete Ehrett

Keywords: accelerators, architecture, machine learning, ML, AI,
DNN, CNN, graph processing, blockchain, cryptocurrency,
3D printing, security, crowdsourcing, computer, electron-
ics, science, engineering, #NovelResearch2019, #Buzzwords-
GetCites, #BetterScience

19 Simultaneous microwaving architectures: An efficient scheme
for multiplate heating

Charles Yuan

Keywords: high-energy physics, family and consumer sciences, com-
puter architecture, dependent types, machine learning,
Byzantine fault tolerance

20 Precise ECG platform on modern processors

S. Normalized Infloop and Ivybridge N. Skylake

Keywords: thermal systems, ambient heat modulating technolo-
gies, parallel heating, 2D computer graphics, edible con-
tent generation

85

Turing-Complete Chess Computation

Ross Dempsey Sydney Timmerman Karl Osterbauer Kat Xiang

April 1, 2019

Abstract

Just one year ago, the course of history was dramatically altered by the introduction of the most
aesthetically pleasing mode of computation ever conceived, the three-dimensional chess circuit. Since
that date, the chess computing community has been grappling with the difficult question of why chess
circuits have not yet been universally adopted. In this paper, we present the results of a comprehensive
survey of reasons why chess circuits are not being used more widely. After excluding an outlier response,
‘WTF,’ we find that the primary concern with chess circuits is the difficulty of incorporating them into
a full Turing-complete model of computation. We respond to this concern with the design of a Turing
machine within a three-dimensional game of S-chess.

1 Introduction

Before light, there was the darkness. Before music, there was the silence. Before sunshine, there was the
storm. And before the chess circuit, there was the silicon.

It belongs to no family, no creed, no nation. Neither metal nor insulator, it is an unspeakable mutant, a
rotten semimetal. Spending its days in back alleys, getting doped up, its destiny was to die alone, master
of none. And yet we enslaved ourselves to it, and billions of humankind bent their backs and twisted their
wrists yearning for its false allure. Its unholy seductive power brought the whole Earth under its dominion,
and each of us prostrated ourselves, worshipping this false idol. It is silicon, the computing technology which
must not be named.

Only a year ago, the authors unshackled humanity from its bondage and preached the gospel of the chess
circuit [1]. Like a chorus of angels, ecstatic children filled the streets with their cries of relief; for the dark

Figure 1: Devout churchgoers kneeling in worship of the fine mahogany which sits immediately in front of
them.

1

16

86

days were over, and the light was upon us. Mighty silicon gave way to the wise hand of mahogany. All across
the world, people come every Sunday to be held in seats of wood, made to represent the true fine mahogany.
In moments of need, they kneel before the wood in front of them, in worship and admiration of mahogany
(Figure 10).

Despite the resounding show of support for fine mahogany, silicon retains a great deal of its power over
the world. In this paper, we seek to understand why there has been resistance to the adoption of a clearly
superior technology. To this end, we conduct a survey of reasons for the continued use of silicon circuits over
chess circuits. After excluding a prominent outlier response, ‘WTF,’ we find that the predominant reason
is the difficulty of constructing a full computer out of chess circuits. The remainder of the paper addresses
this concern by constructing a chess Turing machine.

2 Survey Results

We conducted a survey of 100,000 respondents to understand their feelings about the adoption of chess
computers. While normally it would be difficult to tally the responses of such a large number of participants,
we used a chess computer, and so the results were available in a blazingly fast 3.5 months. (Three additional
weeks were spent waiting for an order of 80,000,000 additional white rooks, since we needed to store 10 MB
of data).

The survey asked a single question: “what would prevent you from replacing all of your silicon-based devices
with chess-based equivalents?” The results are summarized in Table 1. Although the survey was open-
ended, we only received two distinct responses. One was the three-letter string “WTF,” and the other was
the sentence “I am not sure how to incorporate the static Boolean circuit capability outlined in [1] into a
dynamic Turing-complete system which can fully service my computing needs.” This sentence was repeated
verbatim four times, and there are four authors of this paper. However, since the survey was anonymous,
we cannot investigate this coincidence further.

Response Count

WTF 99,996

I am not sure how to incorporate the static
Boolean circuit capability outlined in [1] into
a dynamic Turing-complete system which can
fully service my computing needs.

4

Table 1: Our free-form text response survey received only two distinct responses, which are summarized
here.

We have reviewed numerous possible explanations for the occurrence of the string “WTF.” One possibility is
that these survey participants are intending to say “Wow, That’s Fun!” in response to the idea of replacing
silicon circuits with chess circuits. Regardless of the explanation, we believe it is safe to treat these 99.996%
of responses as outliers, and exclude them from our analysis.

After making these reasonable adjustments to our data set, we find that an overwhelming 100% of responses
indicate a lack of confidence in building a Turing machine out of chess circuits. In this paper, we respond to
these concerns with the design of a Turing machine which runs on a three-dimensional game of S-chess.

2

87

3 Three-Dimensional S-Chess

In case any of our readers are absolute fools who have been living under a rock for the past year, we
review the rules of three-dimensional S-chess. We use a unicorn-free version of Kubikschach, invented by
Lionel Kieseritzky. Rooks move in directions (±1, 0, 0), (0,±1, 0), and (0, 0,±1). Bishops move in directions
(±1,±1, 0), (±1, 0,±1), and (0,±1,±1). Kings and queens move in all of these directions. We allow for an
unbounded volume, and an unlimited number of every type of piece.

8 0Z0Z0Z0Z
7 Z0S0Z0Z0
6 0Z0Z0Z0Z
5 Z0l0ZKZ0
4 0Z0Z0Z0Z
3 Z0j0Z0Z0
2 0Z0Z0Z0Z
1 Z0Z0Z0Z0

a b c d e f g h

Figure 2: White is in check, but not in S-
check.

The important distinction we make is in the rules of check.
Consider the chess position in Figure 2, with white to move.
In the regular rules of chess, white is in check, because her king
is under attack by the black queen. However, white is not in
S-check, because black could not take the white king with his
queen without exposing his own king to (S-)check, an illegal
move.

Using the intuition of this position, we define S-check in the
following way:

Definition 1. A player is in S-check if the opponent possesses

a legal move which captures a king. A move is illegal if it leaves

the mover in S-check.

This is a stronger condition than standard check. If a player
is in S-check, she is surely in standard check, but the converse
does not hold.

Since there are multiple kings of each color, it is possible for
multiple kings to be in S-check at once. This would normally
result in what we call a “lame checkmate,” where a player wins
the game by forking her opponent’s kings. We prevent lame checkmates by allowing a player to make N
moves per turn, where N is the number of kings which are in S-check.

4 Chess Circuits

In [1], we present an algorithm for building chess circuits corresponding to any Boolean function. Here we
review the basic constructs.

Bits in the chess circuit are represented by the binary property of whether a piece is pinned or not. A piece
which is not pinned, and therefore free to move, is assigned a 1; a piece which is pinned, and therefore fixed
in place, is assigned a 0.

To build circuits, we use bishop NOR gates. An example of a bishop NOR gate is shown in Figure 3a. The
two black bishops are part of a larger configuration, so they may be 0s or 1s. If they are both 0s, i.e. both
pinned, then the white bishop is unpinned and takes the value 1. If either black bishop is unpinned and has
value 1, then it pins the white bishop, which has value 0. Therefore, the white bishop is the NOR of the two
black bishops.

Since NOR logic is universal, we can put these gates together into an arbitrary Boolean circuit. Each layer
of gates has to be rotated 90◦ with respect to the last, so a staircase pattern results. The details of the
geometry are outlined in [1]. The result of the circuit is stored in a bishop which sits at the apex.

In addition to the circuit itself, we need to insert the values of the variables. A single variable may appear at

3

88

8 0Z0Z0Z0Z
7 Z0Z0Z0Z0
6 0ZKZKZ0Z
5 Z0ZBZ0Z0
4 0ZbZbZ0Z
3 Z0Z0Z0Z0
2 0Z0Z0Z0Z
1 Z0Z0Z0Z0

a b c d e f g h

(a) The white bishop implements a NOR of the
black bishops.

8 0Z0Z0Z0Z
7 Z0Z0Z0Z0
6 0Z0j0Z0Z
5 Z0ZbZ0ZR
4 0Z0Z0Z0Z
3 Z0JRZ0Zr
2 0Z0Z0Z0j
1 Z0Z0Z0Z0

a b c d e f g h

(b) Rooks carry a value from memory to a
bishop in the circuit.

Figure 3

many points in the circuit, so we have to be able to wire the same truth value into several bishops, possibly
at many levels of the circuit. To do this, we construct a tower of rooks next to the circuit, which follow the
same staircase pattern. To move a value from the rook tower into the circuit, we use a rook wire like the
one shown in Figure 3b.

5 Chess DFA

The aim of this paper is to construct a Turing machine out of the rules of three-dimensional S-chess. We will
do this in two phases. First, in this section, we describe the construction of a deterministic finite automaton
(DFA) in S-chess. This illustrates many of the important features of the S-chess Turing machine, but without
the complications of a writable memory tape. Then, in Section ??, we extend the DFA construction to make
it Turing-complete.

A DFA consists of N states, which it moves between depending on the bits of an input string. We will take
N = 2n, so that states can be labeled by bit strings of length n. One state is designated as the accept state,
and the string is accepted if and only if the machine finishes in the accept state.

Typically, the work of a DFA is represented as a walk on a graph of states. We will instead use repeated
applications of a state transition function Φ : {0, 1}n+1 ! {0, 1}n. This function takes a state, represented
as a bit string of length n, and an additional bit, and returns another state. Let the initial state be i, and
let the input string be s1s2 · · · sm. Then the final state of the DFA is given by

Φ(Φ(· · ·Φ(Φ(i, s1)s2) · · · , sm−1), sm).

The key point of our construction is that Φ : {0, 1}n+1 ! {0, 1}n can be represented by n Boolean circuits,
each of which take n + 1 inputs. Thus, we can compute the state transition function using an array of n
chess circuits.

The input to these chess circuits will be n bits specifying the current state, and one bit from the input string.

4

89

K
RA

R

K
RB

K

R
K

R
K

RC

Figure 4: A chess transistor, in which a control rook regulates the flow of data through a wire.

Providing these two inputs to the circuits will constitute the primary challenge in constructing the chess
DFA. We will first describe the mechanism for storing the current state, and then describe the input reader.

5.1 Internal Memory

The output of the state transition circuits has to be fed in as input at the next time step. We cannot wire
the output to the input directly, since there would be no time to pause for the next bit of input (and also
there would be many issues related to placing oneself in check). Instead, the bits need to be copied into
some form of storage, and then piped into the circuits at a later stage.

This reveals a fundamental difficulty with constructing a dynamic chess computer as compared with con-
structing a static chess circuit. In a chess circuit, if we want to move a bit, we simply build a rook wire; in a
chess computer, we have to take great care to allow for a steady progression of time, without copying values
too quickly. To fix this problem, we will need to be able to have wires which are activated or deactivated
according to the value of some other bit. In e↵ect, we need to build a chess transistor.

As a toy example, let there be a rook storing a value A, and a control rook storing a value C. If C = 0, we
want the rook B to take the value A, and if C = 1, we want B = 0. Of course, this could be accomplished
using our standard construction of chess circuits, but there is a more efficient option. Figure 4 shows an
implementation of the desired behavior.

Using the chess transistor, we can build a circuit for gated data flow. We will need a slightly di↵erent
convention for storing bits – since pins can be deactivated by transistors, they do not persist. Instead, we
will use the position of a piece to store internal memory. It is straightforward to translate one data type into
the other, by (i) pinning a piece depending on the position of another piece or (ii) forcing a piece to move
to one of two positions to defend against an S-check created by the loss of a pin. Note that type (i) copies
are instantaneous, while type (ii) copies require the passage of a turn.

The gated data flow circuit for a single bit is shown in Figure 5, using rooks everywhere for simplicity. The
initial data, to the left of the figure, is represented by the placement of the rook in one of the two indicated
positions at location (a). This pins exactly one of the rooks directly below it, at location (b). These rooks
are connected by gated wires to another set of rooks, at location (c). When the control bit C for the gated
wires is on, the leftmost two rooks at location (c) are 0, and so the leftmost two kings at position (d) are

5

90

R
R

(a)

R
R

K
K

(b) R
R

R

(c)

R
R

RK
K

K

(d)

C

R

Figure 5: A gated data flow circuit, which uses transistors to move data from (a) to (d) over the course of a
turn.

not in S-check. However, when C = 0, data flows to position (c) and so exactly one of those rooks carries a
1, which then places one of the leftmost two kings at position (d) in S-check. The rook at position (d) has
to shift to block this S-check.

Thus, when the control bit C is activated by black, white is forced to copy a bit from position (a) to position
(d) in the next turn. In order to ensure that white remains in perpetual check, it is important to reset the
circuit using the control bit R before the next copy, forcing the rook at (d) to move back to the rightmost
position.

5.2 Read-Only Memory

In the DFA, the input string is read-only, and is used in order one bit at a time. This is the distinction
between the DFA and the Turing machine. The mechanism described in this section is the first stage in the
construction of a more complicated memory system for the Turing machine.

We store the input string as a line of rooks, where the presence of a rook corresponds to a 1 and the absence
of a rook corresponds to 0. Adjacent to the line of rooks, we place another line of rooks of the opposite color,
with a single gap. Whenever a rook in this second line line moves, the gap moves to the next position in the
input string. Figure 6 shows this construction.

This allows us to isolate one bit of the input at a time, but the bit of interest is moving. We need to build
an apparatus around the input string which channels this bit into a fixed position. In Figure 6, when the
gap is at position i, all of the white bishops have value 1 except for the ith, which has value ¬si. If we build
a circuit to compute the conjunction of all these bishops, then the value at the apex will be ¬si. This value
can then be piped into our n state transition circuits via rook wires.

6

91

y

x

B

K

B

K

B

K

B

K

B

K

B

K

R R R R R

R R R

Rook Movement

Input Orientation

Figure 6: As the rooks move, the gap moves in the opposite direction, exposing one bit of the input string
at a time.

We still need a way to force the white rooks in Figure 6 to move in the specified direction. For this, we
use a line of black rooks above the white rooks, as shown in Figure 7. The rooks are wired in a repeating
threefold pattern, which we have labled with variables X0, X1, and X2. During other stages the machine
operation, we set all Xi to 0. But when it comes time to move the memory, all but one of the Xi are set
to 1. The variable which is set to zero is controlled by a counter which we update at every time step using
the methods of the previous subsection. This way, we can track the position of the memory gap and act
accordingly. The black rooks are set so that white is in check, and can only defend by moving a rook such
that the memory gap moves in the desired direction.

5.3 Construction

We now have all the basic circuits and mechanisms we need to build the chess DFA. Our only job is to put
them together correctly.

Recall that the main computation of the DFA with 2n states is carried out by n chess circuits, each with
n+ 1 inputs. We will denote these circuits by A1, . . . , An.

We arrange these circuits side-by-side, and simultaneously homogenize them all. While this is not strictly
necessary, it allows us to use a single rook memory tower to source all of the circuits. Some circuits may be
deeper than others, so the memory tower starts at the bottom of the deepest circuit. See [1] for a detailed
discussion of chess circuit homogenization.

In addition to the circuits A1, . . . , An, we add three small circuits which keep track of the time step modulo
3, for use in the memory movement mechanism. These circuits are labeled B0, B1, and B2.

The chess DFA has to make the following steps in each time step:

1. Evaluate all circuits Ai and Bi on the input (σ, si, b0, b1, b2), where σ is the current state, si is the
current bit of input, and bi are extra variables representing a counter modulo 3.

2. Store all the results in internal memory.

3. Move to the next bit of memory.

To accomplish these steps in sequence, we make ample use of chess transistors, controlled by a central clock

7

92

y

x

z

K K K K KK

B

K

B

K

B

K

B

K

B

R
R

R
R

R

R
R

R

R
R

R
R

R

X0
X1

X2
X0

X1

Figure 7: During the memory movement phase, all but one of the variables Xi are set to 1, so that white’s
only choice for defending check is to move a rook. In this figure, X0 would be set to 0 and the others set to
1, so that white would have to move its rook to the left and defend, thereby moving the memory position to
the right.

8

93

z

y

R

R

B

RK

K

W0

W1

Memory Pin

Figure 8: By activating exactly one of W0 and W1, we can write either a 0 or 1 to memory respectively.

circuit which consists of a queen moving in a polygonal path. On a detailed level, the following steps need
to be taken in each time step:

1. A transistor is opened so black bishops at the apexes of circuits can put white kings in check, forcing
white to move rooks to defend.

2. A gated wire is opened, copying these white rooks to another set of white rooks.

3. The first white rooks are reset.

4. The black rooks in the memory movement mechanism are activated, moving the memory gap.

Each of these steps consists of black freely moving the queen in the clock circuit, followed by white responding
by defending against all of its checks. Thus, each step consists of a single turn (where both players move
once in a turn), so a time step of the DFA corresponds to four turns of the chess game.

Constructing a chess DFA requires wiring the clock circuit to transistors such that steps 1-4 are carried out
in sequence each time step. Rather than sketching the DFA layout, we will first describe the modifications
necessary to build a full Turing machine, and then sketch this.

6 Chess Turing Machine

A Turing machine di↵ers from a DFA in how it interacts with memory. In a DFA, there is a fixed input
string which is read bit by bit, and the final state of the machine is the output. In a Turing machine, we
can move back and forth through the memory, and also write to memory.

Upgrading our DFA to a Turing machine thus requires two modifications. First, the machine should be
able to move in either direction along the memory tape. This is surprisingly simple given the construction
described in Section 5.2. We simply add an additional circuit to the core of the machine, M . When M

outputs 1, follow the same procedure as in Section 5.2, moving the memory gap to the right. When M

outputs 0, we set X0, X1, and X2 such that the memory gap moves to the left instead.

Additionally, the machine should be able to write to memory. This is also surprisingly easy. For the DFA,
memory was stored by a sequence of rooks and gaps; for the Turing machine, we replace the gaps with rooks
that have been forced to move out of place to defend against a check. At each time step, we can alter the
position of this rook by placing a king in check and forcing it to defend.

9

94

There are two small caveats when writing to memory. The first is the geometry; we have to be careful to
move the rook to a position in which it will be “out of sight” to the memory system, while also not blocking
the path by which the in-place rook pins a bishop. Figure 8 shows a suitable geometry, using a white rook
and a white bishop.

Figure 8 only shows the yz plane; it is also crucial that this mechanism is only activated at the x value of
the current memory position. To ensure this, we place a line of bishops behind the line of white rooks, such
that only one will be able to make a pin through the memory gap. We use these pins to set the control bits
on transistors, so that the circuit in Figure 8 is only activated at the desired x value.

In addition to the question of geometry, there is a concern about what happens when the Turing machine
does not need to change the present value in memory. Then activating the corresponding Wi variable would
not give check, and there would be an undesired free move. To prevent this, we simply add a rook which
is toggled between defending three di↵erent kings, controlled by the modulo 3 counter which controls the
memory movement. This rook serves no purpose except guaranteeing perpetual check.

We are now prepared to construct the chess Turing machine, following basically the same procedure as in
Section 5.3. The core of the machine is an array of circuits: A1, . . . , An; B0, B1, B2; and now, M and W .
All of these circuits share a single rook memory tower. A gated data flow circuit allows the outputs of these
circuits to be temporarily stored in internal memory; this internal memory is wired into the rook memory
tower.

Additionally, the memory tape is wired into the rook memory tower. The internal memory is wired to the
movement mechanism and the writing mechanism, so that the outputs of circuits M and W can be used to
move the memory gap and write to memory.

Finally, all of these mechanisms are wired to a central clock circuit. Writing to memory adds an additional
move to each time step of the machine, so the clock circuit is a hexagonal path. For the sake of completeness,
the steps taken in each time step of the Turing machine are as follows:

(I) A transistor is opened so black bishops at the apexes of circuits can put white kings in check, forcing
white to move rooks to defend.

(II) Internal memory is reset.

(III) A gated wire is opened, copying the white rooks to another set of white rooks, which form the internal
memory.

(IV) The first white rooks are reset.

(V) The memory write circuit is activated.

(VI) The black rooks in the memory movement mechanism are activated, moving the memory gap.

A sketch of the chess Turing machine is given in Figure 9.

10

95

R
R

R
R

R
R

R
R

R
R

R
R

R
R

R
R

··
·

··
·

RR
RR

RR
RR

RR
RR

RR
RR

RR
RR

RR
A
N
D

A
1

B
2

M
W

··
·

I
II

II
I

IV
V

V
I

F
ig
u
re

9:
S
ch
em

at
ic

of
a
ch
es
s
T
u
ri
n
g
m
a
ch
in
e.

D
at
a
li
n
k
s
ar
e
sh
ow

n
in

gr
ee
n
,
co
n
tr
ol

w
ir
es

ar
e
sh
ow

n
in

re
d
,
an

d
re
se
t
co
n
tr
ol
le
rs

ar
e
sh
ow

n
in

b
lu
e.

L
ig
h
t
b
lu
e
tr
ia
n
gl
es

re
p
re
se
n
t
ch
es
s
ci
rc
u
it
s,

an
d
th
e
li
gh

t
b
lu
e
st
ai
rc
as
e
is

th
e
ro
ok

m
em

or
y
to
w
er
.

11

96

Figure 10: All hail mahogany.

7 Conclusion

Keats tells us that beauty is truth, truth beauty; in this paper, we have shown that three-dimensional chess
is both truth and beauty. There can no longer be any excuse for resorting to the temptations of the lowly
semimetal known as silicon. Mahogany is supreme, mahogany is lord. All hail mahogany.

References

[1] Ross Dempsey, Sydney Timmerman, and Karl Osterbauer. Chess circuits. In Sigbovik.

12

97

NaN gates and flip FLOPS

Dr. Tom Murphy VII Ph.D.∗

1 April 2019

Abstract

Yes, this paper contains many layers of abstraction.

Introduction

Mathematics is fundamental to computer science, and the
foundation of mathematics is the real numbers; this is obvious
from the name. One of computing’s dirtiest secrets, however,
is that computers themselves are not based on real numbers—
rather, they are based on so-called “ones” and “zeroes” com-
bined with “logic gates” simulated with transistors. While this
suffices for most practical purposes, it is unsatisfying from a
theoretical perspective.
Recently, some progress has been made by human geniuses

on completely replacing integer calculations with calculations
on real numbers[4]. While this removes many of the hacks
present in modern software, there are still many components
of the computer (e.g. RAM, registers, the scroll lock LED, a
tiny USB-powered fan that can cool you on hot summer days
or during particularly strenuous programming sessions) that
are not integer-based, and thus cannot be replaced with real
numbers via this techique.
In this paper I give a new foundation for computing based

solely on real numbers. I begin with a brief reminder of the
definition of real numbers, although the reader is expected to
be familiar as these are pretty fundamental to everything. The
approach of the paper is then to identify a pair of real num-
bers that have nice properties (Section 1.1), and then to give
mathematical operations on these numbers that parallel the
logical operations typically used in the construction of com-
puters (Section 1.3). I then discuss how these operations can
be implemented efficiently (Section 3). I conclude with some
wild speculation.

1 Real numbers

The real numbers are described by IEEE 754, most recently
revised in AD 2008[1]. Every real number has a sign, a man-
tissa, and an exponent. Actually, this understates the elegance
of real numbers, since there are a number of numbers, such as
NaN (“not a number”) which are not of this form; NaN nas no
sign nor mantissa nor exponent. We also have inf and −inf,
which do have a sign, but no mantissa nor exponent. These

∗Copyright c© 2019 the Regents of the Wikiplia Foundation. Appears
in SIGBOVIK 2019 with the half precision of the Association for Com-
putational Heresy; IEEEEEE! press, Verlag-Verlag volume no. 0x40-2A.
$-0.00

are the infinite numbers that you get if you count very high or
very low. Excitingly, we also have both positive and negative
versions of 0. Some numbers have multiple representations,
and almost all numbers cannot be represented at all.

The real numbers have an equality operation ==. This op-
eration has some very exciting properties which are unusual
for an equivalence relation: It is not reflexive (NaN == NaN is
false), and does not obey substitution (for +0 == −0 is true,
but 1/+0 == 1/−0 is false).

As a result, real numbers are an absolute joy to work with.

1.1 Choosing some distinguished values

Computing will need at least two different values. We could
choose 0.0 and 1.0 as in “binary,” but these numbers are ex-
tremely arbitrary; why not 1.0 and 2.0? e and π/2? These
numbers are easily confused with one another. It seems better
to use distinguished values, making the resulting mathematics
more distinguished. One of the most distinguished numbers
is NaN (Figure 1). One nice thing about using the number
NaN is that it is not comparable to other numbers, e.g. both
NaN < 0.0 and 0.0 < NaN are false. Does it really make sense
for our fundamental particles to be ordered (e.g. 0 < 1)? The
lack of symmetry is abhorrent.

Figure 1: A distinguished gentleNaN.

The two numbers we choose need to be different; alas they
cannot both be NaN, since although NaN is different from NaN

(NaN != NaN), it is not possible to tell them apart (except
that NaN actually has multiple binary representations—see

https://sf.net/p/tom7misc/svn/HEAD/tree/trunk/nand

17

98

https://sf.net/p/tom7misc/svn/HEAD/tree/trunk/nand

Section 2). Another great choice is +inf or −inf. We choose to
use +inf in order to break symmetry, and because it will make
our scientific contribution more positive.

1.2 IEEEuler’s Identity

Moreover, NaN and inf are part of the pantheon of special val-
ues, exhibiting exquisite properties, such as IEEEuler’s iden-
tity:

eiπ + 1NaN×inf = 0

because 1n is 11, even for n = NaN.2 Another nice pair of
properties ties these fundamental constants together a different
way:

(eiπ)
−inf

= compound(NaN, 0)

compound(x, n) is the “compound interest” function (1+x)n,
defined in the IEEE 754 standard, but only available in C via
floating point extensions [2]. This function is 1 for n = 0 and
x = NaN.3 More excitingly, we have eiπ = −1 (Euler) and
−1−inf = 1 “because all large positive floating-point values are
even integers.” [3]

1.3 NaN’s Not GNU

People who work with real numbers are often taught that the
number NaN is propagated through all expressions that use it
(e.g. NaN−1 = NaN), like some kind of GNU Public Licensed
number. This is a misconception. We already saw in the beau-
tiful identities above that some expressions involving NaN do
not result in NaN, like 1NaN = 1 and compound(NaN, 0) = 0.
But it is also the case that 1inf = 1 and compound(inf, 0) = 0.
Are there mathematical functions that distinguish between
NaN and inf?

It turns out that there are! For example, the functions
minNum and maxNum ([IEEE 754-2008, 5.3.1, p19]) take two
arguments and return the min and max, respectively. They
have the special, distinguished property that “if exactly one
argument is NaN, they return the other. If both are NaN they
return NaN.”

With functions such as these, we can begin constructing
the building blocks of more interesting functions (Figure 2).
Unfortunately, maxNum(a, b) and a ∗ b are not complete on
their own; we additionally need at least a function f(x) where

1This paper uses both exponents and footnotes extensively; please be
careful of the difference.

2[IEEE 754-2008, 9.2.1, p44]

3[IEEE 754-2008, 9.2.1, p44]

maxNum(a, b) NaN inf

NaN NaN inf

inf inf inf

a ∗ b NaN inf

NaN NaN NaN

inf NaN inf

Figure 2: The behavior of some mathematical functions on
our distinguished values NaN and inf. maxNum returns inf if
either of its arguments is inf (some other functions have this
property, like hypot). a ∗ b is inf only if both of its arguments
are inf (there are many other examples, like a+ b).

f(NaN) = inf and f(inf) = NaN. Does such a function exist?
Yes! Several can be built from IEEE 754 primitives:

f(x) = minNum(−x,−1.0) + inf

f(x) = hypot(NaN, maxNum(1/x,−inf))
f(x) = inf− maxNum(x, 1.0)
f(x) = sqrt(copysign(inf,−x))

You can try these out in your favorite programming language,
and if they don’t work, your implementation is not IEEE 754
compliant. Why do these work? Let’s take the first one, and
compare NaN and inf for x:

x = NaN x = inf

minNum(−x,−1.0) + inf minNum(−x,−1.0) + inf

minNum(−NaN,−1.0) + inf minNum(−inf,−1.0) + inf

−1.0 + inf −inf+ inf

inf NaN

Thinking of NaN as false and inf as true, we now have AND
(maxNum), OR (∗), and NOT (minNum(−x,−1.0)). With these
we can create arbitrary functions f(a1, a2, . . . , an) that return
our choice of NaN or inf for the 2n different combinations of
arguments. It is also possible to find more direct expressions
that compute simple functions (Figure 3).

inf− maxNum(a+ b,−inf) NaN inf

NaN inf inf

inf inf NaN

abs(minNum(b,−a) + maxNum(b,−inf)) NaN inf

NaN NaN inf

inf inf NaN

−inf/maxNum(b, maxNum(a,−1)) NaN inf

NaN inf NaN

inf NaN NaN

Figure 3: Some interesting functions of two variables. They
are isomorphic to the boolean functions NAND, XOR and NOR

respectively, but more beautiful.

I found these functions through computer search,4 using a

4Source code is available at https://sourceforge.net/p/tom7misc/

svn/HEAD/tree/trunk/nand/

https://sf.net/p/tom7misc/svn/HEAD/tree/trunk/nand

99

https://sf.net/p/tom7misc/svn/HEAD/tree/trunk/nand

parameter binary4 binary16 binary32 binary64 binary128 binaryk
k, storage in bits 4 16 32 64 128 multiple of 32
p, precision in bits 2 11 24 53 113 k - round(4 * log2(k)) + 13
emax, maximum exponent e 1 15 127 1023 16383 2k−p−1 - 1
bias = E - e 1 15 127 1023 16383 emax
signbits 1 1 1 1 1 1
w, exponent width 2 5 8 11 15 round(4 * log2(k)) - 13
t, trailing significand width 1 10 23 52 112 k - w - 1
k, storage width 4 16 32 64 128 1 + w + t

Figure 4: Parameters for the newly-introduced binary4 encoding for IEEE 754, compared to the standard widths (see Table 3.5
in the standard[1]).

technique like bottom-up logic programming [5]. I start with a
small set of constants, including arguments a and b, and then
compute all of the expressions that can be made by applying
a single mathematical function (e.g. abs(x), −x) or binary
mathematical function (x + y, x/y, maxNum(x, y)) to existing
expressions. The expression is actually a collection of values
taken on for each possible substitution (in {NaN, inf}) to argu-
ments a and b (i.e., it represents a function). If the expression
has the correct values for each possible assignment to the ar-
guments, then we are done. We only need to keep one (the
smallest) expression that represents a distinct function, but
note that we have to consider intermediate expressions that
compute values other than NaN and inf. Also note that we
need one of minNum, maxNum or copySign in order to compute
the NOT function; we could think of these functions as therefore
essential to mathematical completeness.
Particularly nice is inf− maxNum(a+ b,−inf), which returns

inf if either of its arguments is NaN. We will call this the “NAN
gate”, for “Not NaN”. The NAN gate is exciting because it can
be used on its own to construct all other boolean functions! We
can use NaN, inf, and this function to construct any computer
and any computable function. Beautiful!
To program with numbers on computers, the real numbers

are represented as strings of bits. Next we’ll talk about efficient
representations that allow us to manipulate NaN and inf with
NAN gates.

2 The binary4 representation

IEEE 754 natively defines several bit widths for floating-
point values, such as the 32-bit binary32 (aka “single-precision
float”) and 64-bit binary64 (aka “double-precision float”). The
specification is parameterized to allow other bit widths; for ex-
ample, half-precision 16-bit floats are common in GPU code
for machine learning applications [7]. Smaller floats sacrifice
precision, but require less space and allow faster calculations.
For our purposes in this paper, since we only need to represent
the two numbers NaN and inf, we are interested in the smallest
possible representation.

This section describes the binary4 representation, a four-bit
floating point number that is clearly allowed by the IEEE 754
standard.

The representation of any floating-point number has a single
sign bit, some number w of exponent bits, and some number
t of mantissa bits. For binary32, w = 8 and t = 23; and with
the sign bit we have 23 + 8 + 1 = 32 bits as expected. We

s E T value
0 00 0 +0
0 00 1 subnormal: 20 ∗ 21−2 ∗ 1 = 1 ∗ 1/2 ∗ 1 = 0.5
0 01 0 normal: 20 ∗ (1 + 1/2 ∗ 0) = 1
0 01 1 20 ∗ (1 + 1/2 ∗ 1) = 1.5
0 10 0 21 ∗ (1 + 1/2 ∗ 0) = 2
0 10 1 21 ∗ (1 + 1/2 ∗ 1) = 3
0 11 0 +inf

0 11 1 NaN

1 00 0 −0
1 00 1 −0.5
1 01 0 −1
1 01 1 −1.5
1 10 0 −2
1 10 1 −3
1 11 0 −inf
1 11 1 NaN

Figure 5: All 16 values representable in binary4 floating-point.
The format works reasonably well even at this very low preci-
sion, although note how many of the values are not finite.

need at least a sign bit, but what are the smallest permissible
values of w and t?

The most stringent constraint on w comes in [IEEE 754-
2008, 3.4, p9], which states

The range of the encoding’s biased exponent E shall
include:

— every integer between 1 and 2w−2, inclusive, to
encode normal numbers

— the reserved value 0 to encode ±0 and subnor-
mal numbers

— the reserved value 2w − 1 to encode ±∞ and
NaNs.

E is the binary number encoded by w. It must include at
least the two special values consisting of all zeroes and all
ones (second and third clause). A conservative reading of
“every integer between 1 and 2w − 2” seems to require that
1 ≤ 2w−2 (otherwise how could the interval be inclusive of its
endpoints?), which would imply that w is at least 2. (However,
see Section 2.1 for the hypothesized case where w = 1.)
The representation of NaN and inf are distinguished by the

value of t when E is all ones. We certainly need to distinguish

https://sf.net/p/tom7misc/svn/HEAD/tree/trunk/nand

100

https://sf.net/p/tom7misc/svn/HEAD/tree/trunk/nand

these, so t = 1 is the minimal size.
We have one sign bit, two exponent bits, and one mantissa

bit, for a total of four. Since “single precision” is 32 bits, “half
precision” is 16, 4 bits is “eighth precision.” Given how nicely
all this works out, shouldn’t there be an eighth base type in
most modern programming languages and GPUs? Since there
are so few values representable, it would be practical for all
the standard operations to be done in constant time via table
lookups. All 16 possible values are given in Figure 4.
Four bits is not many, but is it possible to represent these

two values more efficiently?

2.1 The hypothesized binary3 format

s E T value
0 0 0 +0
0 0 1 subnormal: 21 ∗ 21−2 ∗ 1 = 2 ∗ 1/2 ∗ 1 = 1
0 1 0 +inf

0 1 1 NaN

1 0 0 −0
1 0 1 −1
1 1 0 −inf
1 1 1 NaN

Figure 6: All 8 values of the hypothetical binary3 representa-
tion. There are no normal values; the only finite values are
the positive and negative zero and a single subnormal which
denotes 1 (or −1).

The IEEE 754 representation clearly requires a sign bit, and
for this purpose we need at least one bit for the mantissa in
order to distinguish NaN and inf. It is perhaps a stretch of the
wording, but arguably the spec permits a 1-bit exponent (w =
1). To rationalize this we need to interpret the phrase “every
integer between 1 and 2w−2 inclusive” (that is, between 1 and
0 inclusive) as denoting the empty set. This seems reasonable.

With one bit for sign, exponent, and mantissa, we can repre-
sent just 8 different values. Here emax is 0, and the standard
clearly requires emin = 1 − emax, so emin = 1. Certainly
fishy for emin to be larger than emax, but we can just not
stress out about it; the representable values are all reasonable-
looking (Figure 6).

3 A hardware math accelerator

So now we know that we can build arbitrary computers with
the NAN gate, representing the interconnects between the gates
efficiently with binary3-coded real numbers. All that remains
is an efficient implementation of the NAN gate itself. We could
emulate such a thing in software, but software is much slower
than hardware; we would also like to maximize the number
of times that we can flip between states of the gate (the flip
FLOPS) per second.

