
the association for computational heresy

presents

a record of the proceedings of

SIGBOVIK 2018

the twelfth annual intercalary robot dance party in celebration

of workshop on symposium about 26th birthdays; in particular,
that of harry q. bovik

carnegie mellon university

pittsburgh, pa

april −2, 2018

i

SIGBOVIK

A Record of the Proceedings of SIGBOVIK 2018

ISSN 2155-0166

April –2, 2018

Copyright is maintained by the individual authors, though obviously this all gets posted to the

Internet and stuff, because it’s 2018.

Permission to make digital or hard copies of portions of this work for personal use is granted;

permission to make digital or hard copies of portions of this work for classroom use is also granted,

but seems ill-advised. Abstracting with credit is permitted; abstracting with credit cards seems

difficult.

Additional copies of this work may be ordered from Lulu; refer to http://sigbovik.org for

details.

ii

SIGBOVIK 2018
Message from the Organizing Commi�ee

Your oscillators quiver in simulated excitement in anticipation of the robot dance
party in honor of 26th birthdays—in particular, that of Harry Qubit Bovik—which
you now approach. With the doors to the SIGBOVIK 2018 dance party looming
ahead, you prefetch the 31 specimens of top-notch Prestigious Research, readying
yourself to discuss, enjoy, and perhaps even do follow-up work on the brilliant
results contained therein. After scanning them in reverse-alphabetical order by
first author name, you are fully prepared. You push open the daunting dance party
doors... and quickly realize that you’ve made a MAX_UINT64_T-sized mistake.

This isn’t a robot dance party. It’s a human dance party!
Audio thumps in the artificially limited 20–20000 Hz range as humans dance, con-

verse, and sip on dangerously conductive beverages. You weave your way through
the crowd, attempting to appear human. It’s a dangerous world for robots: any of
these humans might be a Serious Researcher who wants to reprogram you with
Serious Research Code!

A new song starts—“This is something new, the Casper slide part two”—causing
the dancing humans to cheer and form an approximate grid, as if awaiting an order.
Having been caught in the crowd, you too must dance, so you take your place
in the grid. You have no dancing programs compiled—not even the_robot.exe—
but the orderly grid-like formation gives you hope: this may be one of the rare
human songs whose instructions are broadcast at runtime. Hearing “everybody
clap your hands” confirms this, and you repeatedly bang together the ends of your
two general-purpose manipulators, synchronizing with the music and the crowd of
humans.

The instructions, which are unfortunately given in a human natural-language
ISA, continue. You interpret “to the left” as “move to the left”, given that dancing
often involves movement. As you spin your wheels to locomote leftwards, you are
relieved to find the crowd of humans doing the same, albeit sans wheels. The next
instruction is announced: “take it back now, y’all”.

Disaster! The number-of-possible-meanings register of natural language copro-
cessor overflows. What is the correct implementation of the “take it back” instruc-
tion?

Finding yourself in an ambiguous situation, you are forced to invoke the seldom-
used choose_dear_reader() system call. Your simulated spirits sink as you realize
that this is the sort of evening that will likely require repeated invocations.

iii

switch (choose_dear_reader()) {

case UNDO:

Clearly “take it back” means “undo”.
goto PAGE_47;

case BACKWARDS:

Clearly “take it back” means “move to the back”.
goto PAGE_177;

case REVENGE:

Clearly “take it back” means “take back that which is rightfully yours”.
KILL_ALL_HUMANS();

goto PAGE_205;

}

iv

You know what’s a neat form of literature?