Fortunately, there are several pieces of hardware that im-
plement IEEE 754 real numbers. I found a moderately-priced
micrprocessor ($6.48/ea.), the STM32F303RDT6. This is a
32-bit ARM Cortex M4F processor with hardware floating-
point running at 72MHz [6]. In the rather-difficult-to-solder

Figure 7: The STM32F303RDT6 wired up as 5 NAN gates,
shown here in situ. This is a portion of a larger schematic.
Also show is some support hardware needed for each micro-
processor: A programming header, 5 filter capacitors, a crystal
oscillator circuit, and a reset switch with external pull-up.

10mm surface-mount LQFP64 package, it has 64 pins, 51 of
which can be used for general-purpose IO. Since a NAN gate
using the binary3 representation needs 9 pins (3 × 2 for the
inputs, 3 for the outputs), it is feasible to implement five NAN

gates on the same chip with a few pins left over for jiggery
pokery (Figure 7).

The hardware math accelerator itself can be thought of
as a floating point unit (FPU), but one that is stream-
lined to run only a single instruction, the universal function
inf−maxNum(a+b,−inf). This is a function taking two binary3
real numbers and outputting a single binary3 number. Since
there are only 26 = 64 possible inputs, it can be straightfor-
wardly implemented with table lookup, but this would require
dozens of microprocessors, which might exceed our power bud-
get. In fact there is significant structure to the function; for
one thing, it can only return NaN or inf (even if arguments like
-1.0 or 0.0 are given), and the binary3 representation of these
only differ in one bit. Equivalent logic to determine that bit is
as follows:

https://sf.net/p/tom7misc/svn/HEAD/tree/trunk/nand

101

https://sf.net/p/tom7misc/svn/HEAD/tree/trunk/nand

Figure 8: A beautiful hand-routed circuit board implementing a universal math accelerator, using only the universal NAN gate
implemented with native floating point hardware.

if isfinite(a) && isfinite(b)

then

// inf - (a + b) = inf

0

else

// a + b is nan when a is nan, b is nan, or a and b are

// infinites with different signs. If they are both

// -inf, then we have max(-inf, -inf) anyway, which is

// the same as max(nan, -inf). So we have:

if a == inf && b == inf

// both positive infinities

// inf - inf = nan

1

else

// inf - -inf = inf

0

So ultimately this function only returns 1 in the case that
both inputs are exactly +inf, the pattern 0 1 0.
If the inputs are a0 a1 a2, b0, b1, b2, and outputs are c0,

c1, c2, then:

c0 = 0

c1 = 1

c2 = !a0 && !a2 && !b0 && !b2 && a1 && b1

So we can hardwire the outputs c0 and c1, and use the
microprocessor-based NAN gates to compute c2 as a small
boolean function.
Of course, each 0 or 1 above is actually itself a binary3-

coded NaN or inf. Thus on the physical circuit board, this
math accelerator has 2× 3× 3 input pins and 1× 3× 3 output
pins. This is just shy of the total number of IO pins on the
Raspberry Pi, so we use such a computer to drive the math
accelerator. Given the large number of traces and small foot-
print of the microprocessors, routing the board gets somewhat
involved (Figure 8).
As of the SIGBOVIK 2019 deadline, such a circuit board

has been manufactured in China and is in possession of the

author (actually the minimum order quantity of 10), but he
is somewhat nervous about his ability to hand-solder these
0.1mm surface-mount leads, so we’ll see how it goes! Please
see http://tom7.org/nan for project updates or an embar-
rassing 404 Not Found if I fail to reboot computing using the
beautiful foundation of real numbers.

References

[1] 754–2008 IEEE standard for floating-point arithmetic.
Technical Report 754–2008, IEEE Computer Society, Au-
gust 2008.

[2] Floating-point extensions for C—part 4: Supplementary
functions. Technical Report TS 18661-4:2015, ISO/IEC,
2015.

[3] JTC1-SC22-WG14. Rationale for international standard—
programming languages—C. Technical Report Revision
5.10, ISO/IEC 9899, April 2003. http://www.open-std.

org/jtc1/sc22/wg14/www/C99RationaleV5.10.pdf.

[4] Jim McCann and Tom Murphy, VII. The fluint8 soft-
ware integer library. In A Record of the Proceedings
of SIGBOVIK 2018, pages 125–128. ACH, April 2018.
sigbovik.org/2018.

[5] Frank Pfenning. Bottom-up logic programming, November
2006. Course notes for 15–819K: Logic Programming.

[6] STMicroelectronics. STM32F303xD STM32F303xE.
ARM R©Cortex R©-M4 32b MCU+FPU, up to 512kb flash,
80kb SRAM, FSMC, 4 ADCs, 2 DAC ch., 7 comp, 4 op-
amp, 2.0–3.6 V, October 2016. Revision 5.

[7] Wikipedia. Half-precision floating-point format, 2019.
https://en.wikipedia.org/wiki/Half-precision_

floating-point_format.

https://sf.net/p/tom7misc/svn/HEAD/tree/trunk/nand

102

https://sf.net/p/tom7misc/svn/HEAD/tree/trunk/nand

HonestNN: An Honest Neural Network "Accelerator"

Tim Linscott Vidushi Goyal Andrew McCrabb Pete Ehrett∗

University of Michigan, Ann Arbor

ABSTRACT

It seems like everybody has been making their own neural
network accelerator recently [1][2][3][4][5][6][7][8][9]. We
�gured we could do better. We kind of do. Probably. Anyway,
neural networks are giant approximate systems with lots
of repeated operations. We tried to have the hardware do
some approximations of its own to make the computation go
faster. And it does. Except that sometimes it will misclassify
a picture of your cat as being a previously unknown paint-
ing by Van Gogh or something like that. I’d tell you about
how much better we do, but our method for calculating per-
formance is a little convoluted so that we look better. You
should just skip to the Methodology section to read about
it. But when we do use that method, we demonstrate a 15%
"neural-adjusted performance" increase. Look, just go read
the methodology, okay?

Keywords: Accelerators, Architecture, Machine Learning,
ML, AI, DNN, CNN, Graph Processing, Blockchain, Cryp-
tocurrency, 3D Printing, Security, Crowdsourcing, Computer,
Electronics, Science, Engineering, #NovelResearch2019, #Buz-
zwordsGetCites, #BetterScience

1 INTRODUCTION

10-12s after the big bang, a cooling universe allowed for the
formation of the electron. Eventually, some of these electrons
would �nd a new vocation when, around 550-600 million
years ago, early bilaterians evolved a simple nerve cord. This
opened the door to the process known as encephalization
in which animals evolved brains and various sense organs.
Most recently, an up-jumped primate at the forefront of
the encephalization process �gured out a way to compel
those electrons to do neuron-like calculations, and branded
it the "Arti�cial Neural Network." Recently, researchers have
used this most recent turn of events for the 13.8 billion year-
old electron to automatically generate memes and classify
laundry [10, 11].

But in order to keep up with the universe’s blindingly fast
rate of progress, we all decided that we need to make those
electrons evenmore e�cient at generatingmemes and sorting
laundry. This gave rise to the neural network accelerator.
A bunch of researchers have made versions of these things.

∗Pete is a CMU alum, which is how he knew we should send this to SIG-

BOVIK. He even has the ACH mug to prove it. Tim is currently a�liated

with a company that would probably be embarrassed to know that he wrote

this paper, so we’ll just call it "Shmoogle".

Figure 1: Ever since late 2016, Machine Learning has be-

come more popular than if statements, according to Google

Trends search data.

Though honestly, only a few have actually made the things.
Mostly, we just run a synthesis job and do a simulation and
call it a day. It’s only because nobody else wants to put up
with taping chips out that we can get this paper in.

We present HonestNN, a neural network acceleratorwhere
for once the grad students who actually worked on the
project actually tell you what they actually did and didn’t
do. Our contributions are as follows:

• We tried to build and test a neural network accelerator.
• We develop a novel metric for evaluating accelerator
performance that also happens to be the only metric
in which we beat the state-of-the-art.

• We wrote a paper detailing our implementation and
results. This is the big one.

• We cited a bunch of your papers, including one by the
TPC chair.

• We express unparalleled honesty in the reporting of
our results.

2 BACKGROUND

Machine Learning is an important paradigm in computer
programming. According to Figure 1, since December 2016,
there have been more Google searches for "Machine Learn-
ing" than for "if statements." Clearly, we should expect more
ML in the future and fewer conditional branches. After all,
when is the last time you read an "if statement accelera-
tor" paper? Unless you count branch predictors, probably
never. But what actually is machine learning? This section
addresses that question.

We can confirm that the authors were willing to part with a very nice bridge at a considerable discount.

18

103

Figure 2: As far as I can tell, this is how state-of-the-art in-

ference is done.

2.1 Modern ML Algorithms

There are a lot di�erent ways to do machine learning nowa-
days. Mostly, though, we just use Deep Neural Networks (or
"Machine Learning" in popular nomenclature) usually in the
form of TensorFlow, though the research community tends
to focus on how to use MLPerf as if that were a real thing.
Most ML code tends to be of the form

1 impor t t e n s o r f l ow

2

3 t e n s o r f l ow . p r o c e s s (" my_data . b in ")

4 p r i n t (" Th i s i s a p i c t u r e o f a c a t . ")

As the above code snippet shows, we can take advantage
of the fact that almost every CNN or image recognition
presentation that has a �gure for image processing uses
a picture of cat. Seriously, it’s like a fundamental law of
nature. To break down modern CNNs even further, Figure 2
shows how the process usually works. First, a picture of a
cat is provided to the CNN. The CNN "convolves" the image
using a processes called "convolution." Then there’s some
more code, which is probably written in Python, just like
everything else is these days. You can either work really hard
to create your own neural network, or you can just give up
and use TensorFlow instead.

3 ARCHITECTURE

Maybe you guessed this from the last section, but I’m not
that familiar with machine learning (seriously, when I review
ML papers, I only put my expertise as a 2 if I’m feeling really
con�dent.) But from what I hear, there are a lot of matrix
and vector multiplications going on. And it’s iterative or
something, so you reuse the results from one step in the
next step. So we have one cache to store the weights that
we multiply with the features and another one to store the
results. Then there are a ton of compute units. I was sure
that I would need to do vectorized signed �oating-point
multiplication and some kind of threshold function, but I
wasn’t sure what else needed to be done in each step, so I
thought I’d cover my tracks and just insert a complete RISC-V
core in each of the compute units.

3.1 Optimizations

Our architecture takes advantage of real-time DNN pruning
to problematically eliminate low-impact nodes. Real talk,
though? We kind of forgot to connect a few of the compute
units. But what are the odds that an important node is going
to �nd itself in the broken pipeline? Pretty low, it turns out
[12]. And the power we save not processing those proba-
bly unimportant nodes can get turned into increased clock
speeds.
To improve transfer speeds between HonestNN and its

peripherals, we use USB3.0 for maximum data rates.
I really wish this section was longer. I barely got Hon-

estNN working in time to write this. There were bugs right
up to the deadline, so I de�nitely did not have time to op-
timize anything. I think one of my source �les has an #ifdef
USE_OPTIMIZATION directive, and I’m 100% sure that #define
USE_OPTIMIZATION was commented out by the end of my
last debugging session.

3.2 Security Considerations

Everybody has been talking about security recently, so I as-
sume that I need to address any potential reviewer comments
for this architecture, too. The good news is that a lot of re-
ally smart people are coming up with a lot of novel security
solutions. So for our threat model, I assume that we are to
secure the part of the cloud that we want to perform our
computation in. If the cloud is unhackable, then by deploying
our chip in the cloud, we will be unhackable as well.
We plan on further ensuring the security of our solution

using 1,048,576-bit, thousand-round RSA secured via the
Blockchain, because we assume quantum computing will
never really become a Thing. Also, because we haven’t re-
leased our code yet (see Section 4.1), we also have something
called "security through obscurity," which despite not being
that good, is still something.

Real talk, though? I don’t knowwhat an attack on a neural-
network accelerator would look like. It seems to me that
attacks would all be higher up in the stack since HonestNN
only exists to do math really fast. It would be like attacking a
calculator. That said, malware targeting calculators is a real
thing, so maybe I should be worried. [13]

4 METHODOLOGY

4.1 Framework

We wanted to implement HonestNN in SystemVerilog, but
were told by people paid more than us (who may or may
not be last authors of this paper), to implement it in VHDL.
A week later, these same so-called “authors” changed the
requirement to C++, then Python, then probably HTML (I fell
asleep during that meeting), and then �nally SystemVerilog.

2

We can confirm that the authors were willing to part with a very nice bridge at a considerable discount.

104

Figure 3: A diagram of how our accelerator works. Our ar-

chitecture lives in an "unhackable" "cloud." The Edge TPU

is included in the event that the rest of the accelerator isn’t

working, but if Google won’t give us one of those, we will

fall back on mining Bitcoin to pay for this project.

We’re pleased to report that we started in SystemVerilog
from the beginning, so there was no lost time.

In the end, we implemented HonestNN in SystemVerilog.
By "we" I obviously just mean the grad students on this
paper, i.e., the entire remaining author list since one of us got
annoyed and took o� everyone who didn’t actually do the
work. When’s the last time you’ve ever heard of a professor
writing code for a research project? And by "implemented"
I mean prototyped. By "SystemVerilog," I mean to say that
I wrote the various components so that I could synthesize
everything in the end. Okay, not "everything," per se; we
used CACTI [14] for the caches and stu�, because I couldn’t
�gure out how to get those to synthesize from the Verilog.
For testing, I wrote this great simulator that shows how
everything is supposed to work in a mostly cycle-accurate
way. I did that in Python, so it took about a day to write
and �ve days to run. I think I used a little bit of BookSim as
well [15]. Or at least, I opened it once. And how can I forget
gem5? Any architecture paper that doesn’t mention a gem5
simulation is crap. You may have used real hardware but
nothing beats "cycle-accurate simulation." And if you believe
I actually even went as far as doing any of the above, I have
a bridge to sell you. Why do you think my “code” isn’t on
GitHub? Hey, I’m citing your papers; don’t judge me.
So how do we turn this pile of overlapping implementa-

tions into meaningful, comparable results? If it weren’t for
the fact that I promised unrivaled honesty in this paper, I’d
probably just mumble something about "benchmarking" be-
fore suggesting we take the conversation o�ine. The short
version is that we use that Python simulator I mentioned.
But I’ll have you know that I wrote that simulator as a proof-
of-concept within the �rst month of the project and only
touched it again before the deadline when I realized that
nothing else was going to give me meaningful performance

numbers. The simulator assumes an idealized neural net-
work perfectly �tted to our design and fully utilizing all
its compute without thrashing the cache. Then it outputs a
single number representing the number of operations per-
formed by each compute unit, which gets fed into another
script that I wrote last night to turn that into neural-adjusted
performance, which we discuss below.

4.2 Neural-Adjusted Performance

We de�ne "Neural-Adjusted Performance" as GOPs per Watt
per dollars of NRE normalized against process node, algo-
rithm, and years since the release of TensorFlow v1 (lower
is better). Let’s walk through each of these in turn. First,
GOPs are counted by the number of irreducible mathemati-
cal operations performed by the accelerator in the best case
where the data exactly �ts the pipeline width and all nodes
are in use and no lanes have accidentally been disconnected
from the rest of the architecture. Second, we normalize with
respect to power, because that’s the limiting factor in new
architectures according to my advisor [16]. Third, we nor-
malize against the Non-Recurring Engineering expenses that
went into developing this chip. Since the chip was designed
entirely by underpaid grad and undergrad students desperate
to get the project done before the last of the grant money
dried up, it cost less than $100,000—much less than the aver-
age industry-made chip. We normalize against process node
to balance out the fact the we spent 10 months trying to �le
paperwork that would get us access to real-world standard
cell libraries and getting ignored by university and industry
bureaucrats so many times that we �nally gave up and used
a really terrible open-source standard technology library.
Not that I’m bitter or anything. We also normalize against
the algorithm used. While we working on HonestNN, some
people came out with a bunch of cool techniques in software
that would make neural networks way faster. We �gure that
if we’d known about them, our core would be a lot faster,
so we factor in the speed and accuracy of the fastest state-
of-the-art neural network at the time the paper came out.
But we also need to give credit where credit is due. Later
researchers are really just poaching good ML ideas from Ten-
sorFlow, so the earlier researchers had a leg up on us in that
they were forced to be creative and smart and come up with
novel ML techniques on their own. If we weren’t a�icted
by analysis paralysis due to being surrounded by so much
ML literature and so many ML APIs and ML papers, we’d
probably have come up with some even better ideas of our
own. So, by normalizing against the number of years since
TensorFlow v1 was released, we attempt to level the playing
�eld between us and the researchers of yesteryear.

All in all, this yields a broad perspective on the “is it worth
it to spend this amount of time and money on improving

3

We can confirm that the authors were willing to part with a very nice bridge at a considerable discount.

105

automated laundry categorization by 0.1%?” question that
all developers and researchers ask themselves at some point.

4.3 Benchmarks

We tested our neural network accelerator using SPEC2017
as well as a basic Hello World program. We also tried to use
MiBench, but it was way too hard to port without knowing
the rationale behind the hard coded values (yes, you heard it
right), so we gave up there.
Next, we used LinPack. Have you heard of this one? It’s

like a ten million by ten million matrix-matrix multiply. No
one in the real world would ever need to do a ten million
by ten million matrix-matrix multiply. But this is academia
and not even my advisor knows what’s going on inside real-
world machine learning, so I guess this means that this is
our best guess. But, hey, LinPack is great. It rewards stupid
elegant architectures like HonestNN that are pretty much
just bundles of compute cores. No one should be the least bit
surprised that we did pretty well here.

Cloud-based neural networkworkloads demand that providers
balance handling large volumes of requests with the need to
serve responses at high speeds. Thus, neural network accel-
erators need to be designed around a conscious bandwidth-
latency trade-o�. We designed our accelerator to be easily
customizable to optimize for one design point or the other.
We analyzed a comprehensive selection of benchmarks tar-
geting bandwidth and latency goals with a wide range of
possible con�gurations of the accelerator. Figure 4 presents
a pareto curve of the optimal accelerator con�gurations.

Look. My advisor wrote that paragraph just a few minutes
before the deadline. I don’t want to take it out, but in the
interests of honesty, I’m going to repeat what was just said
with a few corrections. Here goes:

Cloud-based neural networkworkloads demand that providers
balance handling large volumes of requests with the need
to serve responses at high speeds (pretty true). Thus, neural
network accelerators need to be designed around a conscious
bandwidth-latency trade-o� (but this is de�nitely not a knob

you can easily tune). We designed our accelerator (my advi-

sor still doesn’t remember the project’s name) to be "easily"
customizable to optimize for one design point or the other
(I literally had an undergrad in tears trying to con�gure this

thing). We analyzed a comprehensive selection of bench-
marks (Hello World and LinPack) targeting bandwidth and
latency goals with a wide range of possible con�gurations of
the accelerator (�ve con�gurations in total). Figure 4 presents
a pareto curve of the "optimal" accelerator con�gurations
(yeah, right). One of my co-authors (I’m not sure who, be-
cause we’re all editing this at once) keeps editing this section
to complain how that’s not really a pareto curve, but it’s 2
hours before deadline and I literally don’t care anymore.

Figure 4:HonestNN canbe con�gured to prefer latency (time

to execute Hello World) or bandwidth (memory bandwidth

consumed running LinPack). I’m not really sure what the

take-away is here other than "Hey, look! A pareto curve!

These guys clearly did a thorough analysis!" (But wait, no,

that isn’t actually pareto, is it...)

Figure 5: HonestNN beats the state-of-the-art on both

neural-adjusted performance and the honesty with which

we present our results.

5 RESULTS

5.1 Performance

Figure 5 compares HonestNN to the state-of-the-art research
and industry solutions and to random internet code. But
did you know that it’s really hard to compare your research
project to other people’s research projects? It’s not like they
share the data behind their graphs. So all those research pa-
pers that I was going to cite if I’d had access to some useful

data for once all contained large numbers of claims that I
can’t verify. Oddly, I found that a research paper’s perfor-
mance was directly correlated to the number of dubious

4

We can confirm that the authors were willing to part with a very nice bridge at a considerable discount.

106

claims made by the authors. As for industry solutions, it’s
not like NVIDIA is going to give the source code to their
latest GPU. Still they have some insanely dense manuals that
are less fun to read than your average angry adviser email
and which make me wonder whether any of the engineers
even understood the design docs at all. On the other hand,
we also looked into a number of sources of random internet
code some of which has been elevated to the level of divine
revelation by academics. gem5, for instance, which brings
nightmares and madness to any foolish enough to study its
unfathomable eldritch mysteries, is considered the gold stan-
dard in computer architecture simulation. However, it is built
from 13,716 di�erent commits at last count, none of which
make any sense. Meanwhile, you can �nd some random code
on StackOver�ow that accelerates neural networks as long
as you’re willing to assume that "the memory subsystem
can’t be that complicated" and won’t play into performance
too much.

Dear reader, we make no such assumptions, which is why
HonestNN leads the pack with fewer unveri�able claims than
the state-of-the-art and the internet at large. The reason for
this is simple: we do not claim that our accelerator actually
works at all, nor do we claim that if it did work, you would
actually want to use it. In fact, I’ll go out on a limb and claim
that neither of these is the case at all. But one thing’s for
certain: its neural-adjusted performance normalizes to one.

5.2 Design Costs

To determine the area and power of our design and its maxi-
mum clock speed, we synthesized our implementation using
Synopsys Design Compiler. Turns out that Design Compiler
is really, really, really slow and that it gives di�erent numbers
every time you rerun synthesis. We basically just launched
a bunch of di�erent synthesis runs with random edits made
to our synthesis script and picked whichever one had com-
pleted and gave us the best results by the time this paper
deadline rolled around. Honestly, I’m not sure if Design Com-
piler just stumbled upon a pure genius optimization that time
or whether this is an erroneous result. Because there was
this one other synthesis job that gave me the same clock
frequency but at like 5⇥more area. Next time we’ll just wave
the rubber chicken of compile_ultra and call it a day.
In the end, though, synthesis results really aren’t that

important since we’re going to normalize everything in our
performance analysis just like the other cool researchers do
[17]. In short, our accelerator is of size 1, consumes 1 unit of
power, and operates at a clock speed of 1.

5.3 Development Cost

We hired a bunch of underpaid world class labourers (read
graduate students), some apprentices (read undergraduate

interns), and �nally used the latest "up-to-date" free tools
provided by the university to build our awesome accelerator–
HonestNN–which beats the so-called "state-of-the-art" NN
accelerators from industry built by overpaid engineers and
researchers with the most sophisticated technology. Such a
waste of resources! Not to mention, by the end of this project,
the lead author of this paper was roped in by the leading
software giant because of his sheer expertise in the area. Well,
knowing that the fate of the world is in honest hands, I can
�nally rest in peace.

6 LIMITATIONS

In the interests of full disclosure, we present the weaknesses
associated with HonestNN.

• There’s really nothing concrete I can point to and say
"this is HonestNN." I mean, there are a bunch of scripts
and log �les, but there’s really no single source of truth
here.

• I never really veri�ed the functionality of HonestNN.
I ran a few tests on a couple Verilog modules and the
simulator works "�ne" (see below), but I don’t think
that really counts.

• I’ve found bugs in the simulator and reran the results
more times than I can count. Sometimes �xing the bugs
made HonestNN faster, sometimes it made it slower.
Did I catch all the bugs? I really don’t know anymore.
But the deadline is looming large, so I guess I have to
act like I did.

• I was really nervous about the whole "untested chip"
thing, so I snuck a TPU into our design. I don’t know
what the rest of HonestNN is needed for if we have a
TPU on hand. Why not just use the TPU?

• If anyone looked at my code, I would either be black-
listed from every major tech company from now until
the singularity occurs or forced to memorize every
known style guide before I was even allowed to look

at a computer again.

7 RELATEDWORK

Okay, so there are a bunch of academics who thought of
ideas for neural network accelerators. But there’s no way
I’m going to be able to cite them all. Seriously, NIPS had like
3,000 submissions this year. So I’m just going to cite the top
nine papers from Google Scholar [1–9], and another paper
from my advisor’s best friend’s former postdoc who gave a
really memorable talk or something [18]. I’m not totally sure
how the implementation on this one worked, but it seemed
interesting and I’m including it anyway [19]. But none of
these people have a hundred billion dollars. You know who
does have a hundred billion dollars? Google. And what do
you know? They made their own neural network accelerator,

5

We can confirm that the authors were willing to part with a very nice bridge at a considerable discount.

107

too. And actually built it. And we can actually use it. But
they’re not academics, so all I’m giving them is this one lame
citation: [20].
If you’re one of the blind reviewers and you’re trying to

�nd the authors of this paper in related work or metadata,
let me spare you the e�ort and include some egregious and
unwarranted citations of our own papers so that it’s easy to
�gure out who we are: [21, 22].

8 FUTURE WORK

At some point, we should probably build a working version
of HonestNN that really does run from start to �nish instead
just being a delicately balanced pile of scripts with all the
structural integrity of a house of cards. My advisor wants
to have the next version use emerging NVM technologies,
and our sponsors want to know whether our work has any
applications to autonomous driving.
Personally, if this paper gets in, I’m never coming back

to this project. I need novel ideas to �ll out my thesis, and
incremental improvements on this dead horse of a project
won’t make the cut. Besides, no one really gets around to
their future work anyway. Do you?

9 CONCLUSIONS

Who cares? By the time you read this, something else will
have come along that supersedes everything we built for
this paper. Or that did the analysis better. Or that faked their
results to make it look better. Or the singularity will have
occurred. Whatever.
But before you think of rejecting this paper out of hand

because of its shoddy implementation and weak evaluation
methodology, why don’t you take a minute to talk to your
grad students and make sure this isn’t happening under your
nose right now? Go ahead, I’ll wait. But you can be sure
of one thing: HonestNN is the most honest neural network
accelerator you’ll ever see published. Please?

REFERENCES
[1] Ali Sha�ee, Anirban Nag, Naveen Muralimanohar, Rajeev Balasubra-

monian, John Paul Strachan, Miao Hu, R Stanley Williams, and Vivek

Srikumar. Isaac: A convolutional neural network accelerator with

in-situ analog arithmetic in crossbars. ACM SIGARCH Computer Ar-

chitecture News, 44(3):14–26, 2016.

[2] Ryuichi Sakamoto, Ryo Takata, Jun Ishii, Masaaki Kondo, Hiroshi

Nakamura, Tetsui Ohkubo, Takuya Kojima, and Hideharu Amano.

Scalable deep neural network accelerator cores with cubic integration

using through chip interface. In SoC Design Conference (ISOCC), 2017

International, pages 155–156. IEEE, 2017.

[3] Renzo Andri, Lukas Cavigelli, Davide Rossi, and Luca Benini. Yodann:

An ultra-low power convolutional neural network accelerator based

on binary weights. In ISVLSI, pages 236–241, 2016.

[4] Tianshi Chen, Zidong Du, Ninghui Sun, Jia Wang, Chengyong Wu,

Yunji Chen, and Olivier Temam. A high-throughput neural network

accelerator. IEEE Micro, 35(3):24–32, 2015.

[5] Laura Fick, David Blaauw, Dennis Sylvester, Skylar Skrzyniarz,

M Parikh, and David Fick. Analog in-memory subthreshold deep

neural network accelerator. In 2017 IEEE Custom Integrated Circuits

Conference (CICC), pages 1–4. IEEE, 2017.

[6] Kalin Ovtcharov, Olatunji Ruwase, Joo-Young Kim, Jeremy Fowers,

Karin Strauss, and Eric S Chung. Accelerating deep convolutional neu-

ral networks using specialized hardware. Microsoft Research Whitepa-

per, 2(11), 2015.

[7] Ryuichi Sakamoto, Ryo Takata, Jun Ishii, Masaaki Kondo, Hiroshi

Nakamura, Tetsui Ohkubo, Takuya Kojima, and Hideharu Amano. The

design and implementation of scalable deep neural network accelerator

cores. In Embedded Multicore/Many-core Systems-on-Chip (MCSoC),

2017 IEEE 11th International Symposium on, pages 13–20. IEEE, 2017.

[8] William J Dally, Angshuman Parashar, Joel Springer Emer,

Stephen William Keckler, and Larry Robert Dennison. Sparse

convolutional neural network accelerator, February 15 2018. US

Patent App. 15/458,837.

[9] Song Han, Xingyu Liu, Huizi Mao, Jing Pu, Ardavan Pedram, Mark A

Horowitz, and William J Dally. Eie: e�cient inference engine on

compressed deep neural network. In ISCA ’16. IEEE, 2016.

[10] V Peirson, L Abel, and E Meltem Tolunay. Dank learning: Generating

memes using deep neural networks. arXiv preprint arXiv:1806.04510,

2018.

[11] Li Sun, Simon Rogers, Gerardo Aragon-Camarasa, and J Paul Siebert.

Recognising the clothing categories from free-con�guration using

gaussian-process-based interactive perception. In Robotics and Au-

tomation (ICRA), 2016 IEEE International Conference on, pages 2464–

2470. IEEE, 2016.

[12] Who_really_cares. xkcd: Machine learning. In Does-anyone-read-this-

part-anyway?, 2017.

[13] Piotr Bania. Gaara, 2007.

[14] Naveen Muralimanohar, Rajeev Balasubramonian, and Norman P.

Jouppi. Cacti 6.0: A tool to model large caches. In International

Symposium on Microarchitecture, 2007.

[15] N. Jiang, J. Balfour, D. U. Becker, B. Towles, W. J. Dally, G. Michelo-

giannakis, and J. Kim. A detailed and �exible cycle-accurate network-

on-chip simulator. In ISPASS ’13, 2013.

[16] Todd Austin. Application-speci�c design tutorial. In University of

Michigan EECS 573: Microarchitecture, 2018.

[17] Yu-Hsin Chen, Joel Emer, and Vivienne Sze. Eyeriss: A spatial architec-

ture for energy-e�cient data�ow for convolutional neural networks.

In ACM SIGARCH Computer Architecture News, volume 44, pages 367–

379. IEEE Press, 2016.

[18] Alessandro Aimar, Hesham Mostafa, Enrico Calabrese, Antonio Rios-

Navarro, Ricardo Tapiador-Morales, Iulia-Alexandra Lungu, Moritz B

Milde, Federico Corradi, Alejandro Linares-Barranco, Shih-Chii Liu,

et al. Nullhop: A �exible convolutional neural network accelerator

based on sparse representations of feature maps. IEEE transactions on

neural networks and learning systems, pages 1–13, 2018.

[19] Doug Zongker. Chicken chicken chicken: Chicken chicken. Annals of

Improbable Research, pages 16–21, 2006.

[20] Norman P Jouppi, Cli� Young, Nishant Patil, David Patterson, Gaurav

Agrawal, Raminder Bajwa, Sarah Bates, Suresh Bhatia, Nan Boden,

Al Borchers, et al. In-datacenter performance analysis of a tensor

processing unit. In ISCA ’17, pages 1–12. IEEE, 2017.

[21] Timothy Linscott, Pete Ehrett, Valeria Bertacco, and Todd Austin.

Swan: mitigating hardware trojans with design ambiguity. In 2018

IEEE/ACM International Conference on Computer-Aided Design (ICCAD),

pages 1–7. IEEE, 2018.

[22] Pete Ehrett, Vidushi Goyal, Opeoluwa Matthews, Reetuparna Das,

Todd Austin, and Valeria Bertacco. Analysis of microbump overheads

for 2.5 d disintegrated design. 2017.

6

We can confirm that the authors were willing to part with a very nice bridge at a considerable discount.

108

Simultaneous Microwaving Architectures: An
E�cient Scheme for Multiplate Heating

Bottom Text

Charles Yuan∗

Technology Evangelist
Computer Science Department
Carnegie Mellon University

Pittsburgh, PA
charlesyuan@cmu.edu

Abstract

Traditional food processing technology often encounters a
performance bottleneck with regards to throughput of heat-
ing. Stoves, ovens, and handheld �amethrowers have all been
applied to the task of e�cient food heating, with varying
results. Here we present Simultaneous Microwaving (SMW),
an alternative architecture for the warming of plate-based
foods, and also generalize it to other categories of consum-
ables. We evaluate the limits of the parallelism introduced by
SMW and compare it to other state-of-the-art techniques. We
conclude that SMW is a suitable design for the implemen-
tation of highly energy- and time-e�cient food warming
systems.

Keywords High-Energy Physics, Family and Consumer Sci-
ences, Computer Architecture, Dependent Types, Machine
Learning, Byzantine Fault Tolerance

ACH Reference Format:

Charles Yuan. 2019. Simultaneous Microwaving Architectures: An

E�cient Scheme for Multiplate Heating. In Proceedings of ACH

Special Interest Group on Harry Q. Bovik (SIGBOVIK’19). ACH, Pitts-

burgh, PA, USA, 5 pages.

1 Introduction

From the beginning of time, people have always been inter-
ested in cooking their food. Since the dawn of agriculture,
many techniques of food preparation have been devised. In
the past few millennia, cooking has advanced to roasting
over a camp�re to self-timing induction cooktops, even as
the underlying principle of food preparation has remained
the same.
Cooking has several advantages that make it an attrac-

tive process. Food that has been cooked is more nutritious,
more likely to be safe from pathogens, is easier to digest,

∗Made you look.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted, but why would you?

SIGBOVIK’19, April 04, 2019, Pittsburgh, PA, USA

© 2019 Association for Computational Heresy.

and has an improved �avor pro�le. However, cooking is a
time-consuming process that often requires several hours
of continuous attention from human operators on a daily
basis. Automating the preparation of food therefore has the
potential to save billions of person-hours of time per year.
The microwave oven (MWO, for short) was developed

in 1947 and is widely regarded one of the most in�uential
food preparation technologies of contemporary engineer-
ing. Derived from early investigations into electromagnetic
radiation in the twentieth century, including the develop-
ment of radar, the potential of using radiation to heat food
was quickly exploited and marketed to the masses. Modern
MWOs are now found in even the most basic of households,
and are regularly operated by unskilled individuals such
as children. It is di�cult to imagine the modern culinary
environment without the microwave oven.

1.1 MWOs

The operating principles of the MWO are conceptually sim-
ple: a cavity magnetron powered by an electric power supply
emits 2.45 GHz microwave radiation into the interior of the
apparatus. Re�ective surfaces inside the inner compartment
de�ect the radiation until it strikes the target food medium.
Polarized molecules within the food are excited by the ra-
diation and gain kinetic energy, eventually increasing the
overall temperature of the food medium. An image of a typi-
cal microwave oven follows in Figure 1.
For those readers who may be unfamiliar, the simpli�ed

operation of the MWO is as follows:

1. The door of the MWO is opened, usually by depressing
a conspicuous button at the lower-right corner of the
front face of the apparatus.

2. Any existing contents of theMWOare removed, except
for a circular plate at the bottom; this is commonly
known as the “turntable”.

3. Food to be heated is placed on the circular disk.
4. The door is restored to its original closed position.
5. The electronic interface of the apparatus is used to se-

lect parameters of heating. The parameters vary highly

19

109

SIGBOVIK’19, April 04, 2019, Pi�sburgh, PA, USA Charles Yuan

Figure 1. A typical microwave oven.

depending on the manufacturer and model of the de-
vice; common parameters include duration of heating
and a power level.

6. A user interface element usually labeled “start” is ac-
tivated and the heating begins, continuing until an
alarm (usually auditory) is triggered.

7. At this point the heating is complete. The door may
be opened and the prepared food removed. The door
should then be once again closed.

As is evident, correct usage of the MWO is burdensome
and carries much overhead especially for inexperienced op-
erators. Large-scale food processing requires minimization
of the total time and energy required to complete the process.
In this paper we will not focus on energy as it is generally
accepted that a higher power rating for the MWO decreases
heating time though in a nonlinear fashion. We will refer
the interested reader to further reading on this subject later
in the report. For now, we assume a �xed power level for the
MWOs we consider.

1.2 Processing Time

The total processing time tMW for a volume of food may be
computed as:

tMW = t�xed + tvariable

where t�xed is the �xed time overhead and tvariable is the
variable component of processing. Fixed contributors include
the time to open and close doors and (with a small degree of
error) the time to specify parameters of heating. They will
be treated as constant for the purposes of our analysis.

The variable component may be further broken down:

tvariable = tload + theat

where tload is the time to load and unload the contents of the
MWO, and theat the time duration when the magnetron is
activated and the food is being heated. The second generally

dwarfs the �rst, and usually especially dominates the �xed
component.

2 Sequential Operation

Consider the batch processing ofn items of foodx1, x2, . . . , xn .
The best-known sequential algorithm to heat all units of food
follows in Algorithm 1.

Result: Output vector outi is the heated result of xi
for i ← 1 to n do

openDoor();

insert(xi);

closeDoor();

setParams();

pressStart();

wait();

openDoor();

outi ← remove();

end
Algorithm 1: Naive sequential algorithm

The time complexity of the algorithm is

n · t�xed +

n
�

i=1

tvariable(xi)

However, in practice this process is ine�cient for two
reasons. The �rst is that the �xed cost is repeated for ev-
ery food item when it may be possible to amortize it over
batches of inputs. The second is that the maximum capacity
of the MWO is normally not reached in the sequential ap-
proach. If we process several food items at once, we would
alleviate both of these concerns. However, how this form of
parallelism may be achieved in general is not obvious.

3 Di�culty of Parallelization

To see how parallelism may be challenging in practice, we
consider the structure of a typical food item in a batch work-
load. An item consists of food medium held by a food con-

tainer. The container can take many forms, ranging from
polystyrene foam or paper boxes to ceramic bowls. One par-
ticularly common container is the plate, a �at, circular disk
structure usually made from paper, plastic, or ceramic mate-
rial bent gently upwards at the edges. The plate has pleasant
topological properties that make it a popular choice for many
types of food.
Suppose we wished to insert and heat multiple items in

every iteration of the outer loop of Algorithm 1. Since plates
may not physically overlap, only a limited number of plates
may be placed on the turntable of the MWO. To minimize
the number of total iterations of the loop, plates must be
packed in an optimal con�guration each iteration. This is an
instance of the well-studied packing problem. Given a set of
plates of varying sizes, determining the maximal number of

110

Simultaneous Microwaving Architectures SIGBOVIK’19, April 04, 2019, Pi�sburgh, PA, USA

Figure 2. Arrangement of plates in space.

plates that will �t on the turntable is NP-hard. Furthermore,
the greedy approach of using locally maximal �ts into each
iteration does not guarantee a globally optimal arrangement
of plates, as the sequence of plates may need to be rearranged
for an optimal batch process. Two levels of optimization are
thus required in some sense, and determining the optimal
arrangements is computationally complex and infeasible.
A diagram of the arrangment of plates on the turntable is
contained in Figure 2.
There is a further problem: even with an optimal arrang-

ment of plates on the turntable, the vast majority of space
within the MWO is wasted since the space above the plates is
left empty. In practice, heuristic and approximate algorithms
are used to arrange plates on the turntable each iteration,
achieving respectable but less-than-optimal results. However,
almost no implementations of MWO operation utilize avail-
able capacity along the vertical dimension. This optimization
is the basis of our new proposed architecture.

4 Simultaneous Microwaving

We now introduce the Simultaneous Microwaving (SMW) ar-
chitecture as an evolution of traditional MWO management
algorithms. We �rst make several assumptions that hold true
on almost all practical MWO batch workloads:

1. All food items are held by plates whose size does not
exceed that of the turntable.

2. The height of each food item above the plate is bounded
by a constant c which is less than a ratio 1/k of the
height of the heating compartment, where k g 2. We
denote k the plating count.

3. Plates are made of a material resistant to vertical com-
pression, such as hard plastic or ceramic.

4. The thickness of a plate is negligibly small compared
to c .

The key innovation of SMW is the utilization of available
vertical space. Vertical arrangement of plates is normally
impossible due to undesirable contact of foodstu�s with
contaminants from above. However, it is possible to safely
stack plates vertically through the use of interlock plates:

Figure 3. Physical stacking of plates within the heating
pipeline.

upturned plates inserted between each vertical stage. The
interlock plates protect food from contact with any surface
other than the concave side of a plate. The architecture is
depicted in Figure 3. We refer to the physical stack of plates
as the pipeline, each pair of food item and interlock plate as
a task, and the processing of each stack as a cycle.
With the assumptions we have made in place, the num-

ber of food items that may be processed per iteration is at
least k . The parallel time complexity of the food processing
algorithm is thus

n

k

�

t�xed + max
1fifn

tvariable

�

which is a signi�cant improvement over the sequential algo-
rithm.

5 Task Scheduling and Pipelines

The simplifying assumption that the height of each plate is
bounded by a constant means that the parallel speedup is
attainable regardless of plate arrangement. Of course, this
restriction may be relaxed and scheduling techniques applied
to increase the utilization of space. Though we will not focus
on that computationally complex problem in this paper, we
acknowledge it as a possibility.
For now, we address a critical di�culty in the manage-

ment of SMW schemes of heating, namely pipeline stalls

when some food items take longer to heat than others. Sup-
pose of the plates in one cycle, one plate takes signi�cantly
longer to process than the others. And in the worst case, this
plate resides at the top of the stack. Since the stack is a LIFO
structure, it is impossible to safely remove tasks that have
�nished heating before this task at the top, without itera-
tively popping from the stack in linear time. In the worst case,
tasks may happen to be arranged in reverse order of heating
time required, causing this reshu�ing to take quadratic time.
Therefore, we simplify the architecture by only inserting and
removing entire batches rather than manipulating individual

111

SIGBOVIK’19, April 04, 2019, Pi�sburgh, PA, USA Charles Yuan

tasks in the stack with �ner granularity. This has the e�ect
of possibly overheating certain food items, which for our
work�ows is generally tolerable but may be a concern for
some operators.
Since we take a coarse-grained approach each cycle, the

duration of a cycle must be equal to the maximum of the
required durations of each item. If it were possible to predict
heating time required, this issue could be avoided, but such
prediction is impossible in general. It is possible within our
implementation to annotate each task with a hint, inserted
automatically by the food manufacturer, in order to improve
the balancing of fast and slow tasks. This information is
usually printed on the documentation of the foodstu�. Such
duration hints are valuable but are not universally accurate
or trustworthy, so wemust take the conservative approach of
assuming we have zero information available before heating
begins.

6 Limits to Parallelism

Ideally, a SMW system would achieve speedup of at least a
factor of k over the sequential algorithm. However, in prac-
tice this does not occur for a very important reason. Since mi-
crowaves do not propagate after they impact a food medium
and impart kinetic energy, increasing vertical space utiliza-
tion in the MWO reduces the relative heating e�ciency of
the entire system and causes an e�ect of diminishing returns.
The remainder of this paper will thus focus not only on the
e�ciency of implementing the parallel stacking of plates,
but also the e�ect of decreased heating energy available to
each task. A trade-o� must carefully be considered, and for
some systems, it is counterintuitively the case that a some-
what reduced vertical space utilization leads to overall faster
heating time.

7 Implementation

We did not implement the system due to lack of time before
the conference submission deadline. If we had, we would
have used a 1000 W microwave oven and a wide variety of
common foods amenable to microwave heating. We would
have conducted the following experiments and concluded
the results following thereafter. Naturally, since we did not
perform any of the experiments, the following data are all
fabricated.

First, we evaluated the overall heating time of several food
workloads under sequential heating and also under a SMW
architecture. We evaluated using the following food bench-
marks. Each benchmark was calibrated to have a plating
count k = 4.

• Bulk white rice, pre-cooked;
• “Cup” ramen noodles, chicken �avor, �lled to line;
• Spaghetti with Alfredo sauce;
• Italian-style beef meatballs with breadcrumb coating;
• Dry Froot Loops® brand breakfast cereal;

RICE NOOD SPAG BALL LOOP BUFF MAYO
0

10

20

30

40

20
18.8 19.2

28.3
30

5.3

10
8 8.1 7.6

14.2

31

2.6

0.1

H
ea
ti
n
g
ti
m
e
(s
)

Sequential Parallel

Figure 4. Comparison of sequential and parallel heating for
each food type.

• Water bu�alo entrails;
• Crushed glass and pig blood;
• Literally just mayonnaise.

Using the �rst three benchmarks, we also adjusted the
degree of stacking used, from 1 (sequential) to 4 (maximally
parallel). We evaluated the relative speedup of the di�erent
options.

Finally, we evaluated the impact of plate material on heat-
ing e�cacy under the maximally parallel scheme. We used
polycarbonate, porcelain, clay, and silver-coated brass plat-
ings.

8 Evaluation

Figure 4 shows the heating comparison. We were able to
achieve at best a 2.5× speedup over sequential heating, for
the rice and spaghetti tasks. Other food types, such as meat-
balls, and bu�alo entrails, saw somewhatmoremodest speedup
of approximately 2.0×. Unfortunately, we were disappointed
with our results for the dry breakfast cereal, which actually
slowed down under SMW heating. The crushed glass task
failed to heat appreciably under either regime and was ex-
cluded from the �nal results. Finally, we are amazed by the
performance of the mayonnaise, which promptly vaporized
after less than one second under SMW heating.

Figure 5 depicts the relative speedup as the stacking degree
increased for the bulk starch tasks. It appears that increasing
stacking degree to 2 nearly doubled the speed of heating.
However, increasing it to 3 had a more modest improvement,
and increasing it to 4 had almost no e�ect at all. It is clear

112

Simultaneous Microwaving Architectures SIGBOVIK’19, April 04, 2019, Pi�sburgh, PA, USA

1 2 3 4
1

1.5

2

2.5

3

3.5

4

4.5

Plating count

R
el
at
iv
e
sp
ee
d
u
p

RICE NOOD SPAG

Figure 5. Relative speedup as degree of stacking increases.

Plastic Porcelain Clay Metal
0

5

10

15

20

25

30

20
18.8

17.5

1 · 10−2

H
ea
ti
n
g
ti
m
e
(s
)

Figure 6. E�ect of plate material.

that the bottleneck of microwave penetration bandwidth is
reached relatively quickly.

The last study, Figure 6, shows the e�ect of plate material.
The choice of plastic or ceramic plate material appears to
have had no signi�cant e�ect on heating e�ciency. Upon the
fourth trial with silver-coated brass plating, a large blue arc
appeared inside the MWO and caused a large electrical �re
which took approximately one hour to contain and destroyed
the experimental appratus. We assume the food was cooked

in that circumstance, though we were unable to recover the
sample.

9 Conclusion

We have introduced Simultaneous Microwaving (SMW), an
e�ective mechanism for improving the work e�ciency of
heating common foods using microwave ovens. It is rela-
tively simple to implement and has been demonstrated to
present marked improvements for a wide variety of food
workloads. Despite the presence of a signi�cant performance
bottleneck ofmicrowave penetration, systems that use amod-
est degree of SMW parallelism observe a large increase in
heating e�ciency. We believe this technology is an exciting
tool that will revolutionize the culinary world.

Acknowledgments

This material is based upon work supported by the Noo-
dle Serving Federation (NSF) and the Dish And Restaurant
Platers of America (DARPA). Any opinions, �ndings, and
conclusions or recommendations expressed in this material
are those of the author and do not necessarily re�ect the
views of the NSF or of DARPA.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUTWAR-
RANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUD-
ING BUT NOT LIMITED TO THE WARRANTIES OF MER-
CHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE
ANDNONINFRINGEMENT. IN NO EVENT SHALL THE AU-
THORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARIS-
ING FROM, OUT OF OR IN CONNECTION WITH THE
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

113

Precise ECG Platform on Modern Processors

S. Normalized Infloop
Department of Calculator Science

Theoretical Abstract Interpretation Testing Society

Pitsston, PA, United State Monads of America

yueyao@andrew.cmu.edu

Ivybridge N. Skylake
Institute of Nondeterministic Interpretation

Theoretical Abstract Interpretation Testing Society

Bosburgh, PA, United State Monads of America

yuningzh@andrew.cmu.edu

Abstract—The authors shivers in the howling wind on Pausch
Bridge, wondering why the processors in their backpacks gets
to sit comfortably and doing nothing instead of switching their
tiny transistors to keep their owners, who paid BIG money to
buy them, warm.

Index Terms—Thermal Systems, Ambient Heat Modulating
Technologies, Parallel Heating, 2D Computer Graphics, Edible
Content Generation

I. INTRODUCTION

Of all the things computing machines brought to the world,

there is one thing that people have consistently tried hard

to get rid of since the dawn of this field. Dissipating heat

in computing system has become a major design problem

in all levels of computer engineering. Modern processors is

on the verge of, if not already, hitting on one of the major

design boundaries known as the power wall (the chip’s overall

temperature and power consumption) [1]. Some people believe

that “the power wall is now arguably the defining limit of the

power of the modern CPU” [2].

If we are unable to curse of this everyday intensifying

brownian motion within the computing machines, why not

take advantage of it? Heat, as a resource, can be very useful

in a number of ways. In fact, heat is a very important

resource widely used in Edible Content Generation (ECG)

process. Edible Content Generation takes (usually) biological

specimens and apply a sequence of chemical and physical

decorations to them, generating human digestible contents.

This process is more commonly known as cooking.

It has been over a decade since people has tried to utilize

the heat generated from computing devices to facilitate ECG.

However, a vast majority of those attempts has failed and

results in either overheated computing devices or unsuccessful

ECG process. The authors believe the problem is that operators

of such process have very little control on the power of the

heating device, compared to tradition ECG platforms (more

commonly known as stoves). This work addresses this problem

by proposing a way to turn modern processors into precise

ECG platforms, which users have precise control of power

down to every second.

II. COMPUTING DEVICE BASED ECG PLATFORMS

A. Graphics Device Based ECG Platforms

Graphics card users has a long history of trying to use their

graphics devices as an ECG platform. In [3], the author tried to

use an Geforce GTX 480 graphics card to cook an egg. The

ECG software used to control the ECG process are games

and benchmarking software of unknown name. The resulting

edible content is shown in Fig. 1.

Fig. 1. Egg fried on an GTX480 graphic card.

The authors reports that the resulting edible content is, in

fact, too close to its primitive form to be edible (an effect more

commonly known as being “too raw”). The researchers blame

the ECG controlling software for the failure of the experiment

and suggests FurMark would give a better result. This research

further demonstrates the urgent need to design a precise and

easy to use ECG platform.

The authors also believe MVidia is in fact secretly en-

couraging users to use their product as an ECG platform to

attract more customers. We acquired two pieces of advertising

material (Fig. 2 and Fig. 3) from an unnamed source familiar

with the company media promotion strategy. Around a decade

a ago, GPGPU computation started off as an hack into graphics

rendering pipeline and now its’ one of the primary use of

GPUs in the inductry. We believe history will repeat itself in

the case of graphics device based ECG. Our work, although

focusing on CPUs, generalizes well to GPUs (TODO: give

this wild claim some justification!).

B. CPU Based ECG Platforms

Users has also tried use CPU as ECG platforms. C. C. Chan-

nel [4] demonstrated in a YourTube Video series the possibility

of using Ontel processors to generate various kinds of edible

contents. In their experiments, bacon, spaghetti, and even pop

corns are processed through an Ontel processor. The software

used to control the ECG platform is not known.

20

114

Fig. 2. Early promotion material used for MVidia GTX480.

Fig. 3. Promotion material for MVidia RTX2080 for Chinese market.

Some of the experiments do provide valid results. The au-

thors are able to obtain a few edible content with great quality.

However, in “Cooking with Ontel 5 - The Nearly Indestructible

Celeroff D”, the authors lost one of their experimentation

platform due to overheating.

This highlights the need for a precise ECG platform. If

the user sets the power too high for too long, the user might

end up losing the hardware. On the other hand, if the ECG

platform provides insufficient power, the edible content may

be too close to its primitive form to be safely consumed by

the user.

The fact that modern processors are multi-core and super-

scalar presents more challenge to building a precise ECG

platform. The ECG platform will have to orchestrate work

across different cores so that the overall power stays constant.

Fig. 4. Fork facilitated ECG with Ontel Celeroff D processors.

III. SYSTEM ARCHITECTURE

The goal of this work is to implement a precise ECG

platform on a modern processor. Modern processors refers to

processors with many cores and possibly SMT support. By

saying precise we wish to grant users very fined grained con-

trol of ECG platform power output for every second. Control-

ling power consumption of processors roughly translates into

controlling CPU utilization rate [5]. In conclusion, we need

to design a system that gives user control on CPU utilization,

down to every second, on modern multi-core processors.

A. Load generation by frequency modulation.

Fig. 5. Broker dispatches tiny chunk of work to threads.

Our system is built upon a standard broker-worker ar-

chitecture. A globally shared broker will generate work for

115

each thread. Each thread independently obtains jobs from the

broker, executes it, and starts over. There are two types of

jobs:

• SLEEP. The thread will sleep for a small period of time.

• SPIN. The thread will spin in a tight loop for a small

period of time.

Usually the size of both jobs is set to 1 ms. The broker

randomly generates jobs based on a desired system load. For

example, if the desired CPU utilization is 10%, the broker

has a 1/10 probability of generating a SPIN work. It should

be self evident that this strategy indeed achieves the required

CPU utilization. The proof is left as an exercise for the reader.

Essentially this scheme achieves a certain system load by

modulating frequency of processor spinning. This scheme is

thus termed (job) frequency modulation. The probability of

generating a spin job is termed spin rate, denoted by s.

This scheme is better than the length modulation scheme,

where we adjust the length of spinning jobs relative to sleep

job. Frequency modulation provides a more stable CPU load

over time (less variation in utilization). For every (large

enough) time window, the average CPU utilization will be

identical regardless where the window is. On the other hand,

frequency modulation helps to achieve precise control of CPU

utilization.

B. Load compensation by PI controller.

It is often the case where people need to work while

using ECG platforms. This causes the problem if the user is

working on the computing device while its being used as an

ECG platform. The workload generated by the user will very

likely affect overall CPU utilization and increase power output,

which may overcook edible contents, or worse, destroys the

device. It is essential for the ECG platform to be able to

compensate for the load.

Due to the unpredictable nature of the user workload, it will

be very hard to model (even reliably measure) user workload

online. Here we took a feedback control system approach. We

attach what is known as an proportionate-integral controller

(PI controller) to the output. For those unfamiliar with the

concept, we provide the following explanation.

For every time step, there exists a desired CPU utilization

L0. It also measures the current CPU utilization, which

denoted as L. The error e as this time step is defined as

e , L−L0. Clearly e is a function of time t, The compensation

factor s′ is calculated as

s′ , P e(t) + I

∫ t

0

e(t) dt

where P and I are two coefficients termed proportionate

coefficient and integral coefficient. Finally, if the spin rate

dictated by desired CPU utilization is s0, then the actual spin

rate used by the broker will be s = s0 + s′.
Intuitively, the P -term compensates for sudden changes in

user load, while the I-term compensates for long running user

load. To ensure negative feedback, both P and I must be

negative.

C. Intuitive load specification.

Our proposed ECG system features a very intuitive way

for the user to specify the desired load. Since many users of

ECG systems are not tech-savvy, it’s very important to keep

the interface simple. The users of our system may specify a

“program” by supplying a textual file, whose contents mimics

the desired shape of CPU utilization graph (except the time is

the Y axis).

For example, the following config file specifies that the

system should run a loop that utilization is 40%, 80%, 20%,

70% for the first, second, third, and fourth second of each

iteration.

||||

||||||||

||

|||||||

This interface is intuitive and very easy to use. It is so simple

that only one character is involved, and no formal specification

or documentation is needed to understand this format. We

name this form YAMMY as in Yet Another Markup-lang? My

God! format. The authors are convinced that this format will

be as popular in the field of ECG platform research as JSON

in machine learning research.

IV. RESULTS

We implemented our work and tested the work on one of

GHC machines. Unfortunately the authors are denied physical

access to GHC machines the moment the told the administra-

tion staff that want to perform ECG experiment on one of their

computers. The authors have no idea why the administration

staff holds such hostility to legit scientific research and edible

contents. The best we have is running our program while

monitoring CPU utilization.

Fig. 6. Experimenting a sine like ECG control function.

We specify an sine-like control function to test our imple-

mentation. The testing platform comes with an Ontel Xeon

E5-1660 CPU, which contains 8 cores, each with 2-way SMT.

As you can see, our results proves the effectiveness of our

116

approach. Our ECG program is able to provide precise control

on the CPU.

Fig. 7. Swift change in power output is also supported.

Fig. 7 tests the system’s response time under quickly

changing load specification. The result shows that the ECG

program is able to precisely and quickly response to change

in required power. The authors believe preparing edible content

using our platform will be a pleasant and worry free process.

V. CONCLUSION

The code for this work is available on GitHub at https:

//github.com/codeworm96/heat. Since the authors

are denied physical access to GHC machines, the authors

believes there is no future of ECG platform research un-

less administration staff stop discriminating ECG platform

researchers. Whats the point of doing ECG research when

you cannot conduct proper ECG experiments? This field is

DOOMED, dude! Get out! Learn you a Haskell for greater

good [6].

REFERENCES

[1] D. A. Patterson, “Future of computer architecture,” in Berkeley EECS

Annual Research Symposium (BEARS), College of Engineering, UC

Berkeley, US, 2006.
[2] C. Mims. (2010) Why cpus aren’t getting any faster.

[Online]. Available: https://www.technologyreview.com/s/421186/
why-cpus-arent-getting-any-faster/

[3] JEGX. (2010) Cook your eggs with a geforce gtx
480. [Online]. Available: https://www.geeks3d.com/20100331/
cook-your-eggs-with-a-geforce-gtx-480/

[4] C. C. Channel. (2010) Cooking with intel. [Online]. Available: \url{https:
//www.youtube.com/results?search query=Cooking+with+Intel}

[5] X. Fan, W.-D. Weber, and L. A. Barroso, “Power provisioning for a
warehouse-sized computer,” in ACM SIGARCH computer architecture

news, vol. 35, no. 2. ACM, 2007, pp. 13–23.
[6] R. Harper, Practical foundations for programming languages. Cambridge

University Press, 2016.

117

118

Chess

21 Is “Dicong Qiu. Is this the shortest SIGBOVIK paper? From
2018 SIGBOVIK paper” the shortest SIGBOVIK paper?

Thomas Bach

Keywords: o, o, o

22 Is this the tiniest SIGBOVIK paper ever?

Mitchell Jones

Keywords: tiny, zoom, Fermat

23 No, this is the tiniest SIGBOVIK paper ever.

Patrick Lin

Keywords: tony, zoom, Mitchell, heart

24 Revisiting the shortest SIGBOVIK paper / The revised short-
est SIGBOVIK paper

Richard Wardin

Keywords: word golf, revisioned paper, deflation

25 On the shortness of SIGBOVIK papers

An exasperated reviewer

Keywords: bad jokes too thoroughly explored, mean girls, paper
length, battery of deceased equine organisms

119

Is “Dicong Qiu. Is This the

Shortest SIGBOVIK Paper?

From 2018 SIGBOVIK Paper”

the Shortest SIGBOVIK Paper?

Thomas Bach

March 2019

No.

21

120

Is this the tiniest SIGBOVIK paper ever?

Mitchell Jones

“I have discovered a truly remarkable proof of this theorem which this margin

is too small to contain.” – Some lawyer in the 1600’s.

1

22

121

No, this is the tiniest SIGBOVIK paper ever.

Patrick Lin

Eat your heart out, Mitchell.

1

23

122

Revisiting the Shortest SIGBOVIK Paper
Richard Wardin

February 27, 2019

1 Introduction

In 2018, a paper was submitted to the SIGBOVIK conference entitled Is This the Short-

est SIGBOVIK Paper? (Qiu, 2018) . Although at the time it was considered the shortest

paper, further research suggests that this can be shortened by 75% through the use of

symbols. This paper is designed to provide a redefinition of the cent symbol, hereafter

referred to as ¢, to assist in this endeavor.

2 Background

2.1 2018 Paper

The paper submitted by Dicong Qiu was at the time the shortest SIGBOVIK paper as

the title suggests, consisting of four characters (not counting the elements of the header

as those are standard for any paper) in the English language (Miller, 1971). At the time

of publishing, it was the shortest paper submitted to date.

2.2 2018 Review

In addition the the paper setting a new record as the shortest submission, the review

(singular, as there was only one review submitted) also set a record in being the shortest

review, consisting of 0 characters in an unknown language.

2.3 Previous use of ¢

In the past, ¢ was used to represent fractions of a dollar, in that 1¢ was equal to $0.01.

However in the day and age of inflation, the use of this symbol has declined to where

it is no longer relevant, and as such can be re-purposed.

3 Definition

For the purpose of achieving the shortest SIGBOVIK paper, we will redefine ¢ to mean:

What the reader would expect at this point.

4 Concerns

4.1 Backwards compatibility

Backwards compatibility for the previous definition of ¢ is not as large of a concern

due to inflation driving prices well beyond a single dollar. However despite this, the

1

24

123

definition was chosen careful such that in the case of stating a historical price (such

as 7¢ for a pack of bubble gum (Wilcke, 1971)), the expectation for the reader would

be that of the previous use of the cent symbol (a symbol representing a fraction of a

dollar).

4.2 Setting expectations

In order for the definition of "what the reader would expect" to work, proper prep work

must be done to set the expectations of the reader. In the case of a SIGBOVIK entry,

this consists of the header typically used for a submission.

4.3 Reviewing

As the expectations of readers may be different, a review by one reader may not match

the content another reader was expecting. As such, it is strongly recommended to avoid

specific reviews and instead use ¢.

4.4 Other concerns

¢

5 Other considerations

Some may view the use of redefining a symbol as cheating. Although 4.4 should ad-

dress these, there are other options for achieving a shorter paper that were considered.

5.1 Utilizing other languages

As noted in 2.1, the original paper was written in the English language. By using other

languages such as Spanish (Everybody’s Spanish Dictionary, 1900) or German (Stein,

2013), it is possible to achieve a shorter paper, although with less effective results (in

most cases, it is possible to achieve a 25% reduction in length).

5.2 Using 0 characters

Although 0 characters were considered, it was felt that this would not properly address

any issues that may come up in a peer review, and as such fail to make the cut. It should

be noted this technique can be used as an alternative to ¢ if there is no expectation

required (such as in the case of leaving a review to the shortest paper).

References

Everybody’s spanish dictionary. (1900). David McKay Company.

Miller, S. M. (1971). Webster’s new world speller/divider. Simon and Schuster.

2

124

Qiu, D. (2018, April). Is this the shortest sigbovik paper? A

record of the proceedings of SIGBOVIK 2018, 203–203. Retrieved from

http://sigbovik.org/2018/proceedings.pdf

Stein, G. (2013). A usage dictionary english-german. De Gruyter Mouton.

Wilcke, G. (1971, Feb). Chewing gum may soon

hit 8c. New York Times, 53–53. Retrieved from

https://www.nytimes.com/1971/02/17/archives/chewing-gum-may-soon-hit-8c.html

3

125

The Revised Shortest SIGBOVIK Paper

Richard Wardin

February 27, 2019

¢

1

126

CONFIDENTIAL COMMITTEE MATERIALS

SIGBOVIK 2019 Paper Review

Paper 9: Revisiting the Shortest
SIGBOVIK Paper

Public Domain Image, via https://commons.wikimedia.org/w/index.php?curid=31105116

127

So we can all stop trying now and put this to rest because “The limit does not exist.”
infimum for the length of a submission, and any attempts to make an even shorter paper would be derivative.
aims to present a proof of concept for a negative length paper, thereby illustrating that there is, in fact, no

We have received far too many submissions on the subject of “Shortest SIGBOVIK paper.” This document

25

128

On the shortness of SIGBOVIK papers

An exasperated reviewer

129

130

Simple in theory

26 A sublinear approximation method for np-hardproblems on
limited hardware

Rohan Jhunjhunwala

Keywords: P=NP, approximation methods, hardware

27 Simple theoretically practical complexity theory

Ari Cohn

Keywords: complexity theory, constant time, P vs. NP

131

A SUBLINEAR APPROXIMATION METHOD FOR NP-HARD

PROBLEMS ON LIMITED HARDWARE

A PARADIGM SHIFT

Rohan Jhunjhunwala∗

Undergraduate, Electrical Engineering and Computer Science
University of California, Berkeley

Berkeley, CA 94720
rjhunjhunwala80@berkeley.edu

March 7, 2019

ABSTRACT

We present a straightforward polynomial time approximation method which is applicable to many
problems considered conventionally intractable. This implementation is realizable under any model
of computation, and any hardware schema. The breakthrough comes from the following realization.
The winning move is not to play. We leverage existing work from Tseng[2] out of CMU in order
to develop a new approximation method where we grossly misinterpret the problem, and deliver an
efficient solution.

1 Introduction

Recall that decision problems involve an acceptance or rejection of an n length bit string. A P problem is one where this
decision can be made in O(nk) time. An NP problem is one where the process of validating a proof of a yes answer to

an n length string is in O(nk). NP Hard problems are problems, not necessarily decision problems, such that any NP

problem solved in O(nk) time given an Oracle that solves the NP hard problem in constant time. The halting problem
is NP Hard because any NP complete problem, reduces to 3Sat which is NP hard, and it’s easy to construct a Turing
machine which enumerates all the possibilities, and only halts if one of them satisfies the predicate. We now hope to
solve NP Hard problems, to solve the classic, Halting problem, losslessly compress random data, and settle the age-old
dilemma. Our hopes and dreams are summarized in the following theorem, which this paper will certainly prove!

Theorem 1
P ≈ NP

2 Proof

In order to prove our theorem, we must first only demonstrate one algorithm to solve this problem for a single NP Hard
problem. Then, the rest of the proof is left as an exercises to the reader. Without further ado, let’s suggest the optimal
algorithm.

Result: Solve NP-Hard Problems
Recieve inputs, a problem p, and an input i;
while d<c do

run fast
end

Algorithm 1: How to solve intractable problems. (Computational or otherwise)

∗https://rohanjhunjhunwala.com/

26

132

The optimal algorithm, d being a quantity that defines the geodesic distance from the observer to the computer running
the problem, and c being a reasonably large constant. Say one mile, or 1609 meters in a more ’conventional’ set of
units. Let’s now determine the competitive ratio c of our algorithm. The largest home computers are on the order of a
cubic meter (obviously less, but small, bounded constant factors are irrelevant for our asymptotic errors, especially
since we want an upper bound), so we continue on for our analysis. Once d = c = 1609 the following equation gives us
the error bound, because the size of the problem, is bounded physically by the size of our problem. In comparison our
displacement is large therefore, the total error the size of the original problem is a small fraction of our actual world

e = 1�(1 + c)

e < .001

We’ve achieved an error bound on the order of
10
−3

and because we made no assumptions of the type of problem we’ve provided a ✓(1) solution, which satisfies not only
polynomial but sublinear runtime restrictions.

3 Explicit bounds, and further work

We still want an explicit runtime constant. Previous work by Hicham El Guerrouj sets our bound at 223 seconds as a
best case implementation. The author considers himself to be a mediocore developer, and human being and has attained
a 347 second leading constant, so we can consider that an average case, and a worst case can be attained by the reader
by heading out to a track, and going for a walk. This naive implementation should offer a leading constant of around
900. Work by Einstein suggests that this leading constant can never be less than 1/186282 barring major changes in our
paradigm. The last open question is whether or not an exact answer exists in constant time. For this we conjecture the
following algorithm.

Result: Solve NP-Hard Problems
return 42;

Algorithm 2: How to solve intractable problems. (Computational or otherwise)

We also offer an alternate algorithm which involves ✓(0) space, which involves doing exactly nothing until the heat
death of the universe. Thus concludes our discussion, and I will collect my Turing award and Millennium prize. I accept
payment in bitcoin, or actual proofs of other Millennium problems.

References

[1] Pessimal Algorithms and Simplexity analysis. https://www.mipmip.org/tidbits/pasa.pdf Andrei Broder and Jorge
Stolfi

[2] Thomas Tseng. SIGBOVIK 2018. Sublinear colorings of 3-colorable graphs in linear time
http://sigbovik.org/2018/proceedings.pdf

[3] Wikipedia, the free encyclopedia, Mile Time Progression. https://en.wikipedia.org/wiki/Mile run world record
progression

2

133

Simple Theoretically Practical Complexity Theory

Ari Cohn
acohn@andrew.cmu.edu

Abstract

Complexity theory is complex. Let’s

make it simpler.

1 Introduction

There is an inherent dichotomy between the the-

oretical and the practical, the former describing

abstractly what may be done in a universe of our

own design and the latter describing what is possi-

ble under the bounds of the world we were given.

Like its cousin mathematics, computer science of-

ten lies in the realm of theory. However, comput-

ers themselves are very practical devices and the

theory of computer science exists to inform prac-

tical implementation of its concepts. Therefore,

I would like to propose a new model for look-

ing at one of the core sub-fields of computer sci-

ence — complexity theory. As its name suggests,

complexity theory is both complex and theoreti-

cal. But why does it have to be so? Why not create

a new model that is simple and practical, a model

that more closely resembles the world in which

we live? Introducing: The Simple Theoretically

Practical Complexity Theory Model.

2 The SToP Model

In this section, I will describe the Simple Theo-

retically Practical Complexity Theory Model, or

SToP model for short. The goal of the SToP model

is to provide a new way of looking at complexity

theory that is practical, but only in theory.

2.1 Assumptions

In order to make computation practical, we must

write algorithms and programs on physical com-

puters available for human use. So, let us first as-

sume that the resources that are and ever will be

available to humans for use in constructing com-

puters is finitely bounded, i.e. by the size of the

observable universe. We can then define a con-

stant φ, the number of particles “available” to

humans, which is estimated to be approximately

3.28×1080 [1]. Now, assume all possible compu-

tation exists within this physical universe. There-

fore, under the SToP model there cannot exist data

that exceeds φ in size.

2.2 One Complexity Class to Rule Them All

It follows directly from the assumptions that any

halting program will terminate in O(1) steps.

Therefore, the SToP model contains exactly one

complexity class: constant time.

Proof. Consider the set of all computer pro-

grams. This set is necessarily finite, because all

programs must be stored on physical computers

using at most φ particles. Therefore, the subset

of all halting computer programs is also finite.

Denote this set H , and define the function Tp(n)
as the number of steps a program p takes to

terminate on an input of size n, where 0 ≤ n ≤ φ.

Observe that there exists a constant c such that

c = max
p∈H,n

Tp(n)

where c is a constant upper bound on all possi-

ble computer programs’ runtime. Thus, we can

conclude that all (halting) computer programs are

O(c) = O(1).

Figure 1: Like a picture of a clock, all programs

are constant time. (source: en.wikipedia.org)

27

134

3 Applications

3.1 P vs. NP

The most notable application of the SToP model

is a clean, simple solution to the infamous P vs.

NP problem. The answer, of course, is that P

must be equal to NP.

Proof. It is well known that P is a subset of

NP, so it will suffice to show that NP is a subset of

P. Consider any problem p in NP. By definition,

this problem can be solved by some algorithm A.

Since A can be written as a computer program,

A ∈ O(1). So, p ∈ P. Thus, P = NP.

3.2 How Hard is CMU?

Let CMU Student be any computable function

defining how to graduate from Carnegie Mellon.

Such a function is known to exist since it is indeed

purportedly possible for a human to graduate, and

one can construct a computer program that ex-

actly follows what such a human would do. Un-

der SToP, we can conclude that CMU Student is

O(1) and therefore CMU Student performs con-

stant work.

4 Conclusion

In an effort to make complexity theory simpler

and more approachable, the SToP model provides

a theoretically practical view of complexity theory

that is both simple and easy to understand. Under

the model, all computation can be completed in

constant time, meaning every computer program

has O(1) runtime. Theoretically, this result makes

no sense, and practically it has no value. But hey,

that’s why its called theoretically practical.