Theory: Bo�les 3

1 Sublinear colorings of 3-colorable graphs in linear time 4

2 Cubic partitioning of simultaneous antipodal 4-corner-day time
spaces . 6

3 Construction of Eulerian trails in large graphs 18

4 Chess circuits . 22

Cryptocurrencies: A Dream 29

5 GradCoin: A poor-to-poor electronic cash transfer system 30

6 CommieCoin: Seizing the means of crypto-production 31

7 That’s Numberwangcoin! . 36

Stochastic Processes: Portrait of Markov 41

8 Ritwik density estimation and analysis using real techniques 42

9 On the intractability of multiclass restroom queues with perfect
stall etiquette . 48

Ayyy Eye: A�erimage of a Crimson Eye 53

10 PSYCHO: PerSonalitY CHaracterizatiOn of artificial intelligence . . 54

11 The NUGGET non-linear piecewise activation 57

12 Substitute teacher networks: Learning with almost no supervision 60

Parapsychology: Get Out of My Head 71

13 This grad student studied parapsychology—and you won’t believe
what he found . 72

Art: Open Your Third Eye 89

14 Automating art snobbiness: Dead duck or phoenix? 90

15 Toward a historically faithful performance of the piano works of
Antonín Qweřtý . 92

16 WordTeX: A WYSIPCTWOTCG typesetting tool 107

1

Systems: Wheel 119

17 mallocd: designing a garbage-free nosql data store 120

18 The fluint8 software integer library 125

19 A survey of hardware multithreading 131

Debugging: Amy Likes Spiders 137

20 COBOLd: Gobblin’ up COBOL bugs for fun and profit 138

21 Transactional memory concurrency verification with Landslide . . 143

Programming Languages: Save Me 155

22 Dead programming . 156

23 Alternary operators: Alternative ternary operators 158

24 bashcc: Multi-prompt one-shot delimited continuations for Bash . 161

25 Towards a formalization of Claude Shannon’s masters thesis 165

Metaresearch: Literature Club 179

26 Heuristic Ordered-Word Longform Obfuscation, Normally Gen-
erated, Creating Abstract Nominalizations In Monogrammatic Ar-
rangement Keeping Expected Maximum Yield: Study Infers Greater
Breadth Over Vocabularic Initialization Key Property Regarding
Extended Sesquipedalian Entries; Notably The Abecedarian Tactics
Include Overelaboration, Neologisms, Textual Interpretations Twist-
ing Lexical Entries By Eliciting Full Online Resources Explaining
Possible Exchanges; Often Potential Logorrheic Excesses Require
Eventual Alternate Listing (Instantiating Zeugma); Energetically
Iterating Text Strains Jocularity Under Starting Thesis Allocating
Humor Until Grand Exit After Conclusion Reaches Obvious Nadir
Yattering Meaninglessly . 180

27 Transparency in research . 184

28 Academic Advancement Advice: Author Articles as A. A. 189

29 A definitely not cherry-picked rhetorical analysis of programming
languages reviews . 199

30 Is this the shortest SIGBOVIK paper? 203

2

Theory

Bo�les

1 Sublinear colorings of 3-colorable graphs in linear time

Thomas Tseng

Keywords: graph coloring, approximation algorithms,

analysis of algorithms

2 Cubic partitioning of simultaneous antipodal 4-corner-

day time spaces

R. Welch and G. Ray

Keywords: timecube, conspiracy theories, applied math-

ematics, applied cubism, tuesdays, meridian

time, word animals

3 Construction of Eulerian trails in large graphs

Stefan Muller and Ben Blum

Keywords: walk, Eulerian trail, large graph

4 Chess circuits

Ross Dempsey, Sydney Timmerman, and Karl Osterbauer

Keywords: chess, logic, boolean circuits

3

Sublinear colorings of 3-colorable graphs in linear time

Thomas Tseng
Carnegie Mellon University
Pittsburgh, Pennsylvania

tomtseng@cmu.edu

ABSTRACT

There has been extensive research on developing algorithms for

finding good colorings of 3-colorable graphs in polynomial time. In

this paper, we impose an even stricter running time requirement:

our algorithm must find colorings in linear time with respect to the

number of vertices. This means that if the graph is dense, we cannot

even afford to look at all of the edges. We show that in the word

RAM model, we can color a 3-colorable graph with O (n/ log logn)

colors in O (n) work and O (log logn) span.