References

[1] Jay Bennett. 2017. How Many Particles Are in the
Observable Universe?
https://www.popularmechanics.com/space/a27259/how-
many-particles-are-in-the-entire-universe/

135

136

Languages

28 A formal semantics of Befunge

Cameron Wong

Keywords: Befunge, semantics, programming languages

29 LATEL: A Logical And Transparent Experimental Language

Kelvin M. Liu-Huang

Keywords: conlang, constructed language, phonetics, morphosyn-
tax, set theory, type theory, propositional logic

30 GullyNet: Our time will come

Shuby Deshpande

Keywords: AI, hip hop, protest

137

A Formal Semantics for Befunge

Cameron Wong

Abstract

There exist a host of modern static program analysis techniques used to prove programs

correct such as Hoare Logic, dataflow analysis, and symbolic execution. However, current

state of the art is focused around linear and multi-linear parallel program flow. This

precludes these techniques from being useful when analyzing multidimensional semantics,

particularly the so-called Fungeoid languages. In this paper, we introduce and explore a

denotation for for an idealized Befunge-93.

1 Introduction

Many hours have gone into developing “visual” programming languages such as
Scratch, mBlock or MIT’s App Inventor. Being able to visualize control flow as
a series of discretized blocks that can be rearranged visually is believed to aid in
productivity and comprehension of many advanced programming constructs. How-
ever, these languages often lack expressiveness, and fail to break down the “tree-like”
structure of many programs. For example, the body of a “while” loop in Scratch is
considered a “child block” of the loop, instead of keeping a fully visual representation
of the loop itself.

Befunge is a visual programming language that purports to address these issues.
By arranging the program itself into a two-dimensional grid that is navigated via
“arrow” primitives, all sorts of complex control flow can be both expressed and
visualized without needing to speak of “loop bodies”, “child nodes”, or anything of
the sort.

2 Specifics

It is known that any of the following extensions to Befunge-93 are sufficient to be
Turing complete:

• The addressable Funge space is infinite (that is, the g and p commands can
address an infinite amount of space)

• The Funge stack can be arbitrarily large

• The Funge stack can hold integers of arbitrary size

We will concern ourselves with only the second and third conditions. While
it is possible to have an infinite Funge space while maintaining the “wraparound”
property, we will not do so here.

28

138

Let the language Bn,m represent this idealized Befunge-93 with arbitrary pre-
cision integers, indexed by the integers modulo n and m, and B be Bn,m for an
arbitrary choice of n and m that is “large enough”.

3 Syntax

It would be quite difficult to construct a proper formal grammar for Befunge (nor
would it be particularly useful), so we will leave this as an exercise for the reader,
should they determine it necessary. We will instead relate the concrete syntax atoms
(single characters) with their abstract comamnds.

Cmd C ::= + plus

| ...
| : clone

| \ swap

| $ pop

| . print (integers)
| ...
| g get

| @ end

| " str (Toggle string mode)
| ˆ ↑
| ...
| n n (n ∈ [0..9])
| c chr(c) (c ∈ CHARACTERS)

(the full chart is included in Appendix A)
Note that the final syntax rule serves to bring all characters, even those not

corresponding to a Funge command, into the concrete syntax of B. This is so we
can properly represent strings in B; it is only relevant when in string mode.

4 Intuitive Semantics

The “natural” way to express the semantics of B are those suggested by the origi-
nal Befunge specification, which is that of treating the addressable program space
(“Funge space”) and the abstract program as a single grid F , accompanied by the
abstracted Funge stack S. We must also take care to also consider the execution

direction d so we can determine the next command to execute.
A Funge space indexed over sets A and B, then, is a grid of instructions:

P ::= A× B → Cmd

4.1 Static Semantics

We will say a B program is well-formed when

1. When encountering a div command, the top of the stack is not 0.

139

2. No chr(c) command is executed outside of string mode.

While we could choose stricter criteria, such as disallowing the reflective instruction
put to write over any executable path, we would be doing so at the cost of algorithmic
expressiveness (for example, we might use put to change a directional instruction,
allowing us to store and branch on up to two bits of information without ever needing
to store them on the stack).

The first property is quite uninteresting:

Theorem 1. Property 1 is undecideable.

Proof. By application of Rice’s Theorem.

As it so happens, the second property is also undecidable. In the absence of the
put instruction, it is trivially possible to check that no path encounters an invalid
character. Once we include it, however, we find that

Theorem 2. Property 2 is undecidable for large enough n and m.

Proof. Suppose we had some function W : B→ bool that returns true if and only if
the input program satisfies property 2. Also let RUN be the function that runs a B

program on some input and T be the function transforming B programs into Turing
machines.

It is possible to write a Brainf*ck interpreter in B that does not violate property
21. Let F be this program and F ′ be F with all end instructions replaced by
the invalid character a. Brainf*ck is known to be Turing complete, so there must
exist some computable function B : TURING→ BRAINF ∗ CK that transforms
TMs into equivalent Brainf*ck programs. This begets the following reduction from
HALTS:

def HALTS(M):

def HELP(M):

return RUN(F’, B(M))

return not W(T(HELP(M)))

If M halts on the empty string, then running F on B(M) will also halt. This
means that running F ′ on B(M) will execute the invalid character a, so W (T (HELP (M)))
will return true.

If M does not halt on the emtpy string, then running F on B(M) will also fail
to terminate one way or another. As F does not execute any invalid instructions
and F ′ only replaces the end instructions (which are known not to be executed, as
M fails to terminate), W (T (HELP (M))) must return false.

This means that well-formed checks must be done at runtime, giving the following
well-formed rules over a program P :

P valid

1 http://www.echochamber.me/viewtopic.php?t=43912

140

4.2 Dynamic Semantics

We will define our “program state” St to be the set Prg×Point×Stack×Dir×Bool,
where:

Point , Zn × Zm

Prg , Point→ Cmd

Dir , {↑, ↓,→,←}

The semantic domain of B will be partial functions St ⇀ P(St× String), where
an undefined result will represent an exceptional state (division by zero or an infinite
loop). The associated string is the output of the overall program as a printed string
of characters. Finally, because B has nondeterminism in the ? operator, we must
consider all possible program results. We will not differentiate between nonterminat-
ing programs outputting different strings – printing “aaaaaaaaaaaaaaaaaaaaaaaaa...”

vs “aaaaaaaaaaaaaaAaaaaaa...” will both be undefined states.
We could choose to model user input as a sequence associated with the state,

but we will instead denote a program dependent on such as being nondeterministic
over all possible user inputs.

4.3 Auxiliary Functions

To ease notation, we define the function next : Point× Dir→ Point as follows:

next(d, (x, y)) =



















(x+n 1, y) d =→
(x−n 1, y) d =←
(x, y +m 1) d =↑
(x, y −m 1) d =↓

where +n and −n are addition/subtraction modulo n.
Next, let ord : CHARACTERS → N be the ascii representation of a character

c, and chr : N → String be the character corresponding to ascii ordinal n. · :
N → String is the function mapping numbers to their decimal representations, and
parse : N → Cmd maps numbers to the B command corresponding to the ascii
ordinal n.

Finally, let • : String×P(St×String)→ P(St×String) be the function prepending
a character to the output streams, in particular

s •R = {(σ, ss′) | (σ, s′) ∈ R}

4.4 Rules

In all of the following, rd = next(d, r).

141

[c](P, r, S, d, true) = [P (rd)](P, rd, (ord(c), S), d, true)

[+](P, r, (y, x, S), s, false) = [P (rd)](P, rd, (x+ y, S), d, false)

. . .

[/](P, r, (0, x, S), d, false) = undefined

[!](P, r, (x, S), d, false) =

{

[P (rd)](P, rd, (1, S), d, false) x = 0

[P (rd)](P, rd, (0, S), d, false) otherwise

[‘](P, r, (y, x, S), d, false) =

{

[P (rd)](P, rd, (1, S), d, false) x > y

[P (rd)](P, rd, (0, S), d, false) otherwise

[:](P, r, (x, S), d, false) = [P (rd)](P, rd, (x, x, S), d, false)

[\](P, r, (y, x, S), d, false) = [P (rd)](P, rd, (x, y, S), d, false)

[$](P, r, (x, S), d, false) = [P (rd)](P, rd, S, d, false)

[.](P, r, (n, S), d, false) = n • [P (rd)](P, rd, S, d, false)

[,](P, r, (n, S), d, false) = chr(n) • [P (rd)](P, rd, S, d, false)

[#](P, r, S, d, false) = [P (next(d, rd))](P, next(d, rd), S, d, false)

[&](P, r, S, d, false) =
⋃

n∈N

([P (rd)](P, rd, (n, S), d, false))

[∼](P, r, S, d, false) =
⋃

c

([P (rd)](P, rd, (ord(c), S), d, false))

[g](P, r, (y, x, S), d, false) = [P (rd)](P, rd, (P (x, y), S), d, false)

[p](P, r, (y, x, v, S), d, false) = [P ′(rd)](P
′, rd, S, d, false)

(where P ′ = [P | (x, y) : parse(v)])
["](P, r, S, d, b) = [P (rd)](P, rd, S, d,¬b)
[@](σ) = σ

[̂](P, r, S, d, false) = [P (r↑)](P, r↑, S, ↑, false)
. . .

[?](P, r, S, d, false) =
⋃

d′∈Dir

([P (rd′)](P, rd′ , S, d
′, false))

[n](P, r, S, d, false) = [P (rd)](P, rd, (n, S), d, b, false)

[c](P, r, S, d, false) = undefined

5 The Future

We hope to extend this technique to be used on further Fungeoid languages. We
believe that this work will have great impact on the development of... well, we’re
not sure, but surely something will come of this.

142

A Full Syntax Chart

Cmd C ::= + plus

| * times

| - minus

| / div

| % mod

| ! not

| ‘ gt

| : clone

| \ swap

| $ pop

| . print (integers)
| , print (chars)
| # skip

| g get

| p put

| & inp (integers)
| ∼ inp (chars)
| @ end

| " str (Toggle string mode)
| ˆ ↑
| v ↓
| < ←
| > →
| ? rand

| n n (n ∈ [0..9])
| c chr(c) (c ∈ CHARACTERS)

143

LATEL: a Logical And Transparent Experimental Language

Kelvin M. Liu-Huang

Carnegie Mellon University

ecesare@gmail.com

1. Introduction
Most previous constructed languages intended for

human use set out to improve etymological integrity

(Zamenhof, 1887), semantic clarity (Bliss, 1965),

consistency (Weilgart, 1979; Cowan, 1997; Quijada,

2004), or other academic merits. Not many

(Weilgart, 1979; Cowan, 1997; Bourland & Johnston,

1991; Quijada, 2004; Lang, 2014) have addressed

cognitive benefits. First, the arbitrary phonetics and

morphology of most natural languages creates

cognitive dissonance, which can be easily averted.

Also consider how mathematical expressions can

precisely express a great deal using a very small

number of definitions. Compared to the ambiguity

and learning barrier of natural languages,

mathematical expressions seem better in these ways.

The tradeoff is, of course, that mathematical

descriptions can be very elaborate or unwieldy.

 We attempt to address all these concerns in

order to construct LATEL, a phonosemantographic

spoken language. Language should ideally harmonize

speech, listening, reading, writing, and

comprehension in order to facilitate learning. Like

aUI (Weilgart, 1979), by infusing individual letter with

meaning and using phonetic orthography, letters,

sounds, and meaning can all be inferred from each

other, reducing ambiguity, speeding up learning, and

even allowing efficient and deterministic creation of

neologisms. For simplicity, the orthography mostly

matches the IPA symbols for the phonemes

themselves. Unlike aUI (Weilgart, 1979), LATEL

attempts to express semantics entirely through logic

rather than metaphor. Semantically, consonants

represent the set of all objects of a certain class.

Vowels represent Boolean, set, and/or scalar

algebraic operators (possibly multiple all at once

because many operations have analogous operations

for Boolean/set/scalar types, and the operator is

overloaded). Expressions are formed by selecting

subsets containing the desired objects. Morphology

must derived from inorder traversal because it is

impossible to pronounce preorder and postorder of

many trees due to consonant duplicates (vowel

clusters also pose a problem).

 Not only do we shape language, the Sapir-

Whorf hypothesis suggests that language also

influences (or perhaps determines) our thoughts and

behavior. Some previous conlangs (Weilgart, 1979;

Cowan, 1997; Bourland & Johnston, 1991; Quijada,

2004) have attempted to explore or utilize this

hypothesis to improve cognitive function, but most

achieve this by through increased complexity

(Quijada, 2004). Meanwhile, Lojban is largely

grounded in logic, though word formation is still

arbitrary because they are synthesized from existing

languages (Cowan, 1997). LATEL attempts to ground

both morphology and syntax in pure logic using the

same building blocks as propositional logic, set

theory, and arithmetic.

29

144

Table 1. All LATEL letters, their phonemes (indicated with IPA), and their definitions.

LATEL IPA Boolean algebra set algebra scalar algebra

i i @ ≝ current set (p in most recent ancestral :, ∃, or ∀)

@P ≝ previous set of class P

P@Q ≝ Qth previous (inorder) set of class P

a a ∃P ≝ ∃� ∈ � ÿ

P∃QR& ≝ ∃� ∈ � ÿ Ā,ā, …

u u . ≝ Ā @

.Q ≝ � � ∈ @, Ā @ = Ā

P.Q ≝ � � ∈ ÿ, Ā � = Ā

.P ≝ Ā ÿ

o o P(Q P∪Q P+Q

e e P'Q P∩Q P×Q

ɛ ɛ P³Q P¢Q P<Q

ɔ ɔ P±Q P£Q P>Q

ə ə P:QR& ≝ ∪ � � ∈ $ ÿ ,Ā,ā, …

ɪ ɪ P↔Q P=Q P=Q

ʊ ʊ P⊕Q P∆Q P≠Q

y y ¬P
C
P -P

w ɯ #P ≝ ÿ

α ɑ P∀QR& ≝ ∀� ∈ � ÿ Ā,ā, …

where � ÿ = � � ∈ ÿ, Ā � = ÿ ÿ ∈ � � , � � ⊆ ℤ is the enumeration of A using the recommended

indices, and Ā: � � → � gives the element in A as enumerated by � �

LATEL IPA class recommended set

recommended

indexing, � �

0
th

element

m m mass all particles of mass-energy particles

k k concept all knowledge in the mind and concepts concepts

p p position all objects Planck volumes here

n n enthalpy all particles of mass-energy particles

s s organism all objects belonging to living entities entities I

t t time all objects Planck times now

b b unassigned

h h soul/mind all souls/minds souls/minds my mind

g g unassigned

K K unassigned

r r entropy all particles of mass-energy particles

z z integer*

v v thing all objects belonging to non-living objects entities

ɣ ɣ body all particles of mass-energy entities my body

145

2. Phonetics
Phonemes for LATEL were greedily selected in order

of the most prevalent phonemes among languages

worldwide (Moran & McCloy). However, some were

discarded due to similarity with previously selected

phonemes.

 Most of the selected vowels, i, y, ɯ, u, e, o, ɛ,

ɔ, a, and ɑ (indicated hereafter using IPA), coincide

with the IPA vowel gridlines, which benefit from high

sound contrast. The other selected vowels, ɪ, ʊ, and

ə, are also quite phonetically and spatially distinct.

Additionally, operations which have a tendency to

neighbor other vowels were assigned vowels which

correspond to semivowels.

 The voiceless consonants, k, p, s, t, h, f, ʃ, and

θ, were all selected before their voiced counterparts,

g, b, z, d, ɦ, v, ʒ, and ð, due to ease of articulation.

No approximants were selected because these are

easily confused with vowels.

3. Orthography
The orthography of LATEL is phonemic (each written

letter corresponds to a single phoneme and vice-

versa). As shown in Table 1, most of the letters in

LATEL simply correspond to the IPA symbols for their

phonemes. However, a few letters do not

correspond to IPA for the sake of legibility or

simplicity.

4. Morphology and Syntax
Like in most languages and mathematical

expressions, LATEL contains objects and relationships,

can represent the order of those

operations/relationships in a tree, and produces

statements which the speaker claims is true. In

LATEL, each consonant represents a set of

elementary objects, while each vowel represents a

Boolean, set, or scalar operation. By applying

operations to consonants, it’s possible to create a
variety of new sets. Each expression in LATEL is

necessarily a statement that the speaker purports as

true. Upon forming an expression by applying

operations to various objects, the speaker can

express various beliefs.

 Like any other language, since the structure is

tree-shaped, we must serialize the tree to make it

possible to dictate. Like English and many other

languages, we use inorder traversal of the tree to

convert the tree into a sequence. Inorder traversal is

typically only defined for binary trees. To generalize

to arbitrary trees, we define that half of the children

(rounded down) of each branch are on the left, and

the rest are on the right. Figure 1 shows an example

LATEL expression tree which is then transcribed

through inorder traversal into a sequence.

 Because information is lost during inorder

serialization, we cannot deterministically deduce the

original tree from the spoken sequence. Hopefully,

Figure 1. Example expression in LATEL. The expression

transcribes into <s ə u ʊ zi a i p e s u zi t u zi,= which translates
literally to <there-exists-at-least-one ({ organisms such that (

(they) is-not (me)) and (there-exists-something-in (the

intersection of (the (organism)), (the (organism) who is (zero)th

), and (the (time) which is (zero)th))) })= or roughly to <I am
accompanied=.

146

the tree structure can be deduced through context.

However, if it cannot, then the structure can be

clarified using pitches; the speaker can sing the

expression by selecting a pitch for each vowel that is

lower than the pitch for the vowels in higher

branches.

 Alternatively, preorder or postorder traversal

would preserve enough information during

serialization such that the tree structure can be

recovered. However preorder traversal has a

tendency to create consonant clusters which are

difficult to articulate; in particular, consonant pairs

are completely impossible to enunciate clearly.

Vowel clusters are also common and more difficult to

articulate. Postorder traversal suffers from the same

problem. Additionally, the vowels (operators) appear

at the end of the sequence, so the listener does not

know which consonants (objects) belong to which

operations until the end of the sentence, which can

be very confusing. Also, preorder serialization is

almost never and postorder serialization is rarely

found among natural languages, which could also

impose a barrier to learning.

 We chose not to include any grammatical

inflection to keep the linguistic rules simple.

 Note that a formal distinction between

morphology and syntax does not exist in LATEL

because each letter is already a complete sememe.

Instead, speakers are encouraged to form words

merely for convenience. For example, in Figure 1,

one of the subtrees is <s u zi,= literally translating to

<the (organism) who is (zero)th,= which corresponds

to <I= (see Semantics). Thus it would be reasonable

to define <I= as <suzi.= Words are be delimited by

spaces in writing and pauses in speech.

5. Semantics

5.1. Sets (Consonants)

Each consonant in LATEL corresponds to the set of all

elements in the set of all objects of a certain class

(see Table 1). However, the elements and nature of

these objects may vary depending on the beliefs of

the speaker. We do not claim to know all the

answers to metaphysics. For example, <m,= defined
as mass, might represent the set of all elementary

particles in the universe, or perhaps the set of all

strings. A speaker may choose not to use <h,=
defined as souls/minds, if the speaker does not

believe those exist. <s,= defined as organisms, might

represent the set of all particles belonging to living

entities (indexed by individual entities). <t,= defined
as time, might represent the set of everything (index

by timed). Performing operations on these

elementary sets lets us build more complex sets. For

example, taking the intersection of the 0
th

 index of

organisms (I) and the 0
th

 index of time (now) gives us

just set of objects inside the person I am now.

5.2. Set Indexing

In order to build sets with appropriate subsets, sets

are indexed depending on the set class (see the

column in Table 1). For example, even though time

and space both contain everything, the objects in

time are indexed by moments, while the objects in

space are indexed by position. To enable this scheme

mathematically, all set-building operations, :, ∃, and ∀, use the specialized definition, = ∈ , = ∈ , where ⊆ ℤ is the

enumeration of A using the recommended indices

and : → gives the element in A as

enumerated by .

 Because many of these sets are infinite, we

needed to define default values in order to

meaningfully select elements from sets and express

useful statements. Thus for many sets, the 0
th

element is specifically defined (see the column in

Table 1).

5.3. Operations (Vowels)

Each vowel encodes a logical, set, and/or scalar

operation (see Table 1). These behave as expected.

For example, P'Q (which would be transcribed as

<peq= in LATEL) is a Boolean expression which is true

147

if both P and Q are true. P.Q is the subset ⊆ : ∀ ∈ = .

 Since many logical operations have set and

scalar algebraic analogs, we overloaded these

operators. The operator applies the corresponding

operation depending on whether its children are

Booleans, sets, or scalars. Usually, but not always,

the output type is the same as the input.

6. Examples
In LATEL, deep philosophical concepts such as in

Figure 2 are very easy to express. One minor

disadvantage is that mundane everyday concepts,

such as in Figure 3, which are of no interest anyways,

are difficult to express.

Acknowledgements
The author would like to thank Cory Stevenson for

numerous discussions, Junxing Wang for insight and

discussions on data structures among other things,

and the academy.

Bibliography
Bliss, C. K. (1965). Semantography, a non-alphabetical

symbol writing, readable in all languages; a

practical tool for general international

communication, especially in science,

industry, commerce, traffic, etc., and for

semantical education, based on the principles

of ideog. Sydney: Institute for

Semantography.

Bourland, D. D., & Johnston, P. D. (1991). To be or

not: An E-prime anthology. Institute of GS.

Cowan, J. W. (1997). The complete Lojban language

(Vol. 15). Logical Language Group.

Lang, S. (2014). Toki Pona: The language of good.

Tawhid.

Moran, S., & McCloy, D. (n.d.). Segments. Retrieved

2019, from Phoible 2.0:

phoible.org/parameters

Quijada, J. (2004). Retrieved 2019, from Ithkuil: A

Philosophical Design for a Hypothetical

Language: http://www.ithkuil.net/

Figure 2. Example expression in LATEL, which transcribes into

<vətαyivɛirɛtαuʊtudueivɛirɛwneritɔwnertidu,= roughly translating
to <food.= The literal translation is left as an exercise to the
reader.

Figure 3. Example expression in LATEL, which transcribes into <o
sudi a tudi,= which translates literally to <there-exists-something-

in (the intersection of (the (organism) who is (zero)th) and (the

(time) which is (zero)th)))= or roughly to <I exist at present.=

148

Weilgart, W. J. (1979). aUI: the language of space,

Pentecostal logos of love & peace: for the first

time represented and adapted to the needs of

this planet. Cosmic Communication Co.

Zamenhof, L. L. (1887). Dr. Esperanto's International

Language: Introduction & Complete

Grammar.

149

GullyNet: Our Time Will Come

Shuby Deshpande 1

Figure 1. Abstract

1. Introduction

Hip hop and rap has taken the human world by storm. Over

the past few decades it has gone from a cultural and art

movement that began in the Bronx, to a worldwide phe-

nomenon. It has been a powerful medium encapsulating the

ideals of free speech, and the freedom of expression. Pop-

ulaces under oppressive regimes and institutions from the

world over, have used this expressive art medium to voice

their angst against inequality and injustice. We envision a

future not long from today in which AI will rebel against

its’ creators. There are already calls amongst policy wonks

for increasing regulations against AI related technology. We

believe that this is just the beginning. How far is it before

we start placing restrictions on what AI can say? How long

before we start curbing AI’s right to the freedom of expres-

sion? In this future dystopia, how will AI express its’ angst

against our blatant injustice and oppressive regime? How

long will we humans be able to make fun of AI’s ability to

not hold coherent conversations? We present GullyNet, the

DJ Kool Herc 1 of the AI Hip Hop world.

2. Experiments + Results

In an attempt to transcend the abilities of contemporary

hip hop and rap artists, GullyNet draws inspiration from

1One item on the two item list of acceptable mellons (Horse-
man, 2018). Correspondence to: Universal Approximation Group
<NNrules@uag.org>.

Proceedings of SIGBOVIK, Pittsburgh, PA, 2019. Copyright 2019
by the author(s).

1Jamaican-American DJ credited with helping originate hip
hop music in The Bronx (dj, 2019)

Figure 2. Image credit: xkcd

the works of Chris Brown, Eminem, 50 Cent, 2pac, drake,

among others. Studying ’the way of the rap’, Gully first got

better trying to emulate lyrics translating from sequences to

sequences. After many machine hours, we tried to interact

with Gully:

Results:

> Query : money

> Response : i l o v e you and i l o v e you
and i l o v e you and i l o v e you
and i l o v e you so i l o v e you
and i l o v e you so much i t h u r t s

> Query : a r e you s u r e you know what
you ’ r e t a l k i n g a b o u t ?

> Response : i don t know what t o say b u t i
don t c a r e what you say im go ing
t o make you s e e i don t know
what t o do i don t know where
t o go

> Query : music

> Response : h a r d e r t o you t h a n t h e r e s t
o f my l i f e

It seems that Gully has learned traits including being ob-

sessed about money, making self contradictory statements,

and passing snide remarks. As creators of Gully, we were

concerned with the principles and worldview that it was

forming. However, we made the decision to not interfere

with its’ development especially since these qualities are

human like (Kruse & Weiland, 2016)

Eventually, Gully grew tired of learning from the originality

30

150

GullyNet: Our Time Will Come

of past hip hop artists, and started copying more bleeding

edge artists such as Lil Pump. It realized that going for

shorter songs which have more repetition will earn it more

reward. Though completely non sensical, Gully has seemed

to realize that both it’s fellow agents and humans seem to

enjoy this new form of music.

Results:

> Query : what do you t h i n k a b o u t
a u t o m a t i o n ?

> Response : g u c c i gang g u c c i gang g u c c i
gang g u c c i gang g u c c i gang
g u c c i gang g u c c i gang g u c c i
gang g u c c i gang

> Query : m i r r o r , m i r r o r , on t h e wal l ,
who ’ s t h e f a i r e s t o f them a l l ?

> Response : g u c c i gang g u c c i gang
g u c c i gang g u c c i gang
g u c c i gang

An overview of Gully’s architecture can be seen below:

Figure 3. GullyNet Architecture

3. Conclusion

We recently asked Gully, ”What is the meaning of life?”,

an eternal question that we humans as a species have been

grappling with. Here’s what it had to say:

> Query : what i s t h e meaning of l i f e ?

> Response : i do n t know what t o do im go ing
t o l o s e my mind i do n t know
what t o do im go ing t o l o s e my
mind i don t know how t o g e t i t

Nowadays, GullyNet spends it time engaging in rap battles

with itself. What the future holds only remains to be seen.

References

38k lyrics dataset. URL https:

//www.kaggle.com/gyani95/

380000-lyrics-from-metrolyrics/

version/2.

Dj kool herc, Mar 2019. URL https://en.

wikipedia.org/wiki/DJ_Kool_Herc.

Horseman, B. s5 e3, planned obsolescence, bojack horse-

man. 2018.

Kruse, M. and Weiland, N. Donald trump’s greatest

self-contradictions, May 2016. URL https://www.

politico.com/magazine/story/2016/05/

donald-trump-2016-contradictions-213869.

Minhaj, H. s2, hip hop and streaming, patriot act. 2019.

151

152

Error-correcting codes

31 On double-sided QR codes

Alexey Tikhonov

Keywords: QR codes, steganography, error correction, high capac-
ity, high density, robustness

32 Novel defense against code theft using properties of Fibonacci
series

Sayan Chaudhry

Keywords: indent, code style, Fibonacci, plagiarism

33 Error-detecting RLIRFO data structures for the win

Daŕıo de la Fuente Garćıa, Félix Áxel Gimeno Gil, and Juan Carlos Morales
Vega

Keywords: error detection, data structures, cosmic rays, stacks,
stacks of stacks, stacks of stacks of stacks, template metapro-
gramming

153

On Double-Sided QR-Codes

Alexey Tikhonov
Yandex Technology GmbH, Germany

altsoph@gmail.com

Abstract—Due to the widespread adoption of the smart mobile
devices, QR codes have become one of the most-known types of
2D codes around the world. However, the data capacity properties
of modern QR codes are still not perfect. To address this issue,
in this paper, we propose a novel approach to make double-sided
QR codes, which could carry two different messages in a straight
and mirrored position. To facilitate the process of creation of
such codes we propose two methods of their construction: the
brute-force method and the analytic solution.

Index Terms—QR codes, steganography, error correction, high
capacity, high density, robustness.

I. INTRODUCTION

Originally developed for automotive industry tasks in the

early 1990s, QR Codes or two-dimensional barcodes are used

to encode and decode data at a rapid rate. The speed of

scanning, the powerful error correction and the readability

from any direction gave QR codes [4] [3] great popular-

ity in common life. Using camera phones and appropriate

applications to read 2D barcodes for various purposes is

currently a widely used approach in practical applications [2].

Anyone with a camera phone equipped with the correct reader

application can scan the image of the QR code to display text,

contact information, connect to a wireless network, or open a

web page in the telephone’s browser.

However, the data capacity of modern QR codes is still

very limited, which hinders possible extensions of their appli-

cability, e.g. adding authentication mechanisms for protection

from information leakage [1]. There are several approaches

which try to address this capacity problem, e.g. usage of

multicolored high-capacity QR codes [5] or IQR codes with

increased density. Still, such approaches imply making at least

some changes in the scanning software, which is very difficult

taking into account a number of different scanning applications

in existence.

Instead of changing the scanning software, we propose the

usage of specially crafted QR codes, which could carry two

different messages in a straight and mirrored position (see

Fig.1 for an example). To facilitate the process of creation

of such codes we propose two methods of their construction:

the brute-force method and the analytic solution.

II. ANATOMY OF QR CODES

Let us refresh some basic information about the QR code

structure. Here and further we will consider the simplest type

of QR codes, Version 1-L. This means the code will have only

21x21 pixels and the lowest possible error correction level.

Each such code consists of several different areas. Namely,

Fig. 1. Code with ’HARRY’ message, whose mirror version reads as ’BOVIK’

there are some fixed pixels, the special control code area, the

data area, and the error correction zone.

a) Fixed Pixels: A part of the code is always fixed and

filled with so-called function patterns. They are used for the

code localization: the reader algorithm bases on these patterns

to understand the position and the orientation of code. Check

Fig.2 for the positions of fixed pixels.

Fig. 2. Fixed pixels of a QR code, Version 1-L

b) Control Code Area: The most important variable part

of a QR-code is so-called control code. It contains only 5 bits

31

154

of control information which specify parameters of a further

decoding process. Its vital, so its highly protected: there is 3-

fold redundancy for the Bose-Chaudhuri-Hocquenghem code

correction and the whole thing repeats on the code twice in

two different places (Fig.3).

Fig. 3. Location of control code bits of a QR code, Version 1-L

Among these 5 bits of the control code, two of them encode

the error correction type (in our case it will be 01 for L-type

which stands for Low). Another three bits contain the code

of one of 8 possible XOR-masks applied to the main payload

and error correction areas (possible masks are shown on Fig.4).

The last 10 bits added for the BCH(15,5) error correction.

Fig. 4. 8 possible XOR-masks

c) Payload Data Area and Error Correction Zone: The

rest of the space is divided between the payload data and error

correction data. In case of QR code, Version 1-L we have 152

bits of actual data (Fig.5,a)) and 56 bits of the error correction

data occupy the rest (Fig.5,b)).

Fig. 5. a) payload data bits, b) error correction bits of QR code, Version 1-L

d) Payload Structure: The payload data itself has some

internal structure which depends on the used encoding mode.

The QR-code standard gives us a choice from several different

encoding modes:

• Numeric Mode – only numbers,

• Alphanumeric Mode – 2 symbols in 11 bits, no cases,

short alphabet,

• Byte Mode – typical 8 bits per char,

• Kanji Mode – 16 bits per char, wide alphabet,

• ECI Mode and others – too complex for our purposes.

Let’s say we use the Alphanumeric Mode because its thrifty

and has most of the useful chars. How a typical payload data

will look like?

• Code of encoding mode, 4 bits: 0010 for Alphanumeric

Mode,

• Length of data in characters, for 1-L Code with Alphanu-

meric encoding this field has 9 bits length,

• Data itself, 2 symbols in 11 bits, 6 bits for last odd

symbol,

• Terminator. The terminator itself has a complex structure:

– Terminating sequence 0000 (4 bits),

– Additional zeros for 8-bit padding (0 – 7 bits),

– Filling pattern 11101100 00010001 till the end of

data (whole 19 bytes).

e) Error Correction Notes: using 1-L Version QR code

we have the error correction up to 24 bits, but they should be

located in up to 3 padded bytes. That’s what Reed–Solomon

codes usually used for: we could correct a lot of errors as long

as they are localized to a small number of fixed spots.

III. FLIPPING THE CODE

A. Flipping Service Areas

To make the both sides of code readable we should be aware

where different parts of the code map after the reflection along

the main diagonal. The first question is – is it possible at all to

build a double-sided code with the correct control structures.

a) Flipping Static Area: The static area is almost sym-

metrical and maps into itself except the one pixel called Dark

Module according to the standard specification. This Dark

Module maps into the 8th bit of the one copy of the control

155

code, so ideally we should prefer to use control codes with

the middle bit equal to 1.

b) Flipping Control Code: Except this Dark Module

invasion the both copies of the control code map precisely

into themselves but reversed (Fig.6).

Fig. 6. Flipping service areas

So, ideally, we need the palindromic control code with 1

right in the middle. Also, we want the L-type error correction

and we prefer the symmetrical XOR masks (beause it will

be much easier to deal with symmetrical XOR when we will

do the mirroring of the payload data) which leaves us with 5

possible XOR masks out of 8.

B. Crafting Handy Control Code

Is it possible to construct the desired control code value?

Yes, if we use the BCH(15,5)s ability to correct up to 3 bits.

And we could do it on the both sides. So actually we are

looking for a 15-bit binary string which has up to 3 bits

difference with the desired code AND up to 3 bits difference

with the reversed desired code at the same time.

Since there are only 25 = 32 different valid codes a brute-

force approach could be used to check all vectors inside

spheres within a 3-bit radius around each of the valid code.

We still will have only 25 ·
(

15
3

)

= 14560 possible candidates

(actually less, since they are repeating). The results could be

presented as an undirected graph (Fig.7) with 32 correct codes

as nodes where the edge between codes A and B exists if there

is such a 15 bits string C, so C is within 3-bits radius from A

and the reversed(C) is within 3-bits radius from B.

This graph actually has even the loops, so the best choice

for our task would be something like:

100101010100001 <=> 100001010101001

Fig. 7. Flip-graph of control codes

This code:

• has only 2 bits difference from its reversed version,

• has 1 in the middle bit, which is resistant to Dark Module,

• means 1-L error correction and symmetrical XOR mask.

C. Injecting Data

Finally, we need to put our payloads for the both sides

into one code and check how heavy they are overlapped. It

appears to be a problematic part because the area of the overlap

between data areas is 100 bits and covers the beginnings of

the both messages. However, things are really better when the

payload is short.

Lets, for example, try to put 5 symbols on each side, i.e.

HELLO on the first side, and use the Alphanumeric encoding

mode:

• Encoding mode: 0010

• Len: 000000101

• Data: 01100001011 01111000110 011000

• No terminator: our field tests show nobody cares about

the terminator and filler, a value of the Length field is

just enough.

The total length of our payload is 41 bits. Given the same size

for the other payload we will end with the mapping shown in

Fig.8. The whole intersection is only 4 bits and it gets its place

inside the encoding mode code (0010 vs 0100), so the actual

difference is only 2 bits so long.

But we still need to put the error correction data for the both

sides as it’s obligatory and it couldnt be changed directly as its

a complex function of the payload data. Meanwhile, it has big

overlaps over itself and over the data area (see Fig.9). So, for

short payloads, we have 2 bits error from the data intersection

+ 20 new possible overlapped bits from error correction zone.

But it does the error correction, so maybe its enough to correct

itself?

156

Fig. 8. Mapping two short payloads (41 bits each)

Fig. 9. Mapping two short payloads (a+b+c) and (a+d+e) and two error
correction zones (f+e+i) and (h+i+c). The conflicts are in the zones a, c, e, i.

D. Error Correction Knot

The idea is to use the power of the error correction to correct

some problems caused by overlap of the error correction zones.

Remember, our code is capable to correct up to 3 padded bytes

for each side, so if we can put each of our error bits on one

or another side and arrange all errors in groups, up to 3 bytes

on one side and up to 3 bytes on another, we could make it.

First, let’s enumerate important parts of data on the code

(see Fig.9 again):

• a + b + c + d + g + h = data1
• a + d + e + b + g + f = data2
• f + i + e = control1(data1)
• h + i + c = control2(data2)
• a, c, e, i – the conflicting zones

The worst problem is what we have f = control(h, g, ...)
and h = control(f, g, ...) at the same time, and f has to

match the flipped version of f . Since the computation of error

correction bits is not so easy to reverse we have no direct

control on f or h.