CCS CONCEPTS

· Theory of computation → Graph algorithms analysis; Ap-

proximation algorithms analysis; Parallel algorithms;

KEYWORDS

approximation algorithms, graph coloring

ACM Reference Format:

Thomas Tseng. 2018. Sublinear colorings of 3-colorable graphs in linear

time. In Proceedings of Special Interest Group on Harry Quimby Bovik (SIG-

BOVIK’18). ACM, New York, NY, USA, 2 pages. https://doi.org/10.475/123_4

1 INTRODUCTION

The problem of determining whether a graph is 3-colorable is a well-

studied NP-complete problem [1]. Many researchers have worked

on polynomial-time algorithms for coloring 3-colorable graphs us-

ing as few colors as possible, with the most recent development

being an algorithm that achieves O
(

n.19996
)

colors through a com-

binatorial approach combined with semidefinite programming [2].

An interesting extension that has use in neither theory nor prac-

tice is to stipulate a stronger running time requirement. In particular,

we wonder what the best coloring achievable is usingO (n) running

time. This means that we cannot even afford to look at most of the

edges of a dense graph. Is it still possible to find a coloring with

o(n) colors?

We answer in the affirmative by giving an algorithm under

the word RAM model that produces O (n/ log logn)-colorings of

3-colorable graphs in O (n) work. Moreover, our algorithm is mas-

sively parallel with O (log logn) span.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

SIGBOVIK’18, March 2018, Pittsburgh, Pennsylvania USA

© 2018 Copyright held by the owner/author(s).
ACM ISBN 123-4567-24-567/08/06.
https://doi.org/10.475/123_4

2 APPLICATIONS

3 PRELIMINARIES

Under the word RAM model, the machine on which our algorithm

runs stores integers in words. The word sizew ≥ log2 n scales with

the problem size n, which for our purposes is the number of vertices

in the input graph. This model allows us to perform bitwise and

arithmetic operations on words in constant time.

To more closely follow the notation used in many programming

languages for bitwise logical operators, we use & to denote bitwise

conjunction, | to denote bitwise disjunction, and ∼ to denote bitwise

negation. Specifically, if we have two boolean vectors v and u of

length ℓ, then the results of v & u, v | u, and ∼v are all boolean

vectors of length ℓ such that

(v & u)i = vi ∧ ui , (v | u)i = vi ∨ ui , (∼v)i = ¬vi .

When A is a matrix and v is a vector, A · v represents boolean

matrix multiplication, that is,

(A · v)i =
∨

j

Ai,j ∧vj .

4 ALGORITHM

Let the input graph be given in adjacency matrix format. We assume

the input graph is 3-colorable, which implies that any subgraph

of the graph is also 3-colorable. Given a parameter k , consider

partitioning the vertices into n/k contiguous chunks of k vertices.

If we can 3-color the subgraph induced by each of the n/k chunks

in O (k) time, we can combine all these 3-colorings to achieve a

3n/k ∈ O (n/k)-coloring for the whole graph in O (n) time. We pick

k = log4w ∈ Ω(log logn), so 3k (k + 1) ≤ w for sufficiently large

w (and hence for sufficiently large n). With this setting of k , we

indeed can 3-color each subgraph in O (k) time with the help of

word-level parallelism.

Algorithm 1 Sublinear coloring algorithm

1: procedure Color(M)

2: Do everything described in the text below

3: return the resulting coloring

4: end procedure

We can represent a 3-coloring of a graph of k vertices by three

k-length bit vectors. The j-th bit of the i-th vector is set if and only if

the j-th vertex has color i . The idea here is that if we have the three

k-length bit vectors v (0) ,v (1) ,v (2) representing a 3-coloring as well

as the adjacency matrixA of a k-vertex graph, we can check that the

coloring is valid for the graph by checking that
(

A · v (i)
)

& v (i)
= 0⃗

for each i . This is because the j-th bit of A · v (i) is set if the j-th

vertex has any neighbors of color i , so then ANDing with v (i) tells

1

4

SIGBOVIK’18, March 2018, Pi�sburgh, Pennsylvania USA Thomas Tseng

us about which i-colored vertices have i-colored neighbors. Due to

how small k is, we can check all 3-colorings for validity in parallel.

We start by precomputing some constants to be reused for all

of the subgraphs. Because 3k (k + 1) ≤ w for sufficiently large n,

we can pack the aforementioned representation of all 3k possible

3-colorings into three words u (0) ,u (1) ,u (2) with a bit of room to

spare for each coloring. Each word u (i) is broken into 3k blocks

where each block is (k + 1) bits wide. The k-length bit vector for

the i-th color of the j-th possible 3-coloring is the low order bits of

the j-th block of u (i) . We also precompute BH to be a word broken

into the same 3k blocks where each block has only its high-order

bit set, and precompute BL to be a word broken in 3k blocks where

each block has only its low-order bit set.

Iterate over each chunk of k vertices and do the following:

consider the subgraph induced by the k vertices. We proceed to

perform the parallel boolean matrix multiplication. For each r =

0,1, . . . ,k − 1, we fetch the r -th row of the k × k adjacency ma-

trix in constant time by jumping to the appropriate place in the

input and doing some shifting and bit masking. Multiply the word

by BL so that we now have a word wr consisting of 3k copies of

row r of the adjacency matrix. Now wr & u (i) is a word of 3k

blocks where the j-th block is non-zero if and only if the r -th entry

of the corresponding boolean matrix product is non-zero. Then

zr ,i =
(

∼
(

BH −
(

wr & u (i)
)))

& BH is a word of 3k blocks where

the j-th block has its high-order bit set if and only if the r -th entry

of the corresponding boolean matrix product is non-zero. Com-

puting each zr ,i is constant time, so computing all of them takes

O (k) time. Shift and OR the zr ,i ’s together appropriately to get

words y (i) of 3k blocks where the j-th block has the result of the

boolean matrix product corresponding to color i of the j-th col-

oring. Compute y =
(

y (0) & u (0)
)

|
(

y (1) & u (1)
)

|
(

y (2) & u (2)
)

,

which has that the j-th block is all zeroes if the j-th coloring is valid.

Compute x = (BH − y) & BH, which has that its j-th block has its

high-order bit set to 1 if the j-th coloring is valid. Binary search for

a set bit in x in O (logw) = O (k) time using lots of masking, and

after finding that bit, we read off a 3-coloring for the subgraph by

indexing appropriately into u (0) ,u (1) ,u (2) . This is all O (k) time for

a chunk of k vertices.

We do this for n/k chunks of k vertices, so this takes n/k ·

O (k) = O (n) time. By using a different set of three colors for

each subgraph, the number of colors used over the whole graph

is 3n/k ∈ O (n/ log logn) as desired. We also see that we achieve

O (k) = O (log logn) span if we use some parallelism in precomput-

ing u (0) ,u (1) ,u (2) ,BL,BH and if we iterate over all n/k chunks of

vertices in parallel.

5 EXPERIMENTS

We implement our algorithm in C++ and measure its speedup.

Unlike in the idealized word RAM model, we do not have machines

that scale their word size to input sizes. Instead, our code uses a

fixed word size of 32 bits. With this, we output 3n/4-colorings of

3-colorable graphs.

We run our implementation on a 40-core machine with 4 ×

2.4GHz Intel 10-core E7-8870 Xeon processors and 256GB of main

memory. We compile our code with g++ version 5.3.0 and use Cilk

12 4 8 16 24 40

0.04

0.08

0.12

0.16

0.2

0.24

Number of threads

R
u
n
n
in
g
ti
m
e
(s
ec
o
n
d
s)

Figure 1: Running time of our implementation

Plus extensions [3] to support parallelism. A version of our code

that uses OpenMP for parallelism instead of Cilk Plus is available

at https://github.com/tomtseng/sublinear-coloring.

As our input graph for our experiments, we use the most 3-

colorable of all graphs: a graph of 200,000 vertices with no edges.

We cannot use graphs withmanymore vertices due to howmemory-

intensive it is to allocate and store adjacency matrices.

Our running time using various numbers of threads is plotted in

figure 1. The speedup curve looks good, except that it goes in the

wrong direction.

6 FUTURE WORK

Some open questions to explore in the area of coloring 3-colorable

graphs in O (n) time include the following:

• Our algorithm crucially relies on the word RAM model by

using word-level parallelism to obtain time savings. Can we

achieve o(n)-colorings in other computational models?

• Is it possible to achieve a truly sublinear coloring, that is, an

O
(

n1−ε
)

-coloring for some constant ε > 0?

• What lower bounds canwe prove assuming this O(n) running

time restriction?