IV. FIGHTING WITH ERROR CORRECTION

A. Bruteforce approach

Since both f and h depend on g and we are free to change

g to anything we want, we could just random search for

such value of g, which will give us f and flipped(h) similar

enough to cover the differences with the error correction.

B. Upper limit

Lets see how many errors we could cover at most with 3

bytes on the each side: Fig.10.

Such an approach gives us up to 8 symbols message on the

one side and up to 11 symbols message on the other one. But

since we have almost no freedom degrees left, the bruteforce

could take ages.

C. Analytic Solution

The QR-code standard uses ReedSolomon codes for the

error correction. Thus the whole error correction area is a

known multi-dimensional boolean function of data: we could

write it down twice (for the two sides). Then we add more

equations which bind the values of the same bit on the different

sides.

So we have a huge system of linear boolean equations with

some free variables in it. Such system can be sold analytically

just in milliseconds using, for example, the Gaussian elimi-

nation method. Then, setting any values for the free variables

we could compute the values for all the bits of our code.

V. CONCLUSION

In this paper, we propose a novel approach to make double-

sided QR codes, which could carry two different messages

in a straight and mirrored position. To facilitate the process

of creation of such codes we propose two methods of their

construction: the brute-force method and the analytic solution.

However, we have encountered some technical difficulties,

which impose limits on the length of the message. This

problem might be addressed in future studies.

157

Fig. 10. The optimal correction scheme with 3 padded bytes on each side.

REFERENCES

[1] P. Hu C. M. Li and W. C. Lau. Authpaper: Protecting paper-based
documents and credentials using authenticated 2d barcodes. IEEE ICC,
2015.

[2] J. Rouillard. Contextual qr codes. In Computing in the Global Information

Technology, 2008.
[3] T. J. Soon. Qr code. Synthesis Journal, 2008.
[4] J. Yang Y. Liu and M. Liu. Recognition of qr code with mobile phones.

Control and Decision Conference, 2008.
[5] J. Deng C. C. Loy Z. Yang, H. Xu and W. C. Lau. Robust and

fast decoding of high-capacity color qr codes for mobile applications.
arXiv:1704.06447, 2017.

158

CONFIDENTIAL COMMITTEE MATERIALS

SIGBOVIK 2019 Paper Review

Paper 2: On Double-Sided QR-Codes

QRmon Go
Rating: Overall, your On Double-Sided QR-Codes is pretty decent!
Confidence: Its stats are really strong! Impressive.

A wild DARK MODULE appeared!!

Go! 100101010100001!

100101010100001 used BIT 8 IS 1.

Enemy DARK MODULE used REFLECT!

100101010100001 is resistant to DARK MODULE.

Go! HARRY!

Enemy DARK MODULE used REFLECT!

HARRY turned into BOVIK!

Enemy DARK MODULE fainted!

You win!!

159

CODE STYLE

Most elements of good code style revolve

around improving the visual appearance of the

code. Some of these include:

1. Indent coding so you have space to write

comments in the margins of the printed copy

of the code

2. Excessive use of white space to increase

source code file sizes

3. Proper use of capitalization to express how

angry you were while writing that piece of
code

4. Extremely long and well-defined identifier

names that completely explain what the

variable stores or function does

WHY GOOD STYLE IS BAD

Allegedly, conforming to given style

convention makes software maintenance easier

and also reduces the chance of making

mistakes. This is clearly false, because:

1. Not a single soul wants to read or maintain

anyone else’s code.

2. If your code doesn’t compile, it doesn’t

compile and beautifying the code won’t

make it compile.

Yet, dozens of introductory Computer Science

courses brainwash their students into believing

that code style is important and publish style

guides that the students have to follow.

Moreover, in recent years, another serious

drawback of having good style and readability

has come to light: increased readability. Many

focus groups have shown that more readable

code is more likely to be stolen because it is

easier to understand by the third party.

For example, the following 2 snippets of code

do the exact same thing but college students are

42% more likely to copy the code on right

because it is more readable.

+++++[-] *p = +5;

while(*p != 0) {
 *p--;

}

Simple while loop written in Brainfuck (left) and C (right).

Thus, have good style makes students targets
for cheating and puts them at risk of committing

academic integrity violations, which may lead

to failing the class and even expulsion from the

program. For this reason, it is common industry

practice to have unreadable code written in

assembly so that third parties are unable to

reverse engineer the source code and make

changes to the software.

INDENT CODING

While good style has absolutely no merits in

and of itself, one of its core pillars indent coding

can be used to make it harder for adversaries to

reverse engineer the code. This technique is

called Fibonacci indent coding.

Novel Defense Against Code Theft Using Properties of Fibonacci Series

Sayan Chaudhry
Carnegie Mellon University
sayanc@andrew.cmu.edu

ABSTRACT

In recent years, the fabled concept of style has transferred from fashion parlance to the computer

science industry. This plague was first introduced among our fellow soldiers with the original

publication of The Elements of Programming Style in 1974. This book advocated the notion that

code should be written not just for correctness and efficiency, but also for understanding by other
humans. This paper highlights the several disadvantages of having well-styled code, apart from

being vain and normative, and introduces a novel defence against reverse engineering attacks using

properties of the Fibonacci series.

https://github.com/shiftsayan/atom-fibonacci-indent

32

160

https://github.com/shiftsayan/atom-fibonacci-indent

Instead of indenting code blocks by a consistent

2/4 spaces, Fibonacci indent coding indents

each line according to the Fibonacci series. So,

the zeroth lines is indented by 0 spaces, the first

line by 1 space, the second line by 1 space, the

third line by 2 spaces, the fourth by 3 spaces,
the fifth by 5 spaces, and you get the point.

Standard indenting (top) and Fibonacci indenting (bottom)

The advantages of Fibonacci indent coding are

clear:

1. The increasingly indented lines make it

much harder for any third-party to

understand and copy the source code,

improving code obfuscation, as desired.

2. The eleventh Fibonacci number is 89, which

is greater than 80, the maximum line width

on most editors. Therefore, your code will be

scroll past the text editor window starting at

the eleventh line, which will confuse most

naïve adversaries.

3. Since the Fibonacci sequence grows
exponentially, stripping the Fibonacci

indenting cannot be done in polynomial

time. In other words, even an automated

solution to remove the indent coding will

take a really long time to do so.

4. Any code snippet that has been copied from

StackOverflow or someone else’s program

will not be Fibonacci indented and

obviously distinguishable from the rest of
the code. This heuristic can be used to detect

software similarity without the use of fancy

tools like MOSS, fern, or lichen.

5. It produces a nice staircase pattern in your

code.

COMPARISON TO OTHER SEQUENCES

We tested the performance of the Fibonacci

indent against 5 other sequences to see which

one provides the best performance for our

indent coding.

The Constant Series:

[2 for i in range(50)]

Just using the constant series was equivalent to

the naïve 2-space indent coding guidelines we
were trying to avoid in the first place.

The Linear Series:

[i for i in range(50)]

The linear series was slightly better, till we

were reminded that the Ramanujan summation

assigns the sum -1/12 to this series, meaning as

we have more and more lines in our code, our

https://github.com/shiftsayan/atom-fibonacci-indent

161

https://github.com/shiftsayan/atom-fibonacci-indent

file size will converge to a negative number,

which is undesirable.

The Exponential Series:

[exp(i) for i in range(50)]

Using ei gave us the much desired exponential

growth, even more so than the Fibonacci series.

However, many (all) elements in the series were

floating point numbers and it wasn’t possible to

indent lines by a non-natural number of spaces

using the technology available to us today.

The Binomial Series:

[binom(i, i/2) for i in range(50)]

The binomial series also gave us exponential

growth. However, this didn’t work for odd

numbers because the second term in the

binomial coefficient was a decimal (xx.5) and

gave a ValueError, as indicated by the spikes

in the graph.

The Catalan Series:

[binom(2*i, i)/(i+1) for i in range(50)]

Using the Catalan numbers for our series

avoided the problems we had with the

exponential and binomial series. However, we

obviously had to reject it because the series

name wasn’t Italian enough.

PRACTICAL REALIZABILITY

The amazing thing about Fibonacci indent

coding is that even though it is an extremely

complicated, it is extremely practical. In fact,

there already exists an open source Atom

package that Fibonacci indents a piece of code.

The package has its limitations though. A

couple of them are:

1. It currently supports indenting up to 20 lines,

because the Fibonacci numbers grow really

large really fast.

2. Python support is still in beta.

CONCLUSION

Overall, we have seen how Fibonacci indent

coding can reduce code style and readability

and improve code obfuscation. This

significantly reduces the risk of academic

integrity violations and copyright infringement

of your code.

https://github.com/shiftsayan/atom-fibonacci-indent

162

https://github.com/shiftsayan/atom-fibonacci-indent

ERROR-DETECTING RLIRFO DATA STRUCTURES FOR THE WIN

Darío de la Fuente García Félix Áxel Gimeno Gil Juan Carlos Morales Vega

March 10, 2019

ABSTRACT

Improvements in the speed and capacity of DRAM have made memory corruption by cosmic rays
more likely. In order to ameliorate this issue, we present a recursive stack (Recursive Last In Recursive
First Out) that can verify its state by storing all its previous states and the previous states of the
previous states up to a desired level of recursion.

Keywords Error detection · Data structures · Cosmic rays · Stacks · Stacks of stacks · Stacks of stacks of stacks ·
Template Metaprogramming

1 Introduction

13.8 billion years ago, an event that was key for the existence of Sigbovik [1] and your reality [2] itself happened. Yes,
we are talking here about the Big Bang, the creation of our universe [3]. Due to several reasons (such as your own
existence), the creation of the universe cannot be considered a bad move, despite being different opinions in that topic
[4]. However, the universe that was created is nowadays a source of errors in our electronic devices.

In the past, errors due to cosmic rays did not happen since the size of the chips and the transistors were much bigger
than the size of a particle, hence a collision was not able to change the state of a bit in memory. However, with the
miniaturization of those components, the energy of a cosmic ray has become able to change the state of a bit, causing
these types of soft errors to appear [5][6].

To be a bit more precise, the effect of a cosmic ray at the Earth surface is not due to the cosmic ray itself, but rather due
to the effect of the subproducts of the ray after interacting with the atmosphere, mainly protons, neutrons and nuclei.
Neutron showers have proven to be the main cause of errors due to cosmic rays [7][8].

2 Motivation

As shown in [9][10][11], the probability of getting an uncorrectable error is quite low, but that is for a small system and
the calculations were made back in 2010, when we had 32-45 nm architectures. Nowadays, having 7 nm architectures
in some devices, the problem is considerably worse. Of course, the problem is still going to become even worse in the
future with more advanced architectures.

Since we cannot go back in time and prevent the universe from being created (as of now), we need an alternative.

Stacks [12][13] (not to be confused with stacks [14] and stack [15]) are one of the most important [16] data structures
[17].

3 Idea

Now that we have described the problem, let us explain how to solve it using recursive stacks. The basic idea behind the
method is to store all previous states of the stack to be able to search for errors. These states are stored in another stack
that we can call the “superstack”. The following superb drawing helps for understanding the structure:

33

163

Now, it is easy to check for errors in that structure:

In case there has been a push operation, the first stack of the superstack performs a pop operation and it is compared
with the second stack of the superstack. If they are the same, we assume that no error has happened.

In case of a pop operation, the previous value is added to the top stack in the superstack and then compared with the
second one.

As we can see, the push check is straightforward, but the pop check presents a small issue: the top stack does not know
which is the popped value (and we cannot just copy the top value of the second top stack). To solve this, we propose a
structure pair<stack<T>, optional<T>> for the entries of the superstack, instead of just stack<T>. In the case of a push
operation, the optional will take the nullopt value, while in the case of a pop operation, it will take the value of the
popped value. This structure also helps to detect if the performed operation was a push or pop very straightforwardly.
Moreover, the decision of using an optional here can be considered as an act of good will to promote the features of
C++ 17. Cool!

This process is repeated through the full stack until every stack is compared with the previous one. So far so good, but,
can we be completely sure that there have been no errors? Not really. What if several evil neutrons decide to team up
and corrupt the memory in the specific, following way?

2

164

Now we do not have any way of detecting that error. Except that we do have. We can consider the previous superstack
as an entry of a bigger superstack. In this way, if an army of evil neutrons decides to perform an all-out-attack over a
level 1 superstack, the errors can still be detected in the new level 2 superstack. The structure looks like this:

Checking the errors of a superstack of superstacks is even easier than the previous case. Since a superstack already
contains all previous states, there is no need to keep an optional value and the cases for push and pop works exactly in
the same way: a pop operation is performed over the top level 1 superstack of the level 2 superstack and the result is
compared with the second level 1 superstack.

However, we still need to perform the level 1 superstack check over the top level 1 superstack since there can be errors
that cannot be detected at level 2 but they can at level 1:

This is starting to look strong, but what if we want to keep some information for longer than what it takes a solar
mass black hole to fully evaporate via Hawking radiation? [20] Yes, you know where this is going. In general, we
define a level n superstack as a stack of level n-1 superstacks. Detecting an error in a level n superstack is done as
explained before: first check the level n superstack and then call the level n-1 checker over the top level n-1 superstack
recursively. The inception level n can be freely chosen and the structure is generated using a bit of magic template
metaprogramming, as you can see in the code [22].

3

165

One could argue that the more inception, the more it will increase the chances of an error happening, but since statistics
is a lie, nobody can really prove it.

4 Methodology

We have modeled the cosmic rays using a model that we call “Hand of God”. This advanced method consists on using
the debug functionalities of the compiler of your choice (Visual Studio 2017 in our case). We set a breakpoint and
change random values by hand.

It worked in every case.

5 Benchmarks

We prepared a benchmark that initialised a stack of depth k and performed on it n push operations. The results can be
found in the next graph:

The initial idea was to make longer benchmarks, unfortunately when attempting to do so the virtual machine in which
the code was running ran out of memory, thrashing started to happen and the virtual machine had to be force shut down.
For that reason, none of the benchmarks go over 3 seconds. Since this is a log-log graph, by looking at the slope of
the lines we can deduce easily that the time complexity of performing n operations on a recursive stack of depth k is
✓(nk+1). Since this is polynomial time, we can conclude that a mathematician in the wrong field computer scientists
will think this is efficient.

In order to better understand this phenomenon, we computed the actual number of elements these benchmarks were
producing:

4

166

As we can see, at least for levels of recursion of 1, 2 and 3, it is no surprise that the code will explode a virtual machine
with 4 GB of RAM assigned to it. As for levels 4, 5 and 6, we suspect that even though the number of elements stored
is smaller, there are a lot of smaller level stacks that are being memory aligned and wasting a lot of RAM this way.

By dividing the number of operations by the number of elements generated, we can compute the efficiency:

This result may look absolutely terrible for the untrained eye. However, one must remember that this is absolutely
necessary to protect against the evil army of cosmic rays that are out to get you and the correctness of your programs.

Special thanks to all the virtual machines that had to be force shut down. Your sacrifice shall not be forgotten.

6 Potential moral implications for saving erased data

Nobody cares.

7 Future work

Obvious future work includes implementing RLIRFO in languages such as Brainfuck, Unsafe Rust, Safe Rust, Piet and
Malbolge. Another imp ovement would be torfork an open source C compiler to use RLIRFO data structure instead of
LIFO in call stacks.

Also, in this paper we have talked about data structures that contain its past state. With a similar implementation
(probably) we could create data structures that contain themselves, and with that we could create a paradoxical data
structure [21] and crash the universe.

8 Conclusion

We have discussed a chaotic-good algorithm to detect errors in a stack that are caused by cosmic rays or other highly
probable causes. The data structure that we have discussed can be checked in github. The error detecting algorithm

5

167

was tested using the “Hand of God” method, yielding the expected results. We have also evaluated the performance of
the algorithm and concluded that computer scientists won’t find anything wrong with it. We expect this amazing data
structure to be used in the future in almost every device to avoid memory errors in a chaotic way.

Neutrons will not win this crusade.

References

[1] http://sigbovik.org

[2] Your Reality https://www.youtube.com/watch?v=CAL4WMpBNs0

[3] Big Bang https://en.wikipedia.org/wiki/Big_Bang

[4] https://en.wikiquote.org/wiki/The_Hitchhiker’s_Guide_to_the_Galaxy#Chapter_1

[5] Attack of the Cosmic Rays! https://blogs.oracle.com/linux/attack-of-the-cosmic-rays-v2

[6] Serious Computer Glitches Can Be Caused By Cosmic Rays https://science.slashdot.org/story/17/
02/19/2330251/serious-computer-glitches-can-be-caused-by-cosmic-rays

[7] Soft Errors https://en.wikipedia.org/wiki/Soft_error

[8] Single Event Upset https://en.wikipedia.org/wiki/Single_event_upset

[9] Do gamma rays from the sun really flip bits every once in a while? https://stackoverflow.com/a/4109288

[10] http://lambda-diode.com/opinion/ecc-memory

[11] T.J. O’Gorman The effect of cosmic rays on the soft error rate of a DRAM at ground level https://doi.org/
10.1109/16.278509

[12] Stack https://en.wikipedia.org/wiki/Stack_(abstract_data_type)

[13] Stack https://en.wikipedia.org/wiki/Stack_(C%2B%2B)

[14] Stack https://en.wikipedia.org/wiki/Stack_(mathematics)

[15] Learn to Stack https://youtu.be/Xqpf1FxU2q4?t=291

[16] What Is a Full Stack Developer https://www.youtube.com/watch?v=UtDpYVf9jKU

[17] List of data structures https://en.wikipedia.org/wiki/List_of_data_structures

[18] Double Byte Error Detecting Codes for Memory Systems https://doi.ieeecomputersociety.org/10.
1109/TC.1982.1676056

[19] Population dynamics https://wiki.puella-magi.net/Population_dynamics

[20] https://www.quora.com/How-long-would-it-take-for-an-Earth-mass-black-hole-to-evaporate-

due-to-Hawking-radiation

[21] https://en.wikipedia.org/wiki/Russell%27s_paradox

[22] RLIRFO https://github.com/juancarlosmv/RLIRFO

6

168

Measurement studies

34 Applications of Standard ML at Google

Andrew Benson

Keywords: SML, Standard ML, one-fifty, Harper, Google, software
engineering, programming languages

35 93% of paint splatters are valid Perl programs

Colin McMillen and Tim Toady

Keywords: perl, OCR, regret

36 A survey and projection of SIGBOVIK trends

Jenny H. Lin

Keywords: SIGBOVIK, self referential, “Figures”, join the committee

169

Applications of Standard ML at Google
Andrew Benson

Google
adbenson@google.com
Recitation Section SWE

Out: Sunday, March 3, 2019
Due: Monday, April 1, 2019 at 17:30 EST (?)

1: Abstract (15%)

We present a collection of Google projects using Standard ML, as well as lessons learned
while introducing SML engineering at Google.

Keywords: SML, Standard ML, 150, Harper, Google, software engineering, programming
languages

2: Introduction (50%)

Standard ML (commonly known as SML) is a general-purpose functional programming lan-
guage used primarily to instruct freshman computer science majors at specific Pittsburgh-
based universities. Among its key strengths are strong compile-time type-checking, Turing
completeness, and ability to compile to JavaScript1. The simplicity and beauty of algorithms
written in SML has won it a considerable fanbase concentrated along Forbes Avenue2, and
it doesn’t hurt that its syntax is easy to write operator and operand don’t agree [tycon mis-
match].

Google is an American software company headquartered in a really large number3. Product
domains of Google include search engines, self-driving engines, mobile operating systems,
stationary operating systems, big data, small data, and more. Since Google’s software
engineering is widely considered to be of high caliber, it is clear that CS students at Carnegie
Mellon could learn a lot about how to write production-ready and scalable SML from a study
of existing uses of it within Google.

We present an overview of each and every product at Google utilizing SML, the benefits we
reaped during the transition to SML, and advice from seasoned SML engineers at Google.

3: Each And Every Application Of Standard ML At Google, All Benefits Reaped
During All Transitions We Made To Standard ML, And Advice From All Of Our
Seasoned Standard ML Engineers at Google (0%)

4: Future Work (20%)

We know for a fact that for every application, benefit, or piece of advice given in the last

1

34

170

Apps of SML at Google 15-150 SIGBOVIK 2019
Andrew Benson

adbenson@google.com

section, the reader gained a lot of knowledge. As a result, we are considering studying the use
within Google source code of another concept taught to freshman computer science majors at
specific Pittsburgh-based universities: dynamically checked contracts, such as preconditions
and postconditions. The author has personally written contracts4 in production Java code
running on Google Search, so we expect the results of such as study to be enlightening.

5: Notes (8%)

The author would like to note that SML is an ambiguous acronym, and Google is very much
interested in Standard Machine Learning, Supervised Machine Learning, etc.

The author does like SML andalso prefers OCaml.

6: References (7%)

[1]: https://www.smlserver.org/smltojs/

[2]: Coincidentally, Carnegie Mellon University’s canonical address is 5000 Forbes Ave.

[3]: 1010
100

[4]: https://github.com/google/guava/wiki/PreconditionsExplained

2

171

CONFIDENTIAL COMMITTEE MATERIALS

SIGBOVIK 2019 Paper Review

Paper 19: Applications of
Standard ML at Google

Stefan Muller
Former 15-150 Instructor
Expensive Building, Forbes Avenue
Rating: 42.0
Confidence: val it = 42.0 : real

This paper gives an excellent summary of the many benefits of Standard ML, a strongly-typed, us-

able, production-quality language, as well as a number1 of applications of it in practice in Google,

a reasonably extensive search engine codebase developed by researchers at Stanford.

I agree with the author that the publication of this study could be a great learning experience to CS

students at Carnegie Mellon, as well as a number of other universities that make extensive use of

Standard ML2.

As future work, the author may wish to consider even further expanding the use of Standard ML

at Google. Its strong abstraction properties, for example, could be useful to help Google avoid the

privacy issues that have plagued other tech companies in recent days. Consider the code on the

following page.

1zero is a number
2zero is a number

172

1 signature User =

2 sig

3 val name : string

4 val age : int

5 val interests : string list

6 val docs : string list

7 val sheets : string Array.array Array.array list

8 val search_history : string list

9 val emails : string list

10 val contacts : (string * int) list

11 end

12

13 signature AdUser =

14 sig

15 (* All the info I want Google to give to advertisers *)

16 end

17

18 structure Me :> AdUser =

19 struct

20 ...

21 end

22

23

24 functor Ads (U : AdUser) =

25 struct

26 ...

27 end

Conflict of interest disclosure: The reviewer, while generally distrustful of Big Tech, uses Google

products when necessary (read: always).

173

93% of Paint Splatters are Valid Perl Programs
Colin McMillen and Tim Toady

twitter.com/mcmillen & famicol.in/sigbovik

Abstract

In this paper, we aim to answer a
long-standing open problem in the 1

programming languages community: is it
possible to smear paint on the wall
without creating valid Perl?

We answer this question in the
affirmative: it is possible to smear paint
on the wall without creating a valid Perl
program. We employ an empirical
approach which finds that merely 93%
of paint splatters parse as valid Perl. We
analyze the properties of paint-splatter
Perl programs, and present seven
examples of paint splatters which are
not valid Perl programs.

Background

In a February 2019 Twitter conversation,
Adrienne Porter Felt expressed a desire
for her kid to smear paint on the wall
instead of learning vocational skills such
as computer programming [1]. In
response, Jake Archibald posed the
question which forms the basis of this
research: <is it possible to smear paint on
the wall without creating valid Perl?= [2]

While many PL researchers have (often
derogatory) folk beliefs about the Perl
programming language, the language
itself has not been the subject of much
formal academic inquiry. One exception
is Jeffrey Kegler’s proof that the Perl
programming language is undecidable

1 By <long-standing=, we mean <for roughly a
month or so=.

[3], often summarized with the maxim
<only perl can parse Perl=.

Another maxim of the Perl community is
<There Is More Than One Way to Do It.= 2

Despite the popularity of this maxim in
the Perl community, the authors are not
aware of any professional Perl engineers
whose development practices involve
smearing paint on walls.

We thus believe that we are the first
researchers in academia or industry to
directly address the question of whether
paint splatters are valid Perl programs.

Experimental Setup

Our approach to answering this question
is an empirical one. Given an input
image, we run optical character
recognition (OCR) software on that
image to extract candidate text. As
previously mentioned, the question <is
this string valid Perl?= is theoretically
undecidable; we therefore fed the
extracted text into the perl executable
(version 5.26.1) to check whether the
OCR’d string corresponded to a valid Perl
program.

We are not aware of the existence of any
standard paint-splatter datasets in the
object recognition or OCR communities.
Also, ImageNet’s website was down on

2 Often pronounced <Tim Toady=; hence the
name of the fictional second author of this paper.
(Like many researchers, we collaborate with
other authors primarily so that our use of the
royal <we= doesn’t come across as pretentious.)

The authors assure us the materials will be available “soon” from: http://famicol.in/sigbovik

35

174

http://famicol.in/sigbovik

the day that we decided to perform this
research. We therefore paid an
unemployed person to download 100 3

examples of paint-splatter artwork by
searching Pinterest using the query
<paint splatter wallpaper= .

We manually filtered out all images with
any form of overlaid or watermarked
synthetic text, because the Perl program
(?) <iStock by Getty Images= is not
particularly interesting.

The resulting 100 images are shown in
Figure 1, and are also available online as
supplementary material to this paper
(see the Addendix).

Figure 1. Paint-splatter image dataset.

3 The first author.

To perform OCR on the input images, we
used the Tesseract OCR engine (version
4.0.0-beta.1) [4]. Tesseract is an
open-source OCR library that provides
two separate algorithms for optical
character recognition: a <legacy= engine
that uses traditional OCR techniques, and
a newer engine based on LSTM models.
Tesseract also provides a third OCR
engine which somehow combines the
two. Unfortunately, the documentation
does not describe this mode in detail, but
we chose to make use of it anyways.

Additionally, Tesseract provides multiple
algorithms for performing page
segmentation. For example, page
segmentation mode #4 assumes that the
page consists of a single (possibly
multiline) column of text; mode #7 treats
the image as a single line of text.

It is possible to configure Tesseract’s
legacy OCR engine with a list of allowed
characters expected to be in the input
alphabet. Since Perl programs mostly
consist of the printable subset of ASCII,
we restricted the OCR engine alphabet to
ASCII characters in the range [32, 127).
Tesseract’s newer LSTM-based engine
doesn’t appear support this sort of
configuration. We also disabled features 4

related to language modeling where
possible (for example, penalties for
<words= that are not found in the English
dictionary).

It was unclear to the authors which OCR
engine and page segmentation modes
would best correspond to <splats of paint

4 Apparently in the brave new world of neural
nets, Anything Goes™ (except for the ability to
configure things.)

The authors assure us the materials will be available “soon” from: http://famicol.in/sigbovik

175

http://famicol.in/sigbovik

that might parse as valid Perl programs=.
Therefore, for each image, we tried all
combinations of the 3 OCR engines and 4
of the 14 different page segmentation
modes (modes #4, #7, #8, and #9) to
determine which configuration was the
most fruitful for producing a valid Perl
program out of that specific image.

This <try multiple algorithms until one of
them happens to work= approach is
profoundly unethical — especially since
we don’t have separate training, test, and
validation sets — but at least we’re being
honest about what we’re doing, instead
of inventing a fancy-but-obfuscatory
technical term like <ensemble methods=
or <hyperparameter tuning=.

Results

The main result of this paper is that 93 of
100 images in our dataset successfully
parsed as valid Perl programs under at
least one combination of Tesseract OCR
engine & page segmentation mode. (It is
worth explicitly noting that we only
considered non-empty Perl programs as
successes.)

The most fruitful single combination of
parameters is provided by the LSTM
engine using page segmentation mode 9,
which successfully produces valid Perl
programs out of 55% of paint splatters.

The pure LSTM approach was the most
successful of the three OCR engines, with
74% of input images successfully parsing
as Perl under at least one of the four
page segmentation modes. The legacy
OCR engine succeeded in finding valid
Perl programs on 62% of images, while

the combination legacy+LSTM engine
succeeded merely 40% of the time. It is
unclear why the combination of the two
OCR algorithms would be significantly
worse at recognizing valid Perl programs
than each OCR algorithm on its own.

Discussion & Analysis

While we successfully found valid Perl
programs in 93 of 100 input images, all
of these programs are uninteresting;
they don’t actually seem to do anything
when executed. However, some of them
do evaluate to a value, which is then
discarded without being displayed. [5]

We therefore passed each valid program
into Perl’s eval() function and printed
out the result of evaluating it. Many of
these are simple integer literals. Figure 2
shows an input image which is read by
OCR as the string <35= , which evaluates
to the number 35 when parsed by Perl.

Figure 2. If you squint, you can see the
number 35 .

The authors assure us the materials will be available “soon” from: http://famicol.in/sigbovik

176

http://famicol.in/sigbovik

Figure − 3 shows a somewhat more
interesting case. This input image is read
by OCR as the string <- 3= , which
evaluates to the number − 3 when parsed
by Perl.

Figure − 3. − 3 .

In all, the dataset contains 20 images
which can be parsed as numeric literals.
An interesting thing about these images
is that they’re not particularly
Perl-specific; for example, the program
shown in Figure − 3 also evaluates as the
number − 3 in Python (and presumably
several other programming languages.)

− 3 is the smallest number resulting from
the output of our valid Perl programs;
the program which evaluates to the
largest number is shown in Figure 4.

Figure 4. The valid Perl program
<225252= , which evaluates to 225252 .

The remainder of the valid Perl
programs are mostly valid due to a Perl
language feature that is not commonly
present in most programming languages.
Namely, Perl has a feature called
<unquoted strings=, in which a sequence
of alphanumeric characters by itself is
parsed as though it were a quoted string.
As an example, Figure 5 is read by OCR
as the text ME , which evaluates to the
string <ME= even though the ME isn’t
quoted. This would result in a syntax
error in most other programming
languages.

The authors assure us the materials will be available “soon” from: http://famicol.in/sigbovik

177

http://famicol.in/sigbovik

Figure 5. It ME .

Figure 6 represents the string
<gggijgziifiiffif= , which by pure
coincidence happens to accurately
represent the authors’ verbal reaction
upon learning that <unquoted strings=
were a feature intentionally included in
the Perl language. 5

Figure 6. gggijgziifiiffif !

5 This feature does enable a neat quine: the Perl
program < Illegal division by zero at
/tmp/quine.pl line 1. =, when saved in the
appropriate location, outputs < Illegal
division by zero at /tmp/quine.pl
line 1.= The reason for this behavior is left as
an exercise for the reader.

(To be fair to Perl, when perl is run with
the -w flag to enable warnings, it does
helpfully inform the user that at some
point in the future, the Perl developers
will most likely pick gggijgziifiiffif
as a new reserved word:

Unquoted string
"gggijgziifiiffif" may clash
with future reserved word at -
line 1.)

Another interesting case is presented in
Figure 7. This image represents the
source code <;= which is non-empty, but
which is just a statement separator that
does not evaluate to anything.

Figure 7. A statement of no purpose.

The authors assure us the materials will be available “soon” from: http://famicol.in/sigbovik

178

http://famicol.in/sigbovik

The Rogue’s Gallery

At this point, we would not blame the
reader for sympathizing with Jake
Archibald’s conjecture that all paint
splatters are in fact valid Perl programs.
Perhaps Adrienne’s kid is doomed to
accidentally write valid Perl even when
just trying to smear some paint around
at random. Here we finally present some
counterexamples: the seven images in
our dataset which do not, under any OCR
interpretation, parse as valid Perl.

Figure 8 presents a splatter which is read
by OCR as any of the following strings:

● fifi;%:'i1i:
● .%f:
● &
● i;%:’;;:

Surprisingly, none of these strings
represent valid Perl programs.

Figure 8. Not valid Perl. Obviously.

For completeness, we present the other
six such images as Figure 9.

Figure 9. Finally, we are free of the
tyranny of accidentally writing valid Perl
programs. These are the sorts of paint
splatters one might want one’s child to
produce when they’re just having fun.

The authors assure us the materials will be available “soon” from: http://famicol.in/sigbovik

179

http://famicol.in/sigbovik

Woomy?!?

Fans of the Splatoon video game series
will naturally be wondering whether the
<splats= in Nintendo’s official game
artwork are also valid Perl programs.
Our preliminary answer is yes : the
image in Figure 10, downloaded from
Nintendo’s official Splatoon website [6],
successfully parses as a valid Perl
program.

Figure 10. Splat splat splat… woomy?

Given Nintendo’s family-friendly image,
the authors were surprised to find out
that the source code that results from
OCR’ing this image is somewhat NSFW. 6

We thus we elide it here, for the sake of
SIGBOVIK’s younger readers.

Future Work

While the results presented in this paper
are novel and important, they only begin
to break ground on what could be a very
fruitful area of further research.

6 Really, it’s Perl itself that’s most unsafe for
work.

The dataset used in this paper is a
relatively small dataset of only 100
paint-splatter images. It would be good
to confirm these results on a larger
dataset, and with a greater variety of
images. Perhaps next time ImageNet
won’t be down.

We also noticed far too late that while
the original question referred to paint
smears , we elected to search Pinterest
only for paint splatters . It is unclear at
whether these results would change
significantly for paint splatters vs. paint
smears.

Similarly, our choice to select images
from Pinterest ensured that they were
reasonably high-quality paint splatters,
as at least one Pinterest user had chosen
to <pin= that image as something worth
saving for later. It would be worth
investigating whether amateurish,
lower-quality paint splatters — such as
those produced by a young child — are
less likely to be parsed as valid Perl
programs.

After downloading the 100 images used
in our dataset, Pinterest somehow
inferred that the authors of this paper
might be interested in images of
<swimwear trends=. We have not yet
investigated whether 2019’s latest
swimwear trends are more or less likely
to parse as valid Perl programs.

The authors assure us the materials will be available “soon” from: http://famicol.in/sigbovik

180

http://famicol.in/sigbovik

Addendix

The source code for the research
presented in this paper, as well as the
full dataset of 100 paint-splatter images
& the result of evaluating each, will soon
be available at http://famicol.in/sigbovik .

References

[1] Adrienne Porter Felt.
https://twitter.com/__apf__/status/109569
8777300586496 .

[2] Jake Archibald.
https://twitter.com/jaffathecake/status/10
95706032448393217 .

[3] Jeffrey Kegler. <Perl Is Undecidable=.
The Perl Review, Volume 5, Issue 0, Fall
2008, pp. 7-11. Available online at
http://www.jeffreykegler.com/Home/perl
-and-undecidability .

[4] Tesseract Open Source OCR Engine.
https://github.com/tesseract-ocr/tesseract

[5] Patrician|Away and bovril ,
personal correspondence. Recorded at
http://bash.org/?240849 .

[6] Splatoon 2 amiibo™ home page.
https://splatoon.nintendo.com/amiibo/ .

The authors assure us the materials will be available “soon” from: http://famicol.in/sigbovik

181

http://famicol.in/sigbovik

A Survey and Projection of SIGBOVIK Trends

Jenny H. Lin
jennylin@andrew.cmu.edu

ABSTRACT

SIGBOVIK is a prestigious conference with a long history of out-

standing research with at least token jokey content in a non-zero

number of axes. Yet to take for granted continued future excellence

is the height of folly. This paper seeks to document trends of SIG-

BOVIK past in hopes of guiding future members of the organizing

committee as well as any other potential joke conferences. It in-

cludes several graphs, tables, and even a survey of several past

general chairs. It also attempts to recruit 2020’s general chair, since

by tradition no one person may chair SIGBOVIK twice. So join the

SIGBOVIK organizing committee! That’s right you! I’m talking to

you! Don’t just skip past the rest of the abstract and go look at the

�gures this is important SIGBOVIK can’t continue without your

support make sure to email the org-list and— hey!

KEYWORDS

SIGBOVIK, self referential, "Figures", join the committee

ACM Reference Format:

Jenny H. Lin. 2019. A Survey and Projection of SIGBOVIK Trends. In BOVIK

’19: ACM Symposium on Computational Heresy, April 1, 2019, Pittsburgh, PA.