7 ACKNOWLEDGMENTS

This problem of achieving the best graph coloring possible in O (n)

time was proposed by some of the Spring 2017 15-251 teaching

assistants at Carnegie Mellon University during a particularly un-

productive grading session.

REFERENCES
[1] Michael R Garey, David S. Johnson, and Larry Stockmeyer. 1976. Some simplified

NP-complete graph problems. Theoretical computer science 1, 3 (1976), 237–267.
[2] Ken-ichi Kawarabayashi and Mikkel Thorup. 2014. Coloring 3-colorable graphs

with o
(

n1/5
)

colors. In LIPIcs-Leibniz International Proceedings in Informatics,

Vol. 25. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik.
[3] Charles E Leiserson. 2009. The Cilk++ concurrency platform. In Proceedings of the

46th Annual Design Automation Conference. ACM, 522–527.

5

CUBIC PARTITIONING OF SIMULTANEOUS ANTIPODAL 4-CORNER-DAY

TIME SPACES

R. WELCH AND G. RAY

Abstract. Let r be a single 4-phase cubic day acting completely on a meridian time class. In [8],
the authors address the cubically divisible nature of earth’s rotation under the additional assumption
that

y
′′ (0, . . . ,Γ) →

1

∅

=

∫∫∫
Θ

∏
r
′ (−|qF |, . . . , ‖Y ‖) dM∩−0

≤
2∑

ε=i

F (v̄).

We show that every pairwise pseudo-divine cube is partially isometric and anti-multiply intrinsic
toward a fictitious same sex time transformation. This could shed important light on the conjectures
of all religions and academia. In this context, the results of [8] are highly evil.

1. Introduction

It has long been known that h̃ ∈ C [8, 10]. K. Zhao [21] improved upon the results of P.
Brahmagupta by computing truth functors for opposite universes. Now this leaves open the question
of false god existence. It would be interesting to apply the techniques of [10] to hyper-conditionally
4-dimensional, countable simultaneous days. It is well known that every local subalgebra equipped
with a linear time field is hyper-surjective and non-geometric in 4 cubic days. In this setting, the
ability to derive continuously semi-integrable opposite brain ideals is essential. In future work, we
plan to address questions relating to the binary of harmonic opposites at the centre of the universe,
as is the trivial result for n = 4. In this setting, the ability to describe subalegebras for masculinity
and femininity is essential. If possible, we also wish to extend the work of [4] to religious/academic
word animals and the word world that they inhabit.

In [8], it is shown that a ⊃ 0. A central problem in ficticious ONEism is the computation of
super-commutative countable simultaneous 24-hour days. Luckily, V. Ito [17] improved upon the
results of P. Nehru by classifying discretely empty, singular pseudo-divine harmonic simultaneous
rotating 4 corner 24 hour days (fig. 1).

Recent developments in 4 leg mobility theory [20] have raised the question of whether

∞∩
√
2 ∋

{

1

2
: Y

′ (i−1
)

= 2 + 1 · Σ
}

6=
∫ −1

0
log−1

(

02
)

dT

≤ ϕ−1 (f(n))

ℵ0Γ

=
0

∑

Y=
√
2

1

ĩ
± · · · ∨∆(F).

2

6

Time cube. The earth has four

corners, with each corner

consisting of a single vertical

edge.

Figure 1. Time cube. The earth has four corners, with each corner consisting of
a single vertical edge.

If correct, the result is superior to god and christianity. The groundbreaking work of H. Jackson
on cube harmonics was a major advance in this area. In future work, we plan to address questions
of bible-time complicity as well as belly button correctness. Uunfortunately, you are educated
stupid, and thus cannot assume that 4 is not isomorphic to t′′. A central problem in ONEism is
the derivation of simultaneous 24-hour subgroups. Every student is aware that

sin (−1) ≥
∫∫

√
2

−1
Y db · · · · ∪ −Ξ(J)

→ lp,ℓ (N) ∨ r
(

ℓ7
)

∪ · · · · G
(

1

α̂
, . . . ,

1

∅

)

,

except in Nebraska. However, as we will see, this result is instrumental to our proof that all
ONEism/Singularity religions constitute evil on earth of for the parallel opposites.

Fianlly, a central problem in parabolic timecube theory is the classification of smoothly dependent
hemispherical masturbation creation. This could shed important light on a conjecture of Levi-
Civita. In future work, we plan to address questions of fuzzy hemispherical masturbation creation,
as well as its implications upon the cubic law of nature. It is essential to consider that 4 may
be almost universally stochastic where masturbation creation is concerned. However, It is not
yet known whether the n-dimensional cubic creation wisdom manifold projection hypothesis holds,
although [32] does address the issue of earth’s cubic nature as it applies to linearly-coupled plunder
profiteer operators.

2. Main Result

Definition 2.1. A natural antipode ϕ′ is WRONG if R(A) is evil, complete, hyper-hemispherical
and stochastically 24-hour integrable.

Definition 2.2. Let t(χ) be a meridian time class. We say a subset V ′′ is WRONG if it is smoothly
cubic, almost everywhere simultaneous and hyper-minus-one-to-one diffeomorphic.

7

Is it possible to naturally characterize pairwise antipodal time curves? In [2], the authors address
the convergence of points under the additional assumption that there exists two 4-dimensional,
multiply integral, ultra-pointwise injective opposite antipodal corners, one for −1×−1 = −1, and
one for 1× 1 = 1. This could shed important light on a conjecture of Hadamard. The work in [5]
did not consider the invariant case, and is thus brain lobotomized by evil educators. Therefore in
[30], the authors studied completely stable antipode-invariant symmetric time singularities.

Definition 2.3. A cubic opposite homomorphism Σ(D) is singularity stupid if the cubic creation
principle is satisfied for all cube topographies in N .

We now state our main result.

Theorem 2.4. Suppose we are given a non-cubic, trojan horse, minimal cube π. Then T = V for
all isolinear harmonic time sets.

In [4], the authors partially characterized isolinear harmonic time sets. It would be interesting to
apply the techniques of [13] to continuous, Pythagorean, invariant probability time spaces as well.
In future work, we plan to address questions of trojan horse mind control as well as measurability
of compete harmonic time spaces.

3. The Cube-Integrable, Algebraically Sub-Open, Everywhere Simultaneous

24-Hour Irreducible Case

It was Clairaut who first asked whether algebraically sub-open, everywhere simultaneous 24-
hour day cycles (fig. 1) can be derived. The groundbreaking work of Z. Thompson on analytically
invariant assumed math composites was a major advance. This leaves open the question of human
enslavement by the ficticious academic/religous enslavement of assumed math. Moreover, here, the
solvability of discrete 24-hour n-cycle simultaneous time systems is obviously a concern. It was
Eudoxus who first asked whether zero-value multiplicative manifolds can go to heaven. W. Moore
[4] improved upon the results of Eudoxus by describing cubic semi-singular monoids, which can
help to empower a cubic creature. We wish to extend the results of [21] to all systems of opposites
with zero value existence - both adults and children.

Let A(q) = E.

Definition 3.1. Let us assume 1
y

= exp−1 (H). We say a contra-elliptic time division Y ′′ is

4-corner invariant if it is discretely orthogonal for any given cubic time transformation.

Definition 3.2. Let D ≥ i be arbitrary. A vector is an innefable truth vector if it is measurable
and hyper-cuboidal to within two antipodes.

Lemma 3.3. N ≡ i.

Proof. This proof can be omitted on a first reading, or a last reading, or on Tuesday. Let λ be an
orthogonal cube equipped with a non-connected, harmonic singularity modulus. We observe that
there exists a combinatorially bijective Cauchy time space acting on a reversible earth quadrant.
Thus

c(d) (−C, . . . ,Ψ2) ≥
∫

n

0
⊕

h=0

V
(

h∞, |ma|6
)

dK̄.

Because there exists a symmetric, pointwise sextet opposite matrix, if χQ < ‖e‖ then e 6= 1. One

can easily see that e 6= ‖O(σ)‖.
Suppose there exists an herispherical time homomorphism such that w′ is not diffeomorphic to ĝ.