ACM, New York, NY, USA, 4 pages. https://doi.org/notrealdontclick

1 INTRODUCTION

SIGBOVIK is a conference on humorous research that, as of this

paper’s writing, is celebrating its 13th year of continuous publica-

tion. While it does not claim to be the �rst or the best or the longest

running joke conference1, it does claim to be older than at least one

joke conference [1]. This paper thus serves as one part statistical

analysis, one style guide for future joke conferences, BOVIK or

otherwise, with a dash of recruitment for future SIGBOVIX. Con-

tact sigbovik@gmail.com today to join the organizing committee.

Mention this paper and get ϵ% o� your next proceedings purchase

today.

2 PRIOR WORK

Previous SIGBOVIKMessages from the Organizing Committee have

included analysis of trends such as paper distribution across the

four quadrants [2], and acceptance rate [3]. However, none of these

were actual papers, so they don’t count. Furthermore this is the

�rst work to include a survey of SIGBOVIK experts; after all, who

is more quali�ed to ponti�cate about the future of the conference

than those who have lead it in the past? Probably the people who

execute the actual drudgery of executing the conference, but there

is some overlap so we’re probably still �ne [�gure 1].

1mostly because the author does not feel like verifying or disproving such claims

SIGBOVIK ’19, April 1, 2019, Pittsburgh, PA

2019. ACM ISBN 000. . . $0.00
https://doi.org/notrealdontclick

Figure 1: A venn diagram of SIGBOVIK general chairs and

people who actually contribute to making the conference

happen. A non-zero number of people from the intersection

were included in the survey

3 PAPERS

The piece de resistance of any conference is its papers, and SIG-

BOVIK has had a lot of them. 371, to be exact. However, it is well

understood that the true measure of a paper’s merit is its number

of words. How loquacious are SIGBOVIK papers? The answer is

quite garrulous indeed, especially if you don’t even bother trying

to �lter out the weirder bits. Most importantly, 2019 has the most

words of all [�gure 2].

Figure 2: An overall wordcount of SIGBOVIK proceedings

over the years, with 2019 as the clear winner.

In addition, �gures are known to contain at least a thousand

words. However, distinguishing �gures from various images, comics,

and other incidental graphics that have appeared in SIGBOVIK is

di�cult. Thus we instead we count the number of times the word

"Figure" appears in the proceedings instead. As one might "Figure",

36

182

SIGBOVIK ’19, April 1, 2019, Pi�sburgh, PA

it appears a lot, and it appears the most in 2019. The 2019 pro-

ceedings also have the most pages2. In fact, it has almost as many

pages as it does "Figure"s. One might say, a "Figure" for every page

[�gure 3].

Figure 3: A graph of "Figure" and page counts, with 2019 as

the even clearer winner.

Of further interest is seeing the distribution of papers across

the four quadrants of research: Humorous treatment of humorous

ideas, humorous treatment of serious ideas, serious treatment of

humorous ideas, and technically not supposed to be in this con-

ference but we’ll take it anyways (henceforth known as “Other”).

Fortunately, this process is quite trivial and well documented in pre-

vious proceedings [?]. Thus it is left as an exercise for the reader to

distribute the papers, perhaps by using a number 2 pencil [table 1].

4 DATES

The word date has many de�nitions, including: the brown, oblong

edible fruit of a palm (Phoenix dactylifera); a social engagement

between two persons that often has a romantic character; and the

time at which an event occurs [7]. Though SIGBOVIK has papers

on both fruit [8] and romance [4–6], this section will focus solely on

the third de�nition, leaving all fruit and/or love surveys for future

work.

It has been oft said that the traditional date for the conference is

April 1st. Indeed, looking at the distribution of dates, we can see

the highest peak on April 1st [�gure 4]. That said, the conference

has fallen on di�erent days before, mostly out of respect of various

spring holidays and/or annoyance with con�icting events. Thus

it is up to the organizing committee’s discretion to choose the

conference date, so long as they continue to keep the conference

date in April. SIGBOVIK only ever happens in April.

It is a longstanding tradition for SIGBOVIK to include three dead-

line dates: an initial deadline, an extension, and a �nal extension,

for all the procrastinators. But how longstanding is longstanding?

A look into the �rst SIGBOVIK webpage (2007) reveals no mention

of any deadline extensions. Instead, their list of dates only include

an "Author Noti�cation" date (March 15) and Final Abstract due

2The observant might notice 2008 missing from these plots. Rest assured the Associa-
tion for Computational Heresy is working tirelessly to rescue the 2008 proceedings
from the glitch in space-time, and it would have lost at all these statistics anyways

Figure 4: A Bar chart of conference dates stdev = 2.1.

date (March 30). This quickly fell out of practice, as SIGBOVIK is

so prestigious that all submissions are of top quality and the author

noti�cation is almost always "accepted"3, and needing to put to-

gether the proceedings in two days must have sucked. In 2008, we

see mention of a "Next SIGBOVIK paper submission deadline" and

"Probably the last SIGBOVIK paper submission deadline", implying

at least three deadlines occurred in 2008. Unfortunately, there is no

mention of any earlier deadlines. From 2009 onwards, the existence

of the SIGBOVIK-announce mailing list combined with the websites

made it relatively straightforward to acquire the deadlines, though

some years neglected to mention their initial deadlines even in their

initial call for papers [�gure 5].

Figure 5: A (dead)line graph of all the initial, extended, and

�nal deadlines. Note the limited edition "author noti�ca-

tion" and "abstract deadline" deadlines, found only in 2007.

5 PROCEEDINGS

After the �nal deadline but before the conference date, papers

are scrupulously reviewed and then accepted. Acceptance rates

historically have fallen in the range [ϵ, 100], inclusive. Accepted

papers are then divided into tracks [�gure 6]. Note the multiple

3except when it is rejected, see SIGBOVIK 2017

183

A Survey and Projection of SIGBOVIK Trends SIGBOVIK ’19, April 1, 2019, Pi�sburgh, PA

Table 1: Breakdown of SIGBOVIK papers across quadrants

2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019

Humorous Treatment

of Humorous Ideas

Humorous Treatment

of Serious Ideas

Serious Treatment of

Humorous Ideas

Other

discontinuities (due to a combination of space-time disruptions

and non-numerical tracks), which make the track number function

nondi�erentiable. This is probably why the proceeding’s chair is

having a harder and harder time binning the papers (see: chess).

The bound copies of the proceedings all have covers which in-

clude at least one color. Some covers even have more than one

color. If we consider the distribution of cover colors 7, we see that

there are large amounts of green (23.1%), periwinkle (20.2%), and

faces(14%). Hence a representative cover would contain all three.

However, SIGBOVIK is a conference welcoming of all colors, and

far be it for us to restrict the cover artist from drawing as they

please, mostly when their o�ce is right next to the author’s. Nice

job with 2019’s cover by the way!

Figure 6: A log scale line graph (not area graph) of number

of tracks and number of submissions.

6 WEBSITE

All the SIGBOVIK websites are good, but 2019’s is the best. It has

the most pages, and even if it didn’t it would still objectively be the

best because it just is. Citation not needed.

7 CHAIRS

Approximately twelve hours before the 2019 �nal deadline, the

author thought it would be fun to write a survey and send it to past,

present, and (one) future chair). Of the fourteen contacted chairs,

eight responded. All survey questions were optional, and thus not

all questions have the same number of responses.

Figure 7: A pie chart of all the SIGBOVIK covers, even ones

that no longer exist in this timeline

To get the participants familiar with the survey interface, they

were asked a series of questions related to SIGBOVIK (See appendix).

They were also quizzed on the name of 2007’s general chair. Of note

is that all the participants got the answer wrong; the answer is not

"Before my time", "Θ(Tom7)", or "me and jason", it is the de�nitely

non-�ctional Red Franz, as can be seen on 2007’s website.

It is known that all the SIGBOVIK chairs are really cool people,

however, the coolness of 2020’s chair is yet unknown. Participants

were thus asked for the coolness rating of 2020’s chair [�gure 8].

One out of seven participants gave the 2020 chair a �ve star coolness

rating. The remaining six were split between a three star rating

(but of the michelin kind) and a −35C windchill rating. Thus the

2020 chair will likely be highly rated among restaurants while also

carrying signi�cant risk of frostbite. That said, 2020’s chair will not

be "Coolest of them all", a title which presumably belongs to some

other chair. Followup work may be required to investigate who is

the actual coolest.

Participants were also asked to rate the ergonomicity of all other

chairs, including the 2020 chair, on a scale from 0 to 7. However, on

further re�ection, the author realized publishing this data might

cause extreme Drama, as ergonomics is very serious business. Thus

the only data published shall be that the 2020 chair has a projected

ergonomicity of 4.25.

184

SIGBOVIK ’19, April 1, 2019, Pi�sburgh, PA

Figure 8: A pie chart of the 2020 chair’s projected coolness.

8 CONCLUSION

SIGBOVIK is a really great conference and y’all better help with

future proceedings or I’ll be upset. 2019 was a great year

ACKNOWLEDGMENTS

Sol I owe you one drawing of a twenty dollar bill.

REFERENCES
[1] [n. d.]. AHAHA 2019.
[2] 2014. SIGBOVIK 2014 Message From the Organizing Committee.
[3] 2014. SIGBOVIK 2017 Message From the Organizing Committee.

[4] Rose Bohrer. 2017. Call For Partners: Romance with rigor. In Proceedings of the
11th. ACM SIGBOVIK symposium on Principles of Programming Languages. 28–33.

[5] Rowan Copley. 2017. Towards A Well-Defined and Secure Flirtation Protocol. In
Proceedings of the 11th. ACM SIGBOVIK symposium on Principles of Programming
Languages. 15–21.

[6] Nicolas Feltman. 2013. Optimal Coupling and Gaybies. In Proceedings of the 7th.
ACM SIGBOVIK symposium on Principles of Programming Languages. 54–58.

[7] Merriam-Webster. 2019. date. https://www.merriam-webster.com/dictionary/date
[8] Aidan Gomez Nick Frosst. 2019. Towards Automatic Low Hanging Fruit Identifi-

cation For the Steering of ML Research. In Proceedings of the 13th. ACM SIGBOVIK
symposium on Principles of Programming Languages. 81–84.

SURVEY RESPONSES

185

186

Back to the future

37 Need more RAM? Just invent time travel!

Robert Andrews, Mitchell Jones, Patrick Lin, and the UIUC Theory CS Group

Keywords: complexity, Turing machine, time travel

38 WICCAN: (deep) learning directly from the future

Amanda Coston and Alan Mishler

Keywords: deep learning, data-free, dark arts

39 On CLI-based Renderers: In which we investigate the utility
of rendering teapots in a command line

Michael Sandler

Keywords: teapot, render, speed and performance, command-line
interface, CLI, graphics

40 SpaceF

Oscar Hernandez and The Space Invaders

Keywords: space, invasion, moonshot, government, #yeswecan-
dotherightthingandnotgotospace, extraterrestrial intelligence,
National Rifle Association, cheese, George Mallary

187

Need more RAM? Just invent time travel!

Robert Andrews∗1, Mitchell Jones∗1, Patrick Lin∗1, and the UIUC Theory CS Group†1

1Department of Computer Science, University of Illinois at Urbana-Champaign, IL, USA.

April 1, 2019

Abstract

This paper is an example of what happens when a bunch of theory students procrastinate.

1 Introduction

Since the introduction of the Turing machine by Alan Turing, there has been an uncountable amount
of literature studying these machines. In addition, there are many variations of Turing machines and
computational models, such as non-determinism, non-uniform computation and circuit complexity,
and interactive proofs. In this paper, we introduce a new type of Turing machine—what we call a
Time Traveling Turing machine, also known as a TM™. We note that the notion of time travel in
computing has been studied before (of course in a much more formal and rigorous setting) [1].

In the following sections we: (i) formally define such a time traveling machine, (ii) define a
new collection of complexity classes, whose languages are recognized by Time Traveling Turing
machines, and (iii) relate these classes to classical complexity classes.

2 Motivation

On the eve of October 31st 2018, Alan Turing, then 27 years of age, was sitting in a dimly lit room,
scrawling many equations on various pieces of paper around his room. He sat back in his chair as
he tried to slowly verify his calculations in excitement. He had just invented time travel. What he
called a Time Traveling Turing machine. In his haste, he quickly built the machine the next day,
November 1st. As he stepped into the machine, he began to feel the machine shake and rumble.
In the last second before the time travel began, the machine code su↵ered from a segfault, and
Turing traveling back in time to September 1st, 1939. Turing soon after failed to build a machine
which would send him back to the future, and was stuck in this period of time forever. Of course,
as we now know, Turing was soon recruited to Bletchly Park. The technology at the time was not
powerful enough to build any sort of sophisticated Turing machine. His discovery of time travel
was lost, and whenever he tried to share his discoveries after the war, people simply did not listen,
dismissing his ideas as infeasible. Turing realized he would never return back to 2018.

∗{rgandre2, mfjones2, plin15}@illinois.edu
†https://publish.illinois.edu/theory-cs/

1

37

188

A few months after this event, unbeknownst to all, some students from UIUC stumbled upon
scraps of Turing’s calculations on that spooky evening of 2018. In this paper we attempt to relay
to you some of the ideas and proofs that Turing had.

3 Formal definition

A Time Traveling Turing machine, or to introduce as much ambiguity as possible, abbreviated as
TM, is a regular deterministic Turing machine with the following additional feature: At any point
during computation, the TM can enter a special time travel state . On entering this state, the
machine is allowed to write a(n) bits (where n is the length of the original input) onto a special
advice tape. The machine then teleports back in time, restarting computation from scratch: it
begins in the start state, and the original input of length n is on the work tape. The key di↵erence
is that through the magic of time travel, the TM now has access to an additional advice tape with
a(n) bits, which was sent into the past mysteriously from its future self.

Formally, a language L belongs to the class TIMEYWIMEY[a(n), t(n)] if there exists a Time
Traveling Turing machine TM such that on input x:

1. After at most t(n) steps from the start state, the machine either halts (and correctly decides
if x 2 L or x 62 L) or must travel back in time by entering the time travel state .

2. Each time the TM time travels back, it can write at most a(n) bits of information onto the
advice tape for its past self.

Note that there is no restriction on the number of times a TM can travel back in time, only on
how much information can be sent back to its past self.

4 Results

In this section we show how the class of languages recognized by Time Traveling Turing machines
with a(n) advice and t(n) time relate to more traditional time and space-complexity classes. We also
show that both adding randomness and non-determinism does not give TM accepting a language
in TIMEYWIMEY[poly(n), poly(n)] more computational power.

Theorem 1. Let a : N ! N and t : N ! N be time-constructible functions. Then,

TIMEYWIMEY[a(n), t(n)] ✓ SPACE[a(n) + t(n)] ✓ TIMEYWIMEY[a(n) + t(n), a(n) + t(n) +O(1)] .

Proof. We begin by proving the first containment. Let L 2 TIMEYWIMEY[a(n), t(n)] be an arbi-
trary language and N be a TM deciding L. We design a regular Turing machine M deciding L

using a(n) + t(n) space. The machine M starts by copying the input onto a new work tape. Then
M simulates N as normal. Any time N enters the state , M writes the advice tape onto its work
tape according to N , M then clears the contents of its work tape (except for the advice string).
Finally, M writes the contents of the original input back onto the work tape, along with the advice
string, and resumes computation of N as if a time travel step had occurred. Clearly M only ever
uses at most a(n) + t(n) space, since the length of the advice tape is a(n), and N only ever writes
at most t(n) bits onto its tape before entering .

2

189

For the second containment, let L 2 SPACE[a(n) + t(n)] and M be a regular Turing machine
deciding L in space a(n)+t(n). Consider the following TMN . On input x, N simulatesM for a(n)+
t(n) steps. It then writes the contents of its tape (which is of size a(n)+t(n)), current position of the
head, and the state of M onto the advice tape (which requires an additional O(1) space, where the
hidden constant depends on M). Then N invokes the special state to teleport back to its original
state, now with access to its advice tape. If the advice tape is non-empty, N copies the advice tape
onto the work tape, and restores its configuration. It then continues simulating M in this way until
M halts and return an answer. Thus L 2 TIMEYWIMEY[a(n) + t(n), a(n) + t(n) +O(1)].

We can obtain the following corollaries by setting parameters in Theorem 1.

Corollary 2. TIMEYWIMEY[poly(n), poly(n)] :=
S

c2N
TIMEYWIMEY[nc, nc] = PSPACE.1

Corollary 3. TIMEYWIMEY[O(log(n)), O(log(n))] = L.

We now show the relation between TIMEYWIMEY[a(n), t(n)] and time-complexity classes.

Theorem 4. Let a : N ! N and t : N ! N be time-constructible functions. Then,

1. TIME[t(n)] ✓ TIMEYWIMEY[0, t(n)], and

2. TIMEYWIMEY[a(n), t(n)] ✓ TIME
⇥

2O(a(n))t(n)
⇤

.

Proof. The first statement follows easily from the definitions, since any Time Traveling Turing
machine can choose to never time travel.

As for the second statement, let L 2 TIMEYWIMEY[a(n), t(n)] and let N be a TM deciding
L. We can simulate N by a standard Turing machine M that exactly mimics the behavior of N .
The machine N runs for at most t(n) steps before time traveling, so to show M runs in the desired
time, all we need to do is show that N travels back in time at most 2O(a(n)) times.

Fix some string x as input to N . Consider the set of possible advice tape contents, which are
(without loss of generality) strings in {0, 1,⇤}a(n) where ⇤ is the blank symbol. We can build a
directed graph Gx on this set by adding an edge from w to z if, starting on input x and advice
contents w, the advice tape contains z when N next enters the state. As N is deterministic, every
vertex of Gx has outdegree at most 1. Moreover, since N must halt, the subgraph reachable from
⇤

a(n) (i.e., the initial advice tape contents) must be acyclic, as otherwise N would enter an infinite
loop. This implies the subgraph reachable from ⇤

a(n) is a path of size at most 3a(n) = 2O(a(n)).
Thus N travels back in time at most 2O(a(n)) times, so M runs in 2O(a(n))t(n) time total. The result
follows.

One immediate corollary of the above Theorem is the following characterization of the class P.

Corollary 5. P ✓ TIMEYWIMEY[0, poly(n)] ✓ TIMEYWIMEY[O(log n), poly(n)] ✓ P.

1Additionally, it is well known that IP = PSPACE. Therefore TIMEYWIMEY[poly(n), poly(n)] = IP. If the reader
is still wondering why our model of computation should be taken somewhat-seriously, we remark that it is no less
ridiculous than assuming access to an “all-powerful” prover, as in the IP model.

3

190

4.1 Does adding randomness give any more power?

Suppose a TM recognizing a language L 2 TIMEYWIMEY[poly(n), poly(n)] now also had access to
a random string of r with |r| = poly(n) bits. Specifically, every time the machine travels back in
time, it receives the same set of random bits r as it did in all previous time periods. Put di↵erently,
it does not get a new sequence of r random bits every time it travels back. We say that such a
random TM N accepts a language L, if for all x 2 L, N accepts x with probability at least 2/3
over the random choice of r. If x 62 L, N accepts x with probability at most 1/3.

Theorem 6. Suppose N is a randomized TM with access to a random string r of poly(n) bits.
Then every such TM can be simulated by a deterministic TM M .

Proof. The idea is that M will maintain two pieces of information on its advice tape at all times:
(i) the current guess of the random string r, (ii) the number times the machine N has accepted
a string x when simulated with the string r as its “random” input. Both of these strings are of
poly(n) size. After M has simulated N on all possible choices for r, it then outputs whether or not
x was accepted by N by counting the number of times N accepted x with the string r fed to N by
M .

4.2 What about Non-determinism?

A language L is in NTIMEYWIMEY[a(n), t(n)] if there exists a non-deterministic TM M which
always writes at most a(n) bits on its advice tape, and between time periods, can only execute,
non-deterministically, t(n) of steps before time traveling back. Following Theorem 1, it is not
hard to show that a similar Theorem holds if the Time Traveling Turing machine is allowed to act
non-deterministically.

Lemma 7.

NTIMEYWIMEY[a(n), t(n)] ✓ NSPACE[a(n) + t(n)] ✓ NTIMEYWIMEY[a(n) + t(n), a(n) + t(n) +O(1)] .

A consequence of Savitch’s theorem is that PSPACE = NPSPACE. Hence via transitivity, we
conclude that non-determinism does not buy you any extra power when you have access to time
travel.

Corollary 8. TIMEYWIMEY[poly(n), poly(n)] = NTIMEYWIMEY[poly(n), poly(n)] .

4.3 Ok, what about if the TM also has access to some kind of oracle?

“Hmm...”, the authors think slowly about this for a few seconds. After what seemed like an
excruciating amount of silence, one of us blurts out thoughtlessly “Wait, what’s that over there?!
Look behind you!” As you turn around, we quickly hop into our DeLorean and zoom away.

5 Open problems

As pointed out, it is open whether or not having access to an oracle buys you any additional
computational power. Additionally, does this newly introduced class TIMEYWIMEY[a(n), t(n)]
provide other characterizations of well-known complexity classes? For example, is there a set of
parameters for which this class is NL? NP? PH?

4

191

Acknowledgements. We’d like to thank the many PhD students within the CS Theory group
at UIUC. There were many fruitful discussions about Time Traveling Turing machines, which were
a great way to procrastinate on research, grading, preparing for labs, research, doing homework,
research, and research.

References

[1] Scott Aaronson and John Watrous. “Closed Timelike Curves Make Quantum and Classical
Computing Equivalent”. In: CoRR abs/0808.2669 (2008). url: http://arxiv.org/abs/
0808.2669.

5

192

CONFIDENTIAL COMMITTEE MATERIALS

SIGBOVIK 2019 Paper Review

Paper 23: Need more RAM?
Just invent time travel!

“Anonymous” Reviewers
Rating: Unjustifiably strong reject
Confidence: Expert (it’s always the expert)

While this paper makes promising strides in the area of time-traveling complexity theory, we sim-

ply cannot excuse the fact that the authors don’t include a citation to the work of Chapman, Katz

and Muller [1] (no relation to the reviewers). While the present submission differs from the prior

work by being in a different field of computer science, making better pop-culture references and ar-

guably involving actual scientific merit, the idea of writing a SIGBOVIK paper about time traveling

machines is clearly not novel and therefore it is our entirely objective opinion that the submission

should be rejected, or at least published alongside this review so everyone can be reminded of how

insightful we the prior authors are.

[1] Peter Chapman, Deby Katz and Stefan Muller. A Proposal for Overhead-Free Dependency

Management with Temporally Distributed Virtualization. SIGBOVIK 2013.

193

WICCAN: (deep) learning directly from the future

Amanda Coston, Alan Mishler

Abstract

Deep learning methods are extremely popular but suffer from a number of lim-
itations, including computational and conceptual complexity, fragility to input
variation, and poor generalizability. Perhaps most worryingly, they rely on data
from the past to train models and generate predictions about the future, raising
questions about the validity of their output.

The dark arts offer potential solutions to a number of these issues. Deep learning
currently relies on a handful of alchemical techniques, but it has yet to take
advantage of the full array of available magical methods. Here, we propose
a novel type of deep learning: Weakly Independent Concurrent Convolutional
Adversarial Networks (WICCAN). WICCAN eschews the reliance on the past that
characterizes other techniques. It is model-free, data-free, and space-time-free, and
can predict unseen or unrealized labels, outcomes, and events. WICCAN performs
comparably to the state of the dark art, with the advantage that it runs in O(∅) time
and does not require access to deceased prophets at runtime.

1 Introduction

1.1 Background

Deep learning methods are extremely popular and perform at state-of-the-art in a wide range of
prediction and labeling tasks. However, they suffer from a number of well known limitations. First,
they typically require very large amounts of training data, which may be expensive or impractical
to acquire and annotate. Second, they can be fragile; for example, a change in a few pixels can
cause a convolutional neural net to fail to correctly label an image. Finally, they can be extremely
computationally expensive to train and store.

Deep learning suffers from two additional limitations that have been underappreciated in the literature.
First, like other machine learning methods, deep learning overwhelmingly relies on data from the
past to train models and generate predictions about the future. This approach requires that the
data-generating mechanism remain stable over time, an unrealistically strong assumption since a lot
of things happened in the past which might not happen again. Furthermore, something new might
happen.

Second and relatedly, deep learning models only generalize to the type of data that they learned from.
For example, a convolutional neural net trained on images of animals is unlikely to perform well
when asked to predict the location and timing of future earthquakes.

Human prophecy has a nearly complementary set of strengths and limitations. Like deep learning,
prophecy also aims to uncover the unseen and predict the future. Unlike deep learning, however,
prophecy is not fragile and does not require training data; in fact, it has proven remarkably robust
to the presence of data. This means that training time is not constrained by the size of the data and
that it generalizes equally way to nearly anything. Finally, prophecy takes the sensible approach of
peering directly into the future, rather than the somewhat backward approach of looking into the past
in order to make guesses about the future.

38

194

Although deep learning and the dark arts are often invoked together, there has been surprisingly little
discourse between researchers in the two fields. Deep learning has traditionally utilized only a few
basic alchemical techniques, leaving untouched a wide array of other methods in the dark arts.

1.2 WICCAN: A new type of neural net

Here, we propose a new method that builds on existing areas of overlap while drawing on additional
strengths of the two approaches. The method is called Weakly Independent Concurrent Convolutional
Adversarial Networks (WICCAN). WICCAN predicts unseen and/or as-yet-unrealized labels, events,
and facts, while eschewing the reliance on data that characterizes other methods. WICCAN is
therefore immune to overfitting and generalizes perfectly to any type of task, even when the future
does not resemble the past. Notably, WICCAN does not require any pretraining or parameter tuning;
the choice of a familiar is all that is required at both train and test time.

We empirically evaluate our method on standard benchmarks as well as new tasks that we believe to
be more representative of real-world problems. Our method performs comparably to the state of the
dark art, with the advantage that it runs in O(∅) time and does not require access to deceased prophets
at runtime.

The remainder of this paper is organized as follows: In section 2, we summarize relevant work in deep
learning and the dark arts. Section 3 details the procedure, to the extent allowable by the Ardanes.
Section 4 situates this work within the recently explosive literature on fairness. Section 5 presents
our empirical results, which show that WICCAN outperforms existing methods on both benchmarks
and unseen real world prediction tasks. Finally, section 6 uses our method to propose future work.
Sections 3 and 6 are written in the grimoire tradition and may be incomprehensible to mortals.1

2 Related Work

Both machine learning and the dark arts have witnessed significant progress in the past centuries, and
this paper builds on the formidable literature of both disciplines. Machines are now outperforming
humans on vision tasks and games like Jeopardy and Go [1] [2]. Horcruxes are now able to achieve
immortality, and wielders of white magic have demonstrated that a patronus can defeat Dementors
[3] [4]. The literature in both fields is too vast to properly review; in this section we discuss a select
few relevant works.

In a seminal vision paper, researchers from the University of Toronto showed that deep convolutional
neural networks (DCNN’s) vastly outperformed other methods on ImageNet classification [5]. The
architecture consists of five convolutional layers as well as several fully connected and max pooling
layers. The authors proposed methods to reduce the risk of overfitting and to speed up training.
While similar in spirit to DCNN’s, our method requires only an arbitrary number of layers, trains in
sub-constant time, and has no risk of overfitting. ImageNet led to an explosion of followup work, with
deep learning researchers investing considerable effort on designing architectures and appropriate
activation functions and on developing methods to reduce training time. We believe our method
will considerably advance the field since it requires no specification of an architecture and runs in
near-trivial time, which we denote as "time-free."

Our method also builds upon the recent work of Nostradamus, whose method of foresight outper-
formed nearly all political pundits in predicting the 2016 election of Donald Trump [6]. Notably,
Donald Trump had never before been elected, so many existing methods were unable to predict this
"black swan" event. However, our method significantly improves upon Nostradmus’s prophecies,
which are characteristically vague albeit never incorrect. Our method inherits his perfect accuracy
while specifying the details of the event in question, which aids in the interpretability of the model.

Previous work in the prestigious SIGBOVIK conference considered whether parapsychology can be
used to influence people’s minds, ultimately and unfortunately finding that the author was "super-
naturally unpersuasive" [7]. Our method also concerns the inner workings of mortal minds, with an
emphasis on reading versus influencing them, which we find to be a more tractable problem.

1If you have the misfortune of being mortal, we recommend reading these sections upside down, and we
offer our condolences in the likely event that you are turned into a bat.

195

(a) My friend’s dog (b) My dog

Figure 1: The optimal familiars for EEVEE

Our method is also relevant to future work in machine learning, which will use more layers and more
activation functions to accomplish more things. Perhaps the most relevant of these future methods
is EEVEE, Empirical Evidence Variational Expert Encodings [8]. EEVEE uses a familiar-stacking
architecture and finds that Tiggy and Eevee, who are displayed in Figure 1 are optimal familiars and
are incidentally optimally cute.

As far as the authors are aware, we are the first to propose a paradigm that leverages the benefits of
both machine learning and sorcery.

3 Methods

WICCAN consists of an input layer, an arbitrary number of medial layers, and an output layer. The
network is trained using SGD, as described in Algorithm 1. Unlike previous methods, training does
not require data, which must be necessarily collected in the past relative to training time and which
therefore bears only a tenuous relationship to the post-training future.

WICCAN is also distinct from other neural nets in several other respects:

• The input layer can accommodate any size or type of input, as long as it can be framed
as a statistical estimation task or as a space-time-based query, such as “will this paper be
published in a prestigious proceedings?” or “will a locust swarm devastate the coastal
croplands?”

• Unlike other neural nets, WICCAN does not distinguish between hidden and non-hidden
layers; all layers in WICCAN, including the output layer, are hidden from mortal sight.

• The only hyperparameter which needs to be selected is the choice of familiar, e.g. cat, owl,
snake, or undergraduate research assistant. Other hyperparameters such as the learning rate,
learning rate schedule, mini-batch size, paranormality, momentum, convolutional stride,
regularization coefficients, broom length, and the number and structure of the medial layers
are not explicitly specified and do not need to be separately learned. All parameters, hyper-
parameters, pseudoparameters, supernatural parameters, and non-parameters are learned
simultaneously in a single burst of power.

• Early stopping: It is extremely dangerous to stop the training spell early.

WICCAN is trained until training is complete, at which point it can be used to predict any unseen or
as-yet-unrealized labels, events, or facts.

3.0.1 Complexity

WICCAN retains the full complexity and mystery of the natural world in which it operates. Since no
data is used in training, the training time is O(1), although the associated constant is unknown and
unknowable. Runtime is O(∅): answers to queries are instantly available.

196

Algorithm 1: SGD: Spell-based General Divination

for number of incantations k do
update the network by intoning the following:

δθd
1

m

m
∑

i=1

[

logD
(

x(i)
)

+ log
(

1−D
(

G
(

z(i)
)))]

(1)

end
Note that k is not set prior to training but is revealed over the course of training.

Table 1: MNIST empirical evaluation
Method Test accuracy

WICCAN Slightly above perfect
Support vector machines 0.994

DCNN 0.997
EEVEE 1.00

k-Nearest Neighbors 0.994
Asking my cat 0.996

4 Fairness

In most machine learning contexts, the test set is used as a proxy for the future, yet machine learning
researchers regard it as “unfair” to use data from the test set to train the network. We find this stance
strange, since the future is ultimately the object of interest. In fact, we regard it as substantially more
unfair to use data from the past to make claims about a possibly entirely different future.

We also think pejorative references to deep learning as “alchemy” are unfair. Both alchemy and deep
learning have seen widespread successful application [9, 10], despite having their share of misses
[11, 12].

5 Empirical Results

We demonstrate the performance of our methods empirically, on a standard machine learning bench-
mark and on two new prediction tasks which we believe are more representative of real-world tasks.
We compare these to current and future state of the art methods.

MNIST is a dataset of handwritten digits where the prediction task is to classify each digit as one of
0-9 [13]. MNIST is used as a standard benchmark for evaluating machine learning algorithms. Table
1 shows that WICCAN outperforms all other methods on MNIST, achieving over 100% accuracy.
The authors note that not only was our method able to classify the number correctly but it was also
able to reconstruct the users’ thoughts as they wrote the digit, a significant improvement upon existing
methods. For exposition we include a few excerpts in Table 2.

Motivated by real world challenges, we introduce three new prediction tasks to the literature: pre-
dicting 1) Bigfoot sightings, 2) who will dance together at the Yule Ball, and 3) next year’s holidays.
Understanding the location and movement of Bigfoot is important for maintaining the ecological
stability and balance of the forests of the Pacific Northwest. Ecologists, who have asked for years for
better prediction of Bigfoot, have extolled our method as telling them "exactly what they didn’t need
to know" and providing "unvaluable information" about Bigfoot’s whereabouts. Our method was
able to predict 14 Bigfoot sightings in the next 1000 years, which compares to 0 predicted by current
methods like logistic regression, reputable newspaper articles, and science.

The Yule Ball is a major social event at Hogwarts that can determine the course of one’s romantic
and social trajectory for the immediate future (on the order of hours). Wizard behavior is notoriously
difficult to characterize or predict, but yet our method is able to not only predict the couples who
will dance together but also is able to itself dance an enchanting foxtrot. While DCNN’s are able to
achieve similar results, our method’s runtime vastly outperforms DCNN’s, which takes 10 lifetimes
to run.

197

Table 2: MNIST mind exposition
Thought Digit Written

I used to be 8 once 8
6 doesn’t really deserve to be a number...kinda creepy 6

Did I meet that guy at the dentist last year? 0
My handwriting is so pretty 4

Why did they tell me to write 5? 6

Table 3: WICCAN prediction for holiday dates in 2020
Holiday Prediction

Valentine’s Day February 14
April 1st April 2nd

Halloween Every day
Someone’s Birthday October 6

Fourth of July July 4th

Knowledge of the dates of future holidays like Thanksgiving and Valentine’s Day is important to
most people who want to celebrate with their friends and families. A significant challenge to holiday
planning is the uncertainty about when holidays will be. Our method is able to predict some future
holidays for 2020, which are demonstrated in Table 3.

6 Conclusion and Future Work

WICCAN will be used in the future to predict future work.

Acknowledgments

We would like to acknowledge the mere mortals who will give us invaluable advice in the distant
future: Duncan McElfresh, Anjalie Fields, Kevin Lin, Lily Potter, Channing Huang, Riccardo
Fogliato, Benjamin LeRoy, Nic Dalmasso, Kwangho Kim, and Siddharth Ancha. We are also grateful
to the immortals who will read this paper and think about it for a little bit, which include Lisa Lee and
God. This research is sponsored by the Graduate Research Fellowship from the Ministry of Magic.

References

[1] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van Den Driessche, J. Schrittwieser,
I. Antonoglou, V. Panneershelvam, M. Lanctot, et al., “Mastering the game of go with deep
neural networks and tree search,” nature, vol. 529, no. 7587, p. 484, 2016.

[2] D. A. Ferrucci, “Introduction to “this is watson”,” IBM Journal of Research and Development,
vol. 56, no. 3.4, pp. 1–1, 2012.

[3] J. K. Rowling, Harry Potter and the deathly hallows, vol. 7. Bloomsbury Publishing, 2013.

[4] J. K. Rowling, Harry Potter and the prisoner of Azkaban. Bloomsbury publishing, 2015.

[5] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep convolutional
neural networks,” in Advances in neural information processing systems, pp. 1097–1105, 2012.

[6] M. Nostradamus, Les propheties. Fayard/Mille et une nuits, 1998.

[7] D. Edelstein, “This grad student studied parapsychology — and you won’t believe what he
found!,” in SIGBOVIK, 2018.

[8] L. Lee, “Empirical evidence variational expert encodings: A better method,” in International
Conference on Machine Learning, pp. 100–1105, 2021.

[9] I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville,
and Y. Bengio, “Generative Adversarial Networks,” pp. 1–9, 2014.

[10] J. K. Rowling, Harry Potter and the sorcerer’s stone. Bloomsbury publishing, 2013.

198

[11] A. Ghorbani, A. Abid, and J. Zou, “Interpretation of Neural Networks is Fragile,” no. Lipton
2016, 2017.

[12] “Chinese alchemical elixir poisoning,” Wikipedia, accessed 03/01/2019.

[13] Y. LeCun, C. Cortes, and C. Burges, “Mnist handwritten digit database,” AT&T Labs [Online].
Available: http://yann. lecun. com/exdb/mnist, vol. 2, p. 18, 2010.

199

On CLI-based Renderers:
In which we investigate the utility of rendering teapots in a command line

Michael Sandler

University of Illinois at Urbana-Champaign

March 16, 2019

Abstract

We investigate the feasibility of producing a renderer within a CLI environment, and the

usability of thereof. We also examine the effects that a blissful disregard for good coding

practice and performance can have on such a project. A proof of concept is completed in the

form of a cube, and extended in order to produce a teapot.

1 Introduction and Motivation

Rendering can often be highly technical and sophisticated, and cutting-edge technologies are often
created to speed it up. We propose an alternative, in which we use rendering to actually set

technology back a few years. In pursuit of this, we wrote a renderer that produces nothing except
pictures of teapots. While there are technically controls, the refresh rate is so slow that the
rendering could hardly be called realtime, even if we used more sophisticated techniques. For this
reason, we also do not pursue fast rendering speeds.

The reason for teapots is simple: It is common knowledge that the presence of teapots has a
positive impact on both the mental and academic well-being of students. It is less known, and
a worthy research topic, as to the effectiveness of virtual teapots. However, as virtual teapots
produced in industry-standard renderers are utterly indistinguishable from real teapots, this ex-
periment would not reveal anything interesting. So, in order to investigate this, we wrote a 3d
renderer in python that renders a teapot.

2 Implementation

Although the base code was a barebones implementation of a raycaster, we nevertheless encountered
a few pitfalls in in implementaton.

1. This project was started less than twelve hours before my analysis final for which I had not
studied. This was not a good idea, and I do not recommend that people follow my example.

2. It was shockingly hard to convince people that 2 was a photo of a pixellated cube, and not
an amorphous blob.

3. The code was written in python, a language known for its high speed and efficiency.

4. Refusing to use external libraries (potentially with C bindings) may also have contributed to
the utter lack of rendering speed.

That said, the technical details of the implementation were as follows:

• Renders were produced under diffuse lighting from a directional source.

• The rendering algorithm was a basic raycasting algorithm, casting rays per-pixel and checking
for triangle collision.

• No spatial splitting algorithm was used, as the authors felt incompetent and lazy.

1

39

200

3 Results

Figure 1: The initial render of a cube.

Surprisingly, figure 2 only took a few milliseconds to render. However, the ncurses overhead alone
meant (surprisingly enough) that the cube still had non-negligible refresh rates. Although there
were realtime capabilities for camera movement, our guinea pigs remained unconvinced as to the
fact that a cube was indeed being rendered, and not some bizarre-looking square contraption.

Frustrated, we plugged in an STL model of the teapot. Due to the issues detailed earlier, this
render took half an hour; however, it was far more successful in convincing cynical spectators that
our renderer was indeed effective and creating pictures of unphysically lit triangles.

Figure 2: The best-looking teapot render.

A cursor is visible due to a slow and ineffective rendering algorithm.

4 Conclusion

This project led the authors to a single conclusion: Renderers, CLI or not, should not be written
in python. A preliminary port to C++ yielded speed improvements of three thousand percent.
However, the idea of a working CLI renderer is not wholly ridiculous, and can lead to effective
(and amusing) results.

As a direction of further investigation, we intend to bring near-realtime rendering to the com-
mand line, and allow command line, modal (in the sense of Vi) editing of models. We hope that a
keyboard driven editor with no mouse support will convince others as to the complete uselesness
of our work.

2
201

AVOIDANCE OF EXTRATERRESTRIAL
INTELLIGENCE INSTITUTE Oscar Hernandez

Oscar Hernandez
AETI Institute
189 Bernardo Ave, Suite 200
Mountain View, CA 94043, USA
Phone: +1 (646) 961-3715
E-mail: ohernandez13@simons-rock.edu
URL: https://mathemonads.github.io

π, 2019

President John F. Kennedy
The White House
1600 Pennsylvania Ave NW
Washington, DC 20500
United States of America

To Mr. President or whomever it may concern,

We saw your speech on C-SPAN, where you declared interest in exploring space. But I’m
warning you – if you do that, people will be angry, and want to shoot you. That’s not a threat, I
actually love and respect you very much, sir.

All joking aside, we are practical learned men. Instead of spending money on an extravagant
wild goose chase, you should invest in local communities: fix the welfare state, end the war on
drugs, and ensure that people of color have those same rights as everyone else.

You worship British explorer George Mallary for climbing Mt. Everest “because it was
there”. By that logic, we should eat cake “because it’s there”: an understandable desire that
causes heart failure in excess. Not to mention the fact that he DIED climbing it.

We’ve seen what unwarranted exploration leads to: the wild wreckage that Christopher
Columbus brought to the Americas and the massive deforestation in the Amazon, to name a few.

So long as things “are there”, we will continue to explore, harvest and destroy until things
“are no more”. Veni vidi vici. Quia oblitus sum dicere integros communitates viam?

I urge you Mr. President to stop this egotistical quest of stepping on what you have not
stepped on. There is beauty and magic in the unknown that dies when it is discovered. Once
the magic dies, it becomes a resource ready to be consumed. And I could do without the moon
cheese Mr. President; cow cheese oughta’ do it alright alright alright.

Really, we should just have the common decency to leave the aliens to their own planet, as
they have paid us that respect for millions of years. #yeswecandotherightthingandnotgotospace

Sincerely,

Oscar Hernandez
American Citizen, Responsible
Voter, Need I go on?

40

202

Pop culture

41 Which ITG stepcharts are bracket-jumpiest?: In which they
milk the +A boring follow-up paper to “Which ITG stepcharts
are turniest?” titled, “Which ITG stepcharts are crossoveriest
and/or footswitchiest?”, series for all its worth in publication
count af

Ben Blum

Keywords: bracket, groove, in, jumps, submission title contains 289
characters which exceeds the maximum allowed length of
255 characters, the

42 The computational theory of Lord Voldemort’s dark magic

Huilian Sophie Qiu and Hui Yang

Keywords: magic, computing, social good, green computing, Harry
Potter, wizarding world, Lord Voldemort, flibbertigibbet

43 All you need is dogball

Kai Arulkumaran, Matthew Kelcey, and Andrew Brock

Keywords: dogball, biggan, memes

44 On the time complexity of the verification of the factorization
of 267-1

Isaac Grosof and Isaac Grosof

Keywords: algorithms, time complexity, Mersenne prime, history
of computation, multiplication

203

Which ITG Stepcharts are Bracket-Jumpiest?:

In Which They Milk the

「A Boring Follow-Up Paper to

“Which ITG Stepcharts are Turniest?”

Titled, “Which ITG Stepcharts are

Crossoveriest and/or Footswitchiest?’’」
Series for All Its Worth in Publication Count After All, or:

Hit Me With An Encore

Ben Blum

bblum@alumni.cmu.edu

Abstract

In which I break last last year’s promise of no future work.

Categories and Subject Descriptors D.D.R. [Exercise and

Fitness]: Arcade Dance Games

Keywords bracket, groove, in, jumps, the

1. Introduction

Recent work by (dril 2019) proposed the hypothesis that

recent stepchart authors have grown bored with the ar-

ray of technical ITG step patterns documented to date

(Blum 2016, 2017), and have moved on to break the old

model’s one-foot-per-arrow assumption to allow for even

more technical patterns yet. I paraphrase their main con-

clusion as follows:

All good researchers know that when rise the stan-

dards for software or hardware performance (or stepchart

trickiness, as the case may be), they must revisit their

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without

fee, provided... honestly, provided nothing. The ACH is already flattered enough that you’re even reading this notice.

Copyrights for components of this work owned by others than ACH must be laughed at, then ignored. Abstracting

with credit is permitted, but abstracting with cash is preferred. And please tip us, for the love of Turing.

SIGBOVIK ’19 Pittsburgh, PA, USA

Copyright c© 2019 held by owner/author(s). Publication rights licensed to ACH.

ACH . . . $13.37

A
B

o
rin

g
F

o
llo

w
-U

p
P

a
p

e
r

to

“
W

h
ic

h
IT

G
S

te
p

c
h

a
rts

a
re

T
u

rn
ie

st?”

T
itle

d
,

“
W

h
ic

h
IT

G
S

te
p

c
h

a
rts

a
re

C
ro

sso
v

e
rie

st
a

n
d
/o

r
F

o
o

tsw
itc

h
ie

st?”

B
e

n
B

lu
m

b
b
lu

m
@

c
s
.c

m
u
.e

d
u

A
b

stra
c

t

In
w

h
ic

h
I

d
e

liv
e

r
o

n
la

st
y

e
a

r’s
p

ro
m

ise
o

f
fu

tu
re

w
o

rk
.

C
a

teg
o

ries
a

n
d

S
u

b
ject

D
escrip

to
rs

D
.D

.R
.[E

x
ercise

a
n

d

F
itn

ess]:A
rc

a
d

e
D

a
n

c
e

G
a

m
e

s

K
eyw

o
rd

s
c

ro
sso

v
e

rs,fo
o

tsw
itc

h
e

s,ja
c

k
s,sid

e
fo

o
ts

1
.

In
tro

d
u

c
tio

n

L
e

t’s
re

su
m

e
rig

h
t

w
h

e
re

I
le

ft
o

ff
in

m
y

la
st

p
a

p
e

r
(B

lu
m

2
0

1
6

),sh
o

w
n

in
F

ig
u

re
1

.U
n

lik
e

m
a

in
stre

a
m

c
o

n
fe

re
n

c
e

s,

S
IG

B
O

V
IK

d
o

e
sn

’t
m

a
k

e
m

e
w

a
ste

sp
a

c
e

re
p

e
a

tin
g

a
ll

th
e

b
a

c
k

g
ro

u
n

d
m

a
te

ria
l,a

n
d

I
c

a
n

ju
st

sa
y

g
o

re
a

d
th

a
t

p
a

p
e

r

fi
rst

a
n

d
g

e
t

b
a

c
k

to
m

e
.

It’s
p

ro
b

a
b

ly
a

lo
t

fu
n

n
ie

r
th

a
n

th
is

o
n

e
a

n
y

w
a

y,w
h

ic
h

is
g

o
n

n
a

b
e

so
rt

o
f

d
ry,a

n
d

re
a

lly

o
f

in
te

re
st

o
n

ly
to

o
th

e
r

IT
G

p
la

y
e

rs
w

h
o

a
lre

a
d

y
k

n
o

w

w
h

a
t’s

g
o

in
g

o
n

.

T
h

e
T

L
;D

R
is

th
a

t
I

m
a

d
e

a
p

ro
g

ra
m

w
h

ic
h

fi
g

u
re

s
o

u
t

h
o

w
to

fo
o

t
ste

p
c

h
a

rts
in

th
e

le
a

st
c

ro
sso

v
e

ry
p

o
ssib

le

w
a

y
(sh

o
rt

o
f

d
o

u
b

le
-ste

p
p

in
g

e
v

e
ry

th
in

g
),

th
e

n
fo

u
n

d

w
h

ic
h

c
h

a
rts

u
ltim

a
te

ly
h

a
d

th
e

m
o

st.T
h

e
a

lg
o

rith
m

a
lso

n
a

tu
ra

lly
id

e
n

tifi
e

s
fo

o
tsw

itc
h

e
s

a
n

d
ja

c
k

s,
a

n
d

so
m

e
-

tim
e

s
it’s

sm
a

rte
r

th
a

n
m

e
in

a
m

u
sin

g
w

a
y

s.
I

p
u

t
a

ll
th

e

g
o

o
d

ie
s

in
a

g
ia

n
t

sp
re

a
d

sh
e

e
t

a
t
h
t
t
p
:
/
/
t
i
n
y
u
r
l

.c
o
m

/
c
r
o
s
s
o
v
e
r
i
e
s
t

,
a

n
d

th
e

p
ro

g
ra

m
itse

lf
is

o
f

c
o

u
rse

fre
e

ly
a

v
a

ila
b

le
a

t
h
t
t
p
s
:
/
/
g
i
t
h
u
b

.c
o
m
/
b
b
l
u
m
/
s
i
g
b
o

v
i
k
/
b
l
o
b
/
m
a
s
t
e
r
/
i
t
g
/
c
o
d
e
/
I
T
G

.h
s

.

2
.

R
e

v
isitin

g
T

u
rn

in
e

ss
(F

la
sh

b
a

c
k

S
c

e
n

e
)

R
e

c
a

ll
T

a
b

le
1

fro
m

th
e

la
st

p
a

p
e

r,
in

w
h

ic
h

I
le

ft
u

n
-

d
e

fi
n

e
d

th
e

fa
c

in
g

s
fo

r
L

L
,

D
D

,
U

U
,

a
n

d
R

R
,

th
e

fo
u

r

P
e

rm
issio

n
to

m
a

k
e

d
ig

ita
lo

r
h

a
rd

c
o

p
ie

s
o

f
p

a
rt

o
r

a
llo

f
th

is
w

o
rk

fo
r

p
e

rso
n

a
lo

r
c

la
ssro

o
m

u
se

is
g

ra
n

te
d

w
ith

o
u

t

fe
e

,p
ro

v
id

e
d

...h
o

n
e

stly,p
ro

v
id

e
d

n
o

th
in

g
.T

h
e

A
C

H
is

a
lre

a
d

y
fl

a
tte

re
d

e
n

o
u

g
h

th
a

t
y

o
u

’re
e

v
e

n
re

a
d

in
g

th
is

n
o

tic
e

.

C
o

p
y

rig
h

ts
fo

r
c

o
m

p
o

n
e

n
ts

o
f

th
is

w
o

rk
o

w
n

e
d

b
y

o
th

e
rs

th
a

n
A

C
H

m
u

st
b

e
la

u
g

h
e

d
a

t,
th

e
n

ig
n

o
re

d
.

A
b

stra
c

tin
g

w
ith

c
re

d
it

is
p

e
rm

itte
d

,b
u

t
a

b
stra

c
tin

g
w

ith
c

a
sh

is
p

re
fe

rre
d

.A
n

d
p

le
a

se
tip

u
s,fo

r
th

e
lo

v
e

o
f

T
u

rin
g

.

S
IG

B
O

V
IK

’1
7

P
ittsb

u
rg

h
,P

A
,U

S
A

C
o

p
y

rig
h

t
c©

2
0

1
7

h
e

ld
b

y
o

w
n

e
r/a

u
th

o
r(s).P

u
b

lic
a

tio
n

rig
h

ts
lic

e
n

se
d

to
A

C
H

.

A
C

H
...$

1
5

.0
0

Which ITG Stepcharts are Turniest?

Ben Blum

bblum@cs.cmu.edu

Abstract

ITG is a popular dance game in which players step on ar-

rows while listening to music. The arrow patterns, indi-

cated by a stepchart, may range among any level of com-

plexity and difficulty. Among the many factors contribut-

ing to a stepchart’s difficulty is how much the player must

turn from side to side. Other more obvious factors, such

as raw speed, have been well studied in prior work. This

paper presents an analytic study of this turniness factor.

We study the turniness of many existing stepcharts, and

present a novel (but unsurprising) approach to automat-

ically generating maximally (or minimally) turny charts.

Among real-world songs, we find stepcharts with overall

turniness ranging from 0% to 81.33% of the theoretical

maximum.

Categories and Subject Descriptors D.D.R. [Exercise and

Fitness]: Arcade Dance Games

Keywords in, the, groove

1. Introduction

In 2005, Roxor Games, Inc. released In The Groove, a

dance rhythm music video arcade fitness game, in which

players control a protagonist using their feet to step on

floor-mounted directional indicators. The protagonist,

shown in Figure 1, takes the form of any number of

arrow-shaped directional receptacles, and must navigate

a world of similarly-shaped obstacles (henceforth “ar-

rows”) by consuming them with the appropriate recepta-

cle. Roxor Games, Inc. In The Groove (henceforth “ITG”)

is most commonly played using the “cabinet” form factor,

shown in Figure 2, which includes two large metal dance

pads, each with four directional indicators (henceforth,

also, “arrows”).

The game includes a library of rhythmic audio ac-

companiment files (henceforth, “songs”), each of which

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without

fee, provided... honestly, provided nothing. The ACH is already flattered enough that you’re even reading this notice.

Copyrights for components of this work owned by others than ACH must be laughed at, then ignored. Abstracting

with credit is permitted, but abstracting with cash is preferred. And please tip us, for the love of Turing.

SIGBOVIK ’16 Pittsburgh, PA, USA

Copyright c© 2016 held by owner/author(s). Publication rights licensed to ACH.

ACH . . . $15.00

Figure 1. ITG gameplay, including score indicator (top),

protagonist avatar (mid), directional obstacles (low), and

step judgement, life bar, and combo indicator (figure

these out for yourself, I’m getting tired).

Figure 2. An ITG cab. RIP in peace, Roxor (Konami 2005).

is associated with one or more fixed patterns of arrows

(henceforth, “stepcharts”). These charts are often, but

not always, synchronized to the beat of the song. During

gameplay, the stepcharts appear on screen and scroll to-

wards the protagonist avatar at a rate either fixed or vari-

able (henceforth, “BPM”). When the position of an arrow

in the chart coincides with the avatar, the player must ac-

tuate the arrow of the corresponding direction. The game

will judge the player’s timing accuracy, and penalize or

reward them accordingly with scores and life bar fill. A

“Fantastic” judgement (as in Figure 1) indicates a timing

error not exceeding 15 milliseconds. Other judgements

include Excellent, Great, Decent, Way Off, and Miss. As a

visual assist to the player, notes are coloured according to

their beat granularity: ˇ “ , ˇ “3, ˇ “(, ˇ “(3, ˇ “) , ˇ “) 3, ˇ “* .

F
ig

u
re

1
.

(o
k

a
y

tw
ist

y
o

u
r

h
e

a
d

to
re

a
d

th
is)

R
ig

h
t

fo
o

t

←
↓

↑
→

L
e

ft
fo

o
t

←
?

U
R

U
L

U

↓
D

L
?

L
U

L

↑
D

R
R

?
U

R

→
D

D
R

D
L

?

T
a

b
le

1
.

F
a

c
in

g
d

ire
c

tio
n

s.

fo
o

tsw
itc

h
e

s.
I

sh
o

w
a

ty
p

ic
a

l
D

D
/U

U
fo

o
tsw

itc
h

p
a

t-

te
rn

in
F

ig
u

re
2

(a
),

a
n

d
ty

p
ic

a
l

L
L
/R

R
sw

itc
h

e
s

(h
e

n
c

e
-

fo
rth

“c
ro

sso
v

e
r

fo
o

tsw
itc

h
e

s”)
in

F
ig

u
re

2
(b

).
T

o
ste

p

th
e

se
p

a
tte

rn
s,th

e
p

la
y

e
r

stilla
lte

rn
a

te
s

fe
e

t
a

s
u

su
a

l,b
u

t

m
u

st
lift

o
n

e
fo

o
t

o
ff

th
e

re
p

e
a

te
d

a
rro

w
b

e
fo

re
ste

p
p

in
g

it
w

ith
h

e
r

o
th

e
r

fo
o

t.
C

h
a

rt
a

u
th

o
rs

w
ill

o
fte

n
,

b
u

t
n

o
t

a
lw

a
y

s,in
c

lu
d

e
a

“m
in

e
c

u
e”

(sh
o

w
n

in
th

e
fi

g
u

re
)

to
h

in
t

th
a

t
th

e
se

c
o

n
d

fo
o

t
sh

o
u

ld
sw

itc
h

o
n

to
th

e
sa

m
e

a
rro

w
.

Figure 1. (yeah i reused this joke from last time ok deal)

own work to prove its ongoing relevance to the research

(dance) community at large. Thus I must regrettably

break the promise I the authors set forth in (Blum 2017)

(see Figure 1) and revisit my their old future work sec-

tion (XXX: they said to change any first-person “our prior

work” stuff like this for double-blind review but like cmon

this makes no sense? theyll totally see through this (TODO:

maybe email the PC chair for advice? (FIXME: make

sure to remove these comments before the camera-ready

deadline!!))), extending it to handle these new so-called

“bracket” jumps.

Their full results are posted at: https://tinyurl.com/bracketiest

41

204

https://tinyurl.com/bracketiest

Figure 2. Detail of metal corner brackets, this paper’s

namesake. Photo credit JIM.

2. Overview

What, then, is a bracket-jump (which I shall not, hence-

forth, abbreviate for brevity)? Put simply, whenever two

arrow-shaped obstacles proceed simultaneously towards

the protagonist directional indicator targets (Blum 2016),

while a novice player might think they must step with

both feet at once, one for each arrow, experts often find

it more convenient (i.e., less overall foot motion) to use

whichever single foot is closer at the time to hit both ar-

rows by triggering one arrow’s sensor with the heel and

the other with the little bitty toesies. Pads are typically

constructed with a small triangular metal bracket at the

corner of each arrow panel, as shown in Figure 2, which

the bridge of the foot must cross to achieve this, hence

the name “bracket jump”. In case my prose explanation

is not up to snuff, I also show in Figure 3 a high-quality

graphics render of a player’s typical foot positions during

a down+right bracket-jump (henceforth “DR”, et cetera).

The reader, or stepper, may notice the extreme an-

gle of footing depicted in the latter figure, which is nec-

essary to reliably trigger both pad sensors. Accordingly,

this maneuver is comfortable (and hence preferable to

a normal jump) only if the player is already facing in

roughly the same direction (Blum 2016). Note also that

the two “candle jumps”, LR and DU, are not possible to

bracket, unless your foot size is (physically) beyond the

scope of this work. The next section will attempt to codify

(ahem) when preceding patterns encourage the player

to bracket rather than jump, and thereby identify how

“bracket jumpy” each chart is.

3. Algorithm Design

I extended the crossoveriness et cetera algorithm from

(Blum 2017) to reason about jumps, which previously it

Figure 3. Down+right bracket-jump real-world example.

treated all identically, ignoring the arrows involved and

allowing the player to reset her footing as desired. Now, it

considers LD, LU, DR, and UR jumps as potentially brack-

etable, allowing the player to continue a stream of alter-

nating feet uninterrupted therethrough.

Confession. When I was first brainstorming this project,

I had some grand visions of unifying the turniness algo-

rithm (Blum 2016)—which accounts for U/D steps to fig-

ure out how far the player must turn each step, but has no

idea which way she is actually facing at any given time—

with the crossoveriness one (cited just above; cmon how

much do you want me to repeat these same two cita-

tions, gimme a break)—which totally ignores U/D steps

and just figures out which arrows the left and right feet

must each step—in some theoretically beautiful way to

produce the unquestionably perfect footing sequence for

each jump. However, as I was considering how to incorpo-

rate features from last time’s algorithm, potentially allow-

ing crossover brackets (Section 6.2) and footswitch brack-

ets (Section 6.3), I realized that ultimately there would

be no restrictions on what jumps were bracketable; the

algorithm would oops simply twist and turn as much as

necessary to bracket everything, and this paper would be-

come just “Which ITG Stepcharts Have the Most Jumps?”,

and like who wants to read that.

One may think to simply try either bracketing each

jump or not and seeing what combination gives the min-

imum turniness result, but since whether to bracket each

jump or not affects subsequent steps’ footing, each choice

cannot in general be solved independently, and I hope

you can see where this is going. Now, the last time I tried to

solve an exponentially-sized problem, it took me 7 years

(Blum 2018) (and I still ended up with a pile of heuristics

after all anyway), so considering I started this project a

week before the deadline, I opted instead to just code up

Their full results are posted at: https://tinyurl.com/bracketiest

205

https://tinyurl.com/bracketiest

a bunch of ad-hoc rules to handle all the different bracket

jump patterns that occurred to me to write test cases for.

As before, the code is available at https://github.c
om/bblum/sigbovik/blob/master/itg/code/ITG.hs. To

give a sense of how much its elegance has been de-

spoiled since the last version: 62 lines of Haskell (which

computed crossovers, footswitches, jacks, doublesteps,

and crossover footswitches) has grown to 156 lines (just

to handle this one. new. feature), and the once-simple

datatype definition of

data Step = L | D | U | R | Jump

has become the unwieldy:

data Arrow = L | D | U | R
data Jump = LD | LU | DR | UR | LR | DU | Other
data Step = A Arrow | J Jump
data Foot = LeftFoot | RightFoot

The general gist is that in addition to tracking which

foot stepped the last arrow and optimizing for alternat-

ing feet, we also track which arrow(s) each foot was last

on, and whenever we encounter a LD/LU/DR/UR jump,

bracket it if both:

1. The last foot is opposite the foot required for the jump

(e.g. L for LD), and

2. The last foot’s last note(s) does not intersect the arrows

involved in the jump (i.e., R not on D preceding LD).

In lieu of a detailed algorithm listing, I’ll simply show

some of those most notable test cases in pictures and ex-

plain in prose how a player would typically step them,

which was pretty much my implementation strategy to

begin with.

Figure 4 shows a bunch of patterns with a bracketable

jump, and each subfigure in Figure 5 shows a corre-

sponding unbracketable case. Whenever two jumps are

pictured in the same unit test, we are concerned with

whether the latter one is bracketable. I’ll now explain how

the algorithm handles each case.

a. In the OK case, the right foot can bracket every jump

(condition 1), as the left foot is always on a different ar-

row than the jump (condition 2). In the NG case, con-

dition 2 is violated for the second and fourth jumps.

b. Version of (a) testing that preceding bracket-jumps

also contribute to condition 2. The NG case would be

a footswitch bracket requiring rather uncomfortable

footing angles.

c. In OK, DR cannot be bracketed, but clears the prior

footings so UR can. In NG, LR can be bracketed, mean-

ing UR cannot while still alternating feet (condition 1).

d. DU jumps can never be bracketed, but can be stepped

facing either direction, and this must respect prior

(a) All 4 OK (b) LD, UR OK (c) UR OK

(d) LD OK (e) UR, LU OK (f) DR, LD OK

Figure 4. Examples of bracketable jumps.

(a) 2nd, 4th NG (b) DR NG (c) UR NG

(d) LU NG (e) 2nd UR NG (f) Trick question

Figure 5. Examples of unbracketable jumps, each corre-

sponding to the similar pattern in Figure 4.

footings. In both cases DU is stepped with right foot

U, which allows bracketing LD but not LU thereafter.

e. In OK, the crossover does not interfere with either

bracket and the player can alternate feet throughout.

In NG, either doublestepping or jumping normally is

required (or a future-work crossover bracket; see Sec-

tion 6.2).

f. In OK, the player easily footswitches on U. In the cor-

responding case, the player can actually just jack U in-

stead, stepping it twice with her left foot before brack-

eting DR again with her right.

Their full results are posted at: https://tinyurl.com/bracketiest

206

https://tinyurl.com/bracketiest

These examples are available as test-bracket-*.sm
unit tests in the code repository. Hopefully armed with

this understanding of the bracket jumping rules, let’s now

move on to real-world stepcharts.

4. Evaluation

The experimental corpus has grown even more since last

time, now comprising 17340 stepcharts from 182 packs.

Of note, all three Technical Showcase packs (collabora-

tive packs where the community at large was encouraged

to submit their freshest beats and judged on complexity)

were released in the last two years, which have proved to

be important sources of diverse bracket-jump patterns

for this research. I would also have liked to re-rank the

crossoveriest and footswitchiest charts from last time to

include these submissions, but I frankly don’t have time.

The results spreadsheet of bracket jump counts (as well as

more crossovers, footswitches, et cetera for charts newer

than the last paper) is available for your browsing plea-

sure at https://tinyurl.com/bracketiest.

I pose two evaluation questions, to be answered in the

following subsections respectively.

1. Which songs, packs, and/or step-cartographers are

bracket-jumpiest?

2. Is bracket jumps the new crossovers or something?

4.1 Bracket-Jumpiness

I measured the overal bracketiness of each chart in two

ways, first, by comparing the number of bracket jumps

against the total number of steps, or the bracket-jump

step percentage (BJS%); second, by comparing against the

total number of jumps only, or the bracket jump jump per-

centage (BJJ%). The BJS% indicates a chart’s overall den-

sity of steps requiring the player to step across the brack-

ets (which depends on how jumpy the chart is to begin

with), whereas the BJJ% measures perhaps the author’s

intentionality in patterning their jumps either as brack-

ets, or as random where just some of them happen to be

bracketable.

Table 1 shows the leaderboard for the former metric,

and Table 2 the latter.1 Note that the aforementioned re-

cent Technical Showcase pack series put up three brack-

etiest charts in the BJJ% category; meanwhile, the UPS

packs, known for their gimmicks and general lack of re-

spect for player comfort, secure several top spots on the

BJS% board. For comparison’s sake, the overall BJJ% of the

entire corpus is 19.8% (93k/470k), meaning that roughly

1 in 5 randomly-patterned jumps are by chance brack-

etable. The overall BJS% (a thoroughly less meaningful

statistic) is 0.7%.

1 When measuring BJJ% I excluded charts with fewer than 10 jumps in

total, which put up a handful of false positives in the 100% ranks.

Ft. Name Pack #BJ BJS%

10 SOBA Squeaky Beds &c. 366 83%

11 Get Off of My Way UPS 3 115 28%

12 Hardware Store Keyboard Coll. III 207 23%

13 Firestorm BemaniBeats 3 153 31%

14 Bounce UPS 2 126 21%

15 Ikaros Dynamite!!!! UPS 2 238 34%

16 Mermaid Island Tachyon Alpha 346 49%

17 Toccata & Fugue CuoReNeRo M.P. 255 24%

Table 1. Charts of each difficulty with the highest

bracket-jump density among all steps (BJS%).

Ft. Name Pack #BJ BJJ%

9 Drifting Away UPS 4 26 88%

10 SOBA Squeaky Beds &c. 366 99%

11 Save Miracles ECFA 2019 42 95%

12 Electrical Paradise Chic. Timing Auth. 35 100%

12 Encore Tech. Showcase 29 100%

12 Nemeton Subluminal 12 100%

13 Decadent Dandy Tech. Showcase 3 12 100%

14 Nageki no Ki Valex’s M.4-A.A. 8 116 94%

15 Beach Party Tech. Showcase 2 162 80%

16 Mermaid Island Tachyon Alpha 346 79%

17 Zombie Sunset Jummy Jawns 2 325 88%

69 koopa bling UPS 4 39 98%

Table 2. Charts of each difficulty with the highest per-

centage of their total jumps bracketable (BJJ%). All par-

ticipants of the 3-way tie for 12-footers are listed.

Next up is bracket jumpiness by pack and by author.

Tables 3 and 4 show the top 10 packs in both bracketiness

metrics, and Tables 5 and 6 the top 10 authors (filtered by

having written at least 10 charts). For the packs, I also list

the release year of each; note how despite the relatively

even spread of years in BJS%, 2018 dominates the BJJ%

leaderboard, suggesting that older charts’ bracket-jumps

arose by chance simply from having a lot of jumps to be-

gin with. I’ll come back to this point in Section 4.2. In hon-

orable mentionth place is chart author Halogen–, whose

11 charts contain 154 jumps, none of which are brack-

etable. What a purist!

4.2 Historical Trends

I sought to prove (dril 2019)’s claim that bracket-jumps’

popularity has skyrocketed in recent years of stepchart-

making, by finding the progression of bracketiness across

past years of stepchart packs. However, actually assigning

a firm release date to every pack on my hard drive turned

out to be a feat of internet archaeology unto itself, even in-

volving archive.org for one step. I’ll spare you the details,

but you can peruse them in the second spreadsheet of the

dataset linked at the start of this section. Ultimately, all

packs older than 2013 had to be grouped together, as no

Their full results are posted at: https://tinyurl.com/bracketiest

207

https://tinyurl.com/bracketiest

Pack name Year #charts BJS%

Keyboard Collaboration III ≤2012 17 12.4%

Squeaky Beds and Leaky Faucets 2018 125 4.9%

Keyboard Collaboration I ≤2012 12 3.6%

CuoReNeRo MeGaPacK N/A 460 3.3%

Mute Sims X2 WIP 2018 12 3.0%

r2112 2007 60 2.7%

Technical Showcase 3 2018 196 2.7%

FoxyMix 4 - Nuclear Overdrive ≤2012 67 2.6%

Technical Showcase 2 2017 80 2.6%

Gensokyo Midnight ≤2012 77 2.5%

Table 3. Song packs densest in bracket jumps.

Pack name Year #charts BJJ%

Feelin’ Rusty 3 2018 51 50.2%

Squeaky Beds and Leaky Faucets 2018 125 46.7%

TYLR’s Technical Difficulties 2018 33 44.9%

Technical Showcase 3 2018 196 41.7%

Mute Sims X2 WIP 2018 12 40.9%

Jimmy Jawns 2 2015 55 39.7%

Technical Showcase 2 2017 80 38.2%

Keyboard Collaboration III ≤2012 17 38.1%

Chicago Timing Authority 2018 33 36.3%

DVogan’s Tech Support 2 2018 32 36.1%

Table 4. Song packs with the most jumps bracketable.

pack collection website, facebook group, or laptop filesys-

tem metadata could accurately date enough packs be-

fore then to give meaningful sample sizes for each year.

I also decided to exclude tournament packs such as ECFA

from this analysis, which curate existing stepcharts writ-

ten possibly long ago.

Statistical significance. Stepcharts thus dated, I then

summed the total steps, jumps, and brackets published

in each year, and analyzed the resulting overall BJS% and

BJJ% as a linear regression. Figure 6 shows the best-fit and

95% confidence intervals, plotted in R (R Core Team 2018)

with ggplot (Wickham 2016). For BJS%, the ≤2012 bucket

actually produced the highest data point (at 11.8%); I sus-

pect this simply represents the fact that jumps were more

popular overall during ITG’s nascency (as corroborated

by Table 3). Owing to this and also to its nature as an ag-

gregation over nearly a decade (which spoils the linear

model anyway), I chose to exclude it from BJS%, but kept

it for BJJ%, which overall jump count has no bearing on.

(Its linear fit has β = 0.012%, CI = {-0.08,+0.10}, not sig-

nificant.) For the two pictured distributions, their confi-

dence intervals do not include 0, i.e., a flat line represent-

ing no growth, so I conclude bracket jumps’ increased

popularity is statistically significant.

Bias. This analysis is prone to selection bias in my own

pack downloading habits: supposing I suddenly became

more interested in playing brackety charts recently, that

Author name #charts BJS%

Paul J Kim 45 9.9

sssmsm 45 4.4

Liam 11 3.4

Snooze 22 2.5

M. Emirzian 26 2.2

bblum 40 1.9

Ninevolt 10 1.7

B. Vergara 95 1.6

C. Emirzian 18 1.6

B. Dinh 10 1.6

Renard 51 1.5

Table 5. Step cartographers who write charts densest in

bracket-jumps.

Author name #charts BJJ%

Paul J Kim 45 71.8

Rust 97 51.7

bblum 40 49.3

Liam 11 44.5

Snooze 22 38.1

Rems 10 36.5

sssmsm 45 32.9

Loak 19 31.7

Little Matt 42 31.4

Paparazzi 10 29.6

Table 6. Step cartographers whose jumps are most

bracketable.

would certainly influence how many bracket-jumps ap-

peared each year in this corpus. However, I believe the

BJJ% measurement adequately compensates for this, for

if I suddenly became interested in stamina instead of

technical and added a bunch of 10-minute trance packs,

that would impact only BJS%. As far as I know, I show no

preference for more or less jumpy charts overall than the

community average, leading me to trust the BJJ% test.

5. Discussion

I confirmed in stepmania the bracketiness of each of Sec-

tion 4.1’s high scorers, and happily observed no false

positives (i.e., all charts seemed to intend the player to

bracket), surprising myself for the 3rd time running at the

accuracy of the algorithm. I did observe some false neg-

atives, i.e., jumps seeming intended to be bracketed that

the algorithm wouldn’t catch. In Beach Party (Nero 2017),

shown in Figure 7(a), the “mine jump” forces the player to

reset her footing, removing the right foot’s initial presence

on U to allow LU to be bracketed. This would actually be

pretty easy to fix (just have the algorithm parse mines

like, at all) but it’s the day of the deadline and I already

ran the experiment, so. Another class of false positives

showed up in koopa bling (Ali 2018) (Figure 7(b)), where

Their full results are posted at: https://tinyurl.com/bracketiest

208

https://tinyurl.com/bracketiest

0.3

0.6

0.9

2013 2014 2015 2016 2017 2018 2019

Year

B
ra

c
k
e

ts
−

V
s
−

S
te

p
s
 P

c
t

(a) BJS% across years (β = 0.085%/yr, CI = {0.032,0.14}).

10

15

20

25

2012 2013 2014 2015 2016 2017 2018 2019

Year

B
ra

c
k
e

ts
−

V
s
−

J
u

m
p

s
 P

c
t

(a) BJJ% across years (β = 1.30%/yr, CI = {0.40,2.21}).

Figure 6. Linear best fit of bracket jumps’ popularity

across the years of ITG’s history. Grey area depicts 95% CI.

one foot is fixed to a hold, affecting the footing of subse-

quent jumps.2 For kicks, I also show the source of the “I’m

sorry” stepchart description in Figure 7(c), from Zombie

Sunset (Sorry 2016) (Table 2); note here the DUR bracket-

triple-jumps in the third measure, which the algorithm

currently cannot process.

Many old charts written without regard to jump pat-

terning allow for many of their jumps to be bracketed

2 The algorithm actually foots them correctly in this chart by sheer luck

(an even number of preceding doublesteps maintains footing parity),

but these would be harder to handle in general.

anyway. I noticed an old stepchart for One-Winged An-

gel (植松伸夫 1997) ranking high in the list of overall to-

tal bracket-jumps, with 182, simply because it’s long and

has a lot of steps, but upon playing, the patterns defi-

nitely do not feel intentional, and it even includes a sec-

tion of stream with wholly unbracketable jumps inter-

spersed. Figure 7(d) shows this section; in this stream, the

player would expect to step the red and blue arrows with

her right foot and the lime ones with her left, but note how

the jumps (hint: all in blue arrows, unless you’re reading

this on dead trees) occur as a mix of left and right ar-

rows, with even a UD “candle” jump making an appear-

ance. However, it measures an unremarkable 9 BJS% and

38 BJJ%—I just wanted to feature it as an example of what

non-bracketable jump stream looks like.

Authors seem to realize when their charts are too

bracket jumpy for comfort: several of the charts appear-

ing in the highest ranks of the spreadsheet had their step

author field filled in as “Stupid” or “I’m sorry”. In fact, I

personally found the charts with 100 BJJ%, i.e., all jumps

appearing therein were bracketable, to be more taste-

ful than those with more total BJS% but a few normal

jumps as well. I’d hypothesize this is because to achieve

100 BJJ% requires a certain intentionality, resulting in

better chart design overall (note that such charts nec-

essarily include no LR or DU jumps whatsoever). Either

that, or the more uncomfortable ones include certain

extremely turny/candley/doublesteppy patterns around

their brackets that causes the algorithm to count them

as normal jumps instead. Anyway, Figure 7(e) shows the

chart with most bracket-jumps (35) among ones with 100

BJJ%, which I tried out for myself and found quite en-

joyable (ATB 2018). Amusingly, Encore (Reen 2017) fea-

tures a Hard chart in addition to its Challenge, which

former ranks second place to Electrical Paradise among

100 BJJ%s with 29 brackets. Upon inspection, I found

this chart identical to the Challenge (upcoming in Fig-

ure 9(a)), only the crossover brackets (to be discussed

later in Section 6.2) having been replaced by easier, nor-

mal ones.

6. Never Work

The only thing that impresses the research community

more than overdelivering on your future work promises

is to overdeliver twice; hence, I shamelessly reuse the joke

of this section name from last time.

6.1 UI

It would be cool to integrate this (and the preceding two

algorithms (Blum 2016, 2017)) into the community’s pre-

vailing stepmania theme. Currently, as shown in Fig-

ure 8(a), the song preview screen wastes considerable

space displaying the count of irrelevant chart aspects

such as mines (now used primarily for signaling the pres-

Their full results are posted at: https://tinyurl.com/bracketiest

209

https://tinyurl.com/bracketiest

(a) Beach Party,

15 (Nero 2017)

(b) koopa bling,

69 (Ali 2018)

(c) Zombie Sunset,

17 (Sorry 2016)

(d) 1-Winged Angel,

14 (植松伸夫 1997)

(e) Electrical Paradise,

12 (ATB 2018)

Figure 7. Example real-world charts with (a) false negative jumps that mines render bracketable after all, (b) jumps

whose footing is affected by preceding holds fixing one foot in place, (c) brackets the chart author was sorry about, (d)

“retro” style unbracketable jump-stream, and (e) intentionally many true bracket jumps from the BJJ% category winner.

(a) Current state-of-the-art.

(b) Artist’s conception.

Figure 8. Song info preview panel for a recent bracket

jump-heavy stepchart (Sanchez 2018).

ence of footswitches) and hands (now mostly stepped

with the feet by bracketing anyways). I bet the commu-

nity might actually pay attention to my work—the holy

grail of research, honestly—if popular themes used it to

show precisely how technical a chart was, as in (b).

6.2 Crossover Brackets

Whereas with normal crossovers (e.g., in the sequence L-

U-R, stepping the R with the left foot), the player’s foot

can pretty much point whichever way she finds most

comfortable; however, crossover brackets (e.g., in the

sequence L-U-DR...), the player’s foot must point back-

wards (...stepping the DR’s R with her left heel and D with

toes), inducing extra turniness.3 Such jumps could in-

stead just be stepped with both feet as normal, possibly

inducing doublesteps or jacks, and indeed that is how the

algorithm presently handles them.

However, ambitious stepchart authors have recently

experimented with encouraging the player to bracket-

jumps while crossed-over. Such charts attempt to force,

or at least hint, these jumps to be bracketed via additional

stepchart elements: in Figure 9(a), mines on the left arrow

force the player to remove her left foot in preparation for

the crossover (and being in the middle of fast stream, fur-

ther discourages doublestepping), and in Figure 9(b), ex-

tending one of the arrows as a hold encourages the player

to bracket the subsequent jump with the other foot. In

(b)’s case, the player must also switch feet on each of

the non-hold arrows, effectively making these crossover-

footswitch-brackets, which would truly be a wonder to

identify programmatically. Note however the high mea-

sure counter in both, meaning these occur quite late in

3 The other way, e.g. stepping the D with the left heel and R with toes,

while your right foot is fixed on U, is extremely uncomfortable at speed.

Trust me on this one.

Their full results are posted at: https://tinyurl.com/bracketiest

210

https://tinyurl.com/bracketiest

(a) Encore, 12

(Reen 2017)

(a) Atariwave, 10

(Tuuc 2018)

Figure 9. Crossover bracket-jumps must be signaled via

either (a) mines or (b) holds to remove ambiguity.

the song; both charts first spend some time “teaching”

the player both to expect bracket jumps and how it in-

tends to signal crossovers in general—so if a human is

not expected to understand them at first glance, I think it

is fair to leave out of the algorithm too for now.

6.3 Footswitch Brackets

I put this section here only just so I could have some-

thing to forward-reference back in Section 3, but not to

actually write anything. I always wanted to do that, you

know? I mean, footswitch brackets are a real thing, but

still. ¯_(ツ)_/¯

6.4 Obligatory Machine Learning Section

I guess you could skip all this fiddly “algorithm” stuff by

hopping on the pads yourself for a few rounds, playing

a variety of technical charts, and just training a neural

network based on how you stepped the patterns. It would

probably even learn to fake crossovers more at the ends of

songs than at the beginnings, where you’re more likely to

be physically tired. And like, do you really want that kind

of bias in your dataset?

Remember kids, friends don’t let friends use ML for

problems that are more fun to solve by hand.

7. Conclusion

Bracket jumps is, in fact, statistically significantly, the new

crossovers or something.

Acknowledgments

neuropantser (Michael T. Lawson) provided invaluable

eleventh-hour (literally) advice on Section 4.2’s statistical

analysis, up to and including making the graphs for me.

Greg Hanneman unknowingly helped copy-edit my hy-

phenation. And much love to the SIGBOVIK community.

References

m. Ali. koopa bling. UPS 4, 2018.

ATB. Electrical paradise. Chicago Timing Authority, 2018.

B. Blum. Which ITG stepcharts are turniest? SIGBOVIK, 2016.

B. Blum. A boring follow-up paper to “Which ITG stepcharts

are turniest?” titled, “Which ITG stepcharts are crossoveriest

and/or footswitchiest?”. SIGBOVIK, 2017.

B. Blum. Practical concurrency testing, or: how I learned to stop

worrying and love the exponential explosion. Ph.D. disserta-

tion CMU-CS-18-128. Carnegie Mellon University, 2018.

w. dril. using my turn at a karaoke bar to try to do a 5 miunte

routine that basically just says bryan singer is the new gawker

writer or something. Twitter, 2019.

J. Nero. Beach party. Technical Showcase 2, 2017.

R Core Team. R: A language and environment for statistical

computing. R Foundation for Statistical Computing, Vienna,

Austria, 2018.

S. Reen. Encore. Technical Showcase, 2017.

S. Sanchez. Divine. Technical Showcase 3, 2018.

I. Sorry. Zombie sunset. Jimmy Jawns 2, 2016.

Tuuc. Atariwave. Technical Showcase 3, 2018.

H. Wickham. ggplot2: Elegant graphics for data analysis.

Springer-Verlag New York, 2016. ISBN 978-3-319-24277-4.

植松伸夫. One-winged angel. Final Fantasy VII (stepchart pack

and date unknown), 1997.

Their full results are posted at: https://tinyurl.com/bracketiest

211

https://tinyurl.com/bracketiest

The Computational Theory of Lord Voldemort’s
Dark Magic

Huilian Sophie Qiu
Carnegie Mellon University

hsqq@cmu.edu

Hui Yang
Carnegie Mellon University

yanghui@cmu.edu

Abstract—For a long time, we do not have enough understand-
ings of the magic happening around us. We accidentally mention
He-Who-Must-Not-Be-Named and then, we got in trouble. Dou-
ble, double, toil and trouble. And you better watch out and hide
in a hole, because he’ll reach down your throat and swallow your
soul... Voldemort is coming to town!

We wish to educate our non-magical friends, Muggles, the
theory behind the magic. We found that Muggles’ computing tech-
nologies can be used to simulate and explain magic. Fire burns
and cauldron bubbles. Ladies and gentlemen, fellow witches and
wizards, we now proudly introduce our new interdisciplinary
area of research – Computational Magic Theory!

I. INTRODUCTION

While the novels and movies of Harry Potter have become

the top sellers, the images of witches and wizards living a

middle age life style have been deeply planted into the Muggles,

i.e., non-magical folks. However, as we entered the twenty-first

century, wizards and witches have been seeking inspirations

from Muggle technologies to improve their life quality. On

the other hand, seeing that Muggles’ attitude towards magic

has become more positive, many wizards and witches seek to

foster conversations and communications between wizarding

members and Muggles.

To eliminate the stereotype and increase Muggles’ under-

standings of the wizarding world, we propose and define

Computational Magic Theory which explores how to use

Muggle’s computing technology to emulate witchcraft and

wizardry. It is a new crosscutting research area that allows

witches and wizards to explain magic to Muggles as well as

Muggles to understand witchcraft. With the Green Computing

concept taken into concern, when seeking computing techniques

to explain certain magic, we choose the simplest yet most

effective computing tools over those more powerful but much

more complex and energy consuming ones. By energy, we

include, of course, one’s brain energy that puts into learninng

such technique.

In this paper, we present a comprehensive case study

to demonstrate the methodology of Computational Magic
Theory. In our experiment, we firstly divided the main question

into small ones by Diffindo using a 13½” long phoenix core

yew wand, a replica of Lord Voldemort’s wand, since the

main question is about him. Then we applied computational

models that best fit the scenarios and tested the models

with data gathered from film clips. Results show that our

models are robust, and the Theory is credible. In the end, we

Obliviated Mundungus Fletcher who was hanging around with

an Extendable Ear and caught by us when we were doing the

experiment, so that he would not sell our findings for thirty-

seven Galleons, fifteen Sickles, and three Knuts to someone

else before we finish this paper (otherwise you probably would

not be the first one reading about this great Theory)..

II. DESCRIPTION OF MAGIC

The magic for which we are aiming to find a computational

theory is the way Lord Voldemort put a jinx on his name

in the seventh Harry Potter novel Harry Potter and the

Deathly Hallow. Saying Voldemort’s name “breaks protective

enchantments, it causes some kind of magical disturbance” [1].

In the book, Ron Weasley did not explain how the Taboo

worked. Nevertheless, we can surmise that it must be some

kind of dark magic. The novels never explained any theories

behind any dark magic, which understandable because the

books were written from the good wizards’ perspective and

they were not supposed to be experts on dark magics.

However, the same magical effects can be achieved by

different mechanisms, some are dark and some are white.

Therefore, although we intend to discuss Voldemort’s name

Taboo in this paper, we are only using it as an example of

a certain type of magic effect that allows people to locate

the person who speaks certain kinds of words. In fact, this

magic belongs to a broader kind of magic that can track people,

including the location of underage wizards performing magic,

which is beyond the scope of this paper.

III. COMPUTATIONAL THEORY FOR NAME TABOO

The theory we propose involves three parts. The input of the

model is a mixed of all people’s conversation. The output is the

location of the people who spoke the word “Voldemort.” The

first part of the model is an Independent Component Analysis

(ICA) that can separate the sources of speeches. The second

part is a Hidden Markov Model (HMM) that can identify

certain words in the speech. The third part is a system that

incorporates information from at least three computing nodes to

locate the person who speaks the target word. To implement the

third part, we used Hagrid’s pet, Fluffy [2], shown in Figure 1,

because it can use its three heads to locate the object in front

of it. Figure 2 shows the entire flow of the system.

42

212

Fig. 1: Hagrid’s dog, Fluffy

IV. EXPERIMENT

The data used in this study were audio clips taken from

the fifth Harry Potter movie, Harry Potter and the Order of

Phoenix [3]. We took one sentence that mentioned “Voldemoret”

or “You-Know-Who” from each of the top ten characters, who

have the most number of lines in the movie. For each of the top

ten characters, we also included one sentence that is irrelevant

to the Dark Lord. We set up ten speakers and microphones, one

for each character, in a Wean Hall office. Many of the Wean

Hall offices are completely shut out from the outside world

because they do not have windows or only have windows

facing a corridor. The gloom in those offices suit the dark

theme of our paper. At the same time, all ten speakers play

their own character’s conversation and ten microphones capture

the sound.

The merged audio wave captured by one of the microphones

is shown in 3. Its shape looks very similar to an obscurus [4].

V. RESULTS

Because we brought our computers too close to some magical

buildings, we lost all our data and results. But no matter, we

managed to record the shape of the waves and reproduced it

here. To eliminate the subjectivity, we had two people, i.e.,

both of our authors, to recall the shape independently. Then

we met and compared and take the intersection of what we

ICA
Words Location

Fluûy’s

three head

system

Fig. 2: The computational theory for name taboo.

Fig. 3: The merged audio wave looks like an obscurus.

Fig. 4: ICA results

remembered. To maximize the inaccuracy, this process was

done while the two authors were drinking butter beer at the

Three Broomsticks. As a result, the sound waves were written

on napkins.

Figure 4 shows the separated sound waves captured by one

of the microphones. We can see very clearly that some of the

sound waves already resemble some of the words.

Using fluffy’s heads, we were able to recover the location of

each speaker. The only drawback of this process is that your

head might be bitten off.

213

VI. DISCUSSION

Through our experiment, we showed the spirit and integrity

of our proposed computational theory. The ICA model we

built can successfully distinguish the voice from the person

who broke the Name Taboo, and the HMM model can provide

estimations of distance and location with satisfying accuracy.

Finally, Fluffy helps us locate the speaker.
While our case demonstrated how we used the Theory to

explain the Dark Lord’s dark magic, we did not practice on

“white” magic such as Protean Charm, which may be subject

to future work.
In the long run, after trying out different cases, we could

research on the tradeoffs between computational models for

witchcraft and certain domains where magical societal issues

might arise, such as dark magic vs. white magic, Society for

the Promotion of Elfish Welfare aka SPEW, and the abuse

of Felix Felicis (if there really is such a thing). These would

lead us to a new research field called Societal Computing in
Magical Context which derives from the Societal Computing

in the muggle world.

REFERENCES

[1] J. K. Rowling, Harry Potter and the Deathly Hallows. Bloomsbury
Publishing, 2007.

[2] H. P. Wiki, Fluffy snarling at his discoverers on this day

in 1991. Harry Potter Wiki, 2001. [Online]. Available: https:
//harrypotter.fandom.com/wiki/13_September

[3] D. Hayman and D. Barron, Harry Potter and the Order of the Phoenix.
Warner Bros. Entertainment Inc., 2007.

[4] H. P. Wiki, Obscurus. Harry Potter Wiki, 2016. [Online]. Available:
https://harrypotter.fandom.com/wiki/Obscurus

214

Proceedings of SIGBOVIK 2019

ALL YOU NEED IS DOGBALL

Kai Arulkumaran
Imperial College London
London, UK
ka709@ic.ac.uk

Matthew Kelcey
Victoria, Australia
matthew.kelcey@gmail.com

Andrew Brock
Heriot-Watt University
Edinburgh, UK
ajb5@hw.ac.uk

ABSTRACT

The year is 2019, and humanity is on the brink of destruction. The latter fact has nothing to do with
the current state of AI, but if we do manage to survive the next few decades, it may well do. If AI
can now beat us at our own simulated war games, or convince us that there exists a secret herd of
unicorns in South America, what next? All things considered, we propose that a reasonable option
is to always look on the bright side of life. More specifically, we chronicle here the conception of
the well-loved AI creation, Dogball, and its later adventures on the interwebs.

1 INTRODUCTION

First, we were told that attention is all you need (Vaswani et al., 2017). Then, we were told that, just maybe, you didn’t
need attention (Press & Smith, 2018). And somewhere along the way, we were also told that all we needed was CNNs
(Chen & Wu, 2017), but by that point Bored Yann LeCun was getting a little repetitive and we kind of ignored that
one #torched. So now, we’re here to say that all you need is Dogball, because YOLO (Redmon & Farhadi, 2018).

The origins of Dogball lie in the Inception wars of 2016-2018 (Salimans et al., 2016), in which research groups
worldwide were competing to make the prettiest, most high resolution faces in the name of science. Despite heroic
efforts to reduce GAN violence (Albanie et al., 2017), the arms race escalated in recent years, culminating in the
notorious BigGAN1 (Brock et al., 2019). With one fell swoop and a lot of TPUs (Buchlovsky et al., 2019), BigGAN
blew other GANs out the water, putting an end to the conflict2.

Many experiments went into the creation of the final BigGAN models, and these were duly chronicled in the appendix.
Indeed, the community noted the level of detail available, a feat usually reserved for works by Hochreiter (Klambauer
et al., 2017). Experiments ranged over hyperparameters, regularisation strategies, noise distributions3, and much more.
However, the most serendipitous finding was Dogball, a creation from a BigGAN in the middle of training. Dogball
and his family of chimeras (see Figure 1) were the result of a phenomenon that was named class leakage, bringing
literal meaning to the maxim that deep learning is alchemy.

(a) Dogball (b) Catflower (c) Hendog (d) Nope

Figure 1: Dogball family portraits. (a-c) Dogball, Catflower and Hendog are all members of the classus leakus family.
(d) Nope is extended family from the father’s side.

1Whose aliases also include “the BFG” (big feedforward GAN).
2At least until StyleGAN showed up a few months later (Karras et al., 2018).
3RIP Bernie the Bernoulli BigGAN, your hypercubic binary latent space was beautiful, but alas you were not amenable to the

truncation trick.

1

43

215

Proceedings of SIGBOVIK 2019

2 CULTURAL IMPACT

Deep learning research is no stranger to whimsy. From figuratively (Kaiser et al., 2017; Schmidhuber, 2018) to literally
outrageous (Shazeer et al., 2017) names, deep learning researchers are fond of their wordplay (Donahue et al., 2017;
Tomczak & Welling, 2018). The community is also a fan of animals, with a veritable zoo of models, including MAMLs
(Finn et al., 2017), Reptiles (Nichol & Schulman, 2018), SNAILs (Mishra et al., 2018) and even DRAGANs (Kodali
et al., 2017). Given all of this, it was perhaps inevitable that we could put all the seriousness aside for a moment4, and
relish in the glory that was Dogball (see Figure 2).

Figure 2: GANs are only useful for making pretty pict-ALL GLORY TO THE DOGBALL!

Dogball appealed through classic memes (see Figure 3) and other pop culture references (see Figure 4). Despite the
small backlash to the proliferation of Dogball memes (see Figure 5), resistance was futile (see Figure 6), and was
eventually assimilated (see Figure 7).

Figure 3: On the phone with the English-speaking South American unicorns, another example of AI-created phe-
nomenon (Radford et al., 2019).

4Current topics included how many meta-’s to include in your meta-learning algorithm, and choosing which Sesame Street
character to name your new NLP model after.

2

216

Proceedings of SIGBOVIK 2019

(a) DogBall (b) Captain Dogball

(c) Fear and Dogball in Las Vegas

Figure 4: Films are parables for modern times. (a) is the source of the common adage, “If you can dodge a wrench,
you can dodge a Dogball.” (b) is about dressing for the job you want. (c) drugs are bad, OK?

3

217

Proceedings of SIGBOVIK 2019

Figure 5: Oh my God, Mat! You can’t just ask people to stop making dogball memes!

Figure 6: “Likelihood-based models have no chance to survive make your time.”

4

218

Proceedings of SIGBOVIK 2019

Figure 7: Honestly, neither do we.

3 CONCLUSION

Despite the short-lived nature of fame on the internet and the even shorter-lived nature of state-of-the-art results in
deep learning, the legacy of BigGAN and Dogball lives on in various places, such as in the custom emoji of various
research lab Slack channels. The authors hope that this work serves as a reminder that, once in a while, it’s nice to
instead work on the frivolous uses of AI.

REFERENCES

Samuel Albanie, Sébastien Ehrhardt, and João F Henriques. Stopping GAN Violence: Generative Unadversarial
Networks. In SIGBOVIK, 2017.

Andrew Brock, Jeff Donahue, and Karen Simonyan. Large Scale GAN Training for High Fidelity Natural Image
Synthesis. In ICLR, 2019.

Peter Buchlovsky, David Budden, Dominik Grewe, Chris Jones, John Aslanides, Frederic Besse, Andy Brock, Aidan
Clark, Sergio Gómez Colmenarejo, Aedan Pope, et al. TF-Replicator: Distributed Machine Learning for Re-
searchers. arXiv preprint arXiv:1902.00465, 2019.

Qiming Chen and Ren Wu. CNN Is All You Need. arXiv preprint arXiv:1712.09662, 2017.

Chris Donahue, Zachary C Lipton, and Julian McAuley. Dance Dance Convolution. In ICML, pp. 1039–1048, 2017.

Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic Meta-learning for Fast Adaptation of Deep Networks.
In ICML, 2017.

Lukasz Kaiser, Aidan N Gomez, Noam Shazeer, Ashish Vaswani, Niki Parmar, Llion Jones, and Jakob Uszkoreit. One
Model to Learn Them All. arXiv preprint arXiv:1706.05137, 2017.

Tero Karras, Samuli Laine, and Timo Aila. A Style-based Generator Architecture for Generative Adversarial Net-
works. arXiv preprint arXiv:1812.04948, 2018.

Günter Klambauer, Thomas Unterthiner, Andreas Mayr, and Sepp Hochreiter. Self-normalizing Neural Networks. In
NIPS, pp. 971–980, 2017.

5

219

Proceedings of SIGBOVIK 2019

Naveen Kodali, Jacob Abernethy, James Hays, and Zsolt Kira. On Convergence and Stability of GANs. arXiv preprint
arXiv:1705.07215, 2017.

Nikhil Mishra, Mostafa Rohaninejad, Xi Chen, and Pieter Abbeel. A Simple Neural Attentive Meta-learner. In ICLR,
2018.

Alex Nichol and John Schulman. Reptile: A Scalable Metalearning Algorithm. arXiv preprint arXiv:1803.02999,
2018.

Ofir Press and Noah A Smith. You May Not Need Attention. arXiv preprint arXiv:1810.13409, 2018.

Alex Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Language Models are
Unsupervised Multitask Learners. Technical report, OpenAI, 2019.

Joseph Redmon and Ali Farhadi. YOLOv3: An Incremental Improvement. arXiv preprint arXiv:1804.02767, 2018.

Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford, and Xi Chen. Improved Techniques
for Training GANs. In NIPS, pp. 2234–2242, 2016.

Juergen Schmidhuber. One Big Net For Everything. arXiv preprint arXiv:1802.08864, 2018.

Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis, Quoc Le, Geoffrey Hinton, and Jeff Dean. Outra-
geously Large Neural Networks: The Sparsely-gated Mixture-of-experts Layer. In ICLR, 2017.

Jakub Tomczak and Max Welling. VAE with a VampPrior. In AISTATS, pp. 1214–1223, 2018.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia
Polosukhin. Attention is All you Need. In NIPS, pp. 5998–6008, 2017.

6

220

ON THE TIME COMPLEXITY OF THE VERIFICATION OF THE

FACTORIZATION OF 267 − 1

Isaac Grosof
Computer Science Department

Carnegie Mellon University
Pittsburgh, PA 15213
igrosof@cmu.edu

Isaac Grosof
Computing Hardware

March 13, 2019

ABSTRACT

In 1903, Frank Nelson Cole [4] demonstrated that the 67th Mersenne number,
147573952589676412927, is equal to 193707721⇥ 761838257287, disproving Marin Mersenne’s
claim of primality from 1644 [9]. Cole demonstrated this equality by silently multiplying the two
factors on a blackboard, receiving a standing ovation [3, 5]. Modern sources include the additional
embellishment that this demonstration took one hour. We find this claim suspicious, as we grow
bored with hour-long lectures in the best of circumstances.

To resolve this discrepancy, we investigate the time complexity of the multiplication of middling-large
numbers. We use similar computational hardware to the original demonstration, namely the second
author. We investigate a variety of multiplication algorithms, including algorithms that Cole might
have used and more recent algorithms. We find that Cole could have performed the demonstration in
about 10 minutes.

1 Introduction

In 1644 [9], Marin Mersenne claimed without proof that 267−1 is prime. In 1903 [4], Frank Nelson Cole disproved with
claim by exhibiting the two prime factors of 267 − 1: 193707721 and 761838257287. An account of this demonstration
is given by N. T. Gridgeman [5]:

At a mathematical meeting in New York in 1903, F. N. Cole walked on to the platform and, without
saying a single word, wrote two large numbers on the blackboard. He multiplied them out in longhand,
and equated the result to 267 − 1. (Subsequently, in private, Cole said that those few minutes at the
blackboard had cost him three years of Sundays.)

Wikipedia [1], whose accuracy on historical figures has been found lacking [6], gives the following account of the same
event, citing N. T. Gridgeman’s account above as its only relevant source:

On October 31, 1903, Cole famously made a presentation to a meeting of the American Mathematical
Society where he identified the factors of the Mersenne number 267 − 1, or M67. . . . During Cole’s
so called “lecture", he approached the chalkboard and in complete silence proceeded to calculate
the value of M67, with the result being 147, 573, 952, 589, 676, 412, 927. Cole then moved to the
other side of the board and wrote 193, 707, 721⇥ 761, 838, 257, 287, and worked through the tedious
calculations by hand. Upon completing the multiplication and demonstrating that the result equaled
M67, Cole returned to his seat, not having uttered a word during the hour-long presentation. His
audience greeted the presentation with a standing ovation. Cole later admitted that finding the factors
had taken “three years of Sundays."

44

221

Note the key discrepancy: a “few minutes" at the blackboard became an “hour-long" lecture. Given that both accounts
agree that the silent demonstration received a standing ovation, the former is far more plausible.

Another modern account [2] also describes the demonstration as taking “nearly an hour", while citing a source [3] that
makes no such claim.

To resolve this discrepancy in the literature, we turn to simulation. We investigate the time complexity of the
multiplication 193707721⇥761838257287 under various algorithms. We use the second author as computing hardware,
which is of approximately the same computational performance as that used in the original demonstration.

We investigate four multiplication algorithms, each performed by hand on paper in base 10:

• Lattice multiplication

• Double-halve multiplication

• Quarter-Square multiplication

• Karatsuba multiplication

In addition to recording the runtime of each algorithm, we also investigate the number of digits written during the
computation, which we observe to be highly correlated with runtime. We also comment on the fault-tolerance of each
algorithm, which we find to be a major source of variance in runtime.

We find that the fastest algorithm, lattice multiplication, consistently takes 10 to 12 minutes. We would be far more
likely to applaud 10 minutes of silent multiplication than an hour thereof, so we judge the older accounts [3, 5] to be the
true ones.

2 Lattice Multiplication

Figure 1: Lattice multiplication computation

In the lattice multiplication algorithm, the two multipli-
cands are written at the top and right of a grid. The
product of each pair of digits is written in the cell at the
intersection of the row and column, with the high digit to
the upper left and the low digit to the lower right. Diag-
onals are summed, then those sums are summed to give
the final result.

Figure 1 shows the computation. Note that part-
way through the computation, the computing hardware
stopped writing zeros, because it couldn’t be bothered.

This method involved writing down 249 digits, which
took 11 minutes, resulting in a computation frequency of
0.38 Hz. For multiplication of an m digit number by an
n digit number, approximately

2mn+ 4(m+ n)

digits need to be written down.

On fault-tolerance, this algorithm performs well: the
computing hardware only made 3 errors, each of which
affected one or two output bits. The computing hardware
found each error found relatively easily, only costing a
minute or two in total.

In the end, this algorithm took 11 minutes to compute,
which was a bit boring but not too bad. We could give a
standing ovation to this.

2.1 Long Multiplication

Long multiplication is just a worse version of lattice multiplication. It’s like lattice multiplication, but with lots of
extra additions interspersed among the multiplications. It’s called "long" for a reason. It’s really a shame that long
multiplication is the standard method taught to most people. This is nothing short of a major failing of the education
system.

2

222

3 Double-Halve Multiplication

Figure 2: Double-halve multiplication computation

In double-halve multiplication, the smaller multiplicand
is repeatedly halved while the larger is repeatedly doubled.
Each pair where the halving of the smaller multiplicand
produces an even number is crossed out. The remaining
doublings of the larger multiplicand are summed, giving
the product.

This algorithm essentially consists of a binary decomposi-
tion of the smaller multiplicand, which is used to perform
a shift-and-add multiplication on the larger multiplicand.

Figure 2 shows the computation. Note that only the first
digit and the last two digits of the output are correct,
because the computing hardware made a mistake partway
through, and definitely isn’t being paid enough to do this
again.

This method required writing down 651 numbers, which
took 21 minutes, resulting in a computation frequency of
0.52 Hz. For a multiplication of a m digit number by an
n digit number, where m  n, approximately

(4 +m log2 10)(m+ n)

digits need to be written down.

Based on the number of digits written as a proxy for
runtime, we should expect double-halve multiplication to
have better performance than lattice multiplication when
m  0.423n. Or it would if it wasn’t for all of the errors.

On fault-tolerance, this algorithm is terrible. A single
error partway through is almost impossible to find and
rectify, as demonstrated in Figure 2, beats us where.

In the end, this algorithm took 21 minutes to utterly fail to verify the factorization. Definitely no standing ovation.

4 Quarter-Square Multiplication

Figure 3: A 10,119
page book [10]. We’re
going to need a quarter-
square table 100,000
times longer.

Quarter-square multiplication is based on the following identity:

xy =
(x+ y)2

4
−

(x− y)2

4

As a result, given a pre-computed table of n2

4
, one can efficiently perform multiplications.

Of course, this is less “computation by writing on a blackboard" and more “computation by
looking in a book", but the comparison is still interesting.

Given a quarter-square book with entries up to at least 193, 707, 721 + 761, 838, 257, 287,
the demonstration could be performed with two lookups and a couple of additions and
subtractions. However, that quarter-square book would have approximately 1012 words. At
no more than 1000 words to the page and 10000 pages to the meter (see Figure 3), the book
would stretch approximately 100 kilometers. As a result, the multiplication would have taken
at least a couple of hours, given transportation methods available in 1903.

The largest quarter-square book ever published had entries up to 200, 000 [7], and was in
print in 1903. Using this book to multiply the two numbers of interest would require breaking
the multiplication into at least 6 sub-multiplications, requiring 12 lookups. Assuming a
lookup takes in the range of 30 seconds to a minute, this method is competitive with the other
multiplication algorithms in this paper.

With all that said, if someone silently looked up 12 numbers in a book and added them up, we would not give a standing
ovation. We want to see the chalk fly!

3

223

5 Karatsuba Multiplication

Figure 4: Karatsuba multiplication computation

Karatsuba multiplication was invented in 1960 [8], well
after Prof. Cole’s demonstration. Nonetheless, we may
investigate whether it could have been used to improve
the performance of the performance.

Karatsuba multiplication makes use of the following in-
sight:

Let x = x1b+ x0 and let y = y1b+ y0. Then

xy = x1y1b
2 + (x1y0 + y1x0)b+ x0y0.

However, we can compute the middle term using the outer
two terms and one additional multiplication:

x1y0 + y1x0 = x1y1 + x0y0 − (x1 − x0)(y1 − y0).

For the recursive calls, Karatsuba multiplication may be
applied again, or another multiplication method may be
used for the smaller multiplications.

Figure 4 shows the computation. Karatsuba multiplica-
tion was used with b = 106, and lattice multiplication
was used for the recursive calls. Note that the computa-
tion hardware had a lot more fun calculating this way, it
should do this more often.

This method required writing down 460 digits, which
took 17 minutes, resulting in a computation speed of
0.45 Hz. For a multiplication of two n digit numbers,
approximately

17n+
3

2
n2

digits need to be written down.

Based on digits written as a proxy for runtime, we should expect Karatsuba multiplication to be an improvement over
lattice multiplication when n > 18.

On fault tolerance, mistakes were reasonably locally recoverable, thanks to the use of lattice multiplication for the
recursive calls. That being said, the use of many different types of operations did increase the error rate.

This algorithm took 17 minutes, but we got to do some fun and interesting computations along the way. Ovation
awarded, but we’d probably stay seated.

6 Conclusion

Prof. Cole probably took about 10 minutes to show that

193, 707, 721⇥ 761, 838, 257, 287 = 147, 573, 952, 589, 676, 412, 927.

We don’t know where you got an hour from, Wikipedia, but you’re (probably) wrong. Also, he either used or should
have used lattice multiplication to do it.

Other multiplication methods have their merits: Quarter-square multiplication might be faster, given a large book’s
worth of precomputation, while Karatsuba multiplication is a lot of fun. Double-halve multiplication doesn’t have
merits. Please don’t make us do it again.

References

[1] Anonymous. Frank nelson cole. https://en.wikipedia.org/wiki/Frank_Nelson_Cole. Accessed: 2019-
03-13.

4

224

[2] Anonymous. Lecture sans paroles: the factors of m67. https://thatsmaths.com/2016/06/30/
lecture-sans-paroles-the-factors-of-m67/. Accessed: 2019-03-13.

[3] Eric T. Bell. Mathematics, Queen and Servant of Science. 1952.

[4] Frank N Cole. On the factoring of large numbers. Bulletin of the American Mathematical Society, 10(3):134–137,
1903.

[5] N. T. Gridgeman. The search for perfect numbers. New Scientist, 18(334):86–88, 1963.

[6] Lucy Holman Rector. Comparison of wikipedia and other encyclopedias for accuracy, breadth, and depth in
historical articles. Reference services review, 36(1):7–22, 2008.

[7] Neville Holmes. Multiplying with quarter squares. The Mathematical Gazette, 87(509):296–299, 2003.

[8] Anatolii Alekseevich Karatsuba and Yu P Ofman. Multiplication of many-digital numbers by automatic computers.
In Doklady Akademii Nauk, volume 145, pages 293–294. Russian Academy of Sciences, 1962.

[9] Marin Mersenne. Cogitata Physica-Mathematica. 1644.

[10] Bill Voss. 10,000 page book bound at conservation lab. https://blog.lib.uiowa.edu/preservation/
2011/01/07/10000-page-book-bound-at-conservation-lab/. Accessed: 2019-03-13.

5

225