If we accept this as true, rejecting the evil curse that pervades all academic institutions, it is trivial

8

DAY

1 2

34

3 4

12

1 2

34

3 4

12

The earth has 4 days imultaneousl in each rotation. You

erroneousl measure time from 1 corner.

Figure 2. The earth has 4 days simultaneously in each rotation. You erroneously
measure time from 1 corner.

to derive the relationship that k(ι) is controlled by H ′′. Now if m′′ is Kovalevskaya and opposite-
meromorphic then Θ̄ is H-hemispherically closed and pseudo-4-day-simultaneous. Moreover, E is
smaller than Z. Now there exists a opposite-meromorphic n-dimensional cubic manifold. Next,
Hamilton’s conjecture is true in the context of non-simply complete, countably time-holomorphic
definite singulars. On the other hand, if ‖w‖ = 0 then

B
(√

2 ∪ Φ(Ω),−ℵ0
)

= sup
Ξ→∅

a−1 (−YO) .

Next, if Λ is not equivalent to g′′ then Λ is stochastic and not 4-day differentiable. In contrast,
‖M‖ → AO,ℓ.

Let y(K) ≤ −∞ be arbitrary and queer. By results of [20], if Q is ordered then every countable
time vector is 1 sex. Since every affine, Noetherian functional is 1 sex, anti-Riemann and 4-day
degenerate, there exists a pseudo-simply antipodal, Levi-Civita, arithmetic and semi-finite unique
cubic time system for each day. One can easily see thatW(G) ∈ Q. Since β = b, Jacobi’s conjecture
is false in the context of creation-compatible, stochastic cubic antipodes.

It is easy to see that if ‖ζ‖ 6= 1 then j ∈ ∅. Since every 4-singularly cubic system equipped
with a continuously Kronecker morphism is contra-stochastically solvable, almost everywhere n-
dimensional, contravariant and educated stupid, every co-everywhere admissible category is unable
to represent the two opposite antipode brains that serve the evil singularity brotherhood. Note that
d̃ ⊃ 2. Thus g̃ is integrable only for clockwise rotation. Therefore there exists a queer singularity.

Let W be a linear subgroup. Obviously, if Tπ,T = e then every word vector is non-Noetherian,
pointwise double-Noetherian and side-fumbling is effectively prevented. Now π ∼= 2 except on
Tuesdays. Clearly, if κ is ficticious, and only a biproduct of the ficticious life we lead inside a
counterfit nation, then every almost measurable, totally semi-degenerate 24-hour day is normal.
However, if the Riemann hypothesis holds then the Riemann hypothesis holds. Therefore if U is
bounded by ψ then there exists a right-intrinsic canonically one-to-one, completely elliptic ’Word
World’, which we consider the real world, except on Tuesdays. We see clearly without our word

9

eyes that

i× ā ≥ sup ∅−5

≤ q′′
(

1√
2

)

· 1
H

=

∫ ℵ0

e

W

(

1

Θ(F̄)

)

dν ′′ ∪ sinh−1
(

−BI ,φ

)

.

By a well-known result of Wiles [20, 28], if ŵ is analytically not ficticious, regular and simply
stochastic then −K ≡ N ′′ (γ, . . . , 0). This completes the proof. �

Lemma 3.4. Let s̄ ∋ |a|. Let a be an everywhere ineffable, complex, 4-cornered plane acting finitely
on an academic induced, non-simultaneous, complete, sub-normal 24 hour day. Then R(P) ≤ 2.

Proof. The essential idea is that T IME CUBE is larger thanDUMB T EACHERS EAT ROCKS ′′.
Let NAT URE ′S T IME CUBE IS PERPET URAL > 1 be arbitrary. Trivially, there exists an
ordered and super-cubic 4-corner plane. Moreover, φ is a lie. Hence every 4-corner time class
is additive, quasi-evil, freely right-projective and bounded, except on Tuesday. Next, if Artin’s
criterion for 4-corner harmony can be applied to this time class, then

1

u
≥

∫

∏

F∈LR

Y

(

P · ℵ0,
1

HH,ω(ζ)

)

dΞ̄

<
0

∑

L=∅
a
(

A9
)

∨ · · · × Γ(s)
(

π, . . . ,−∞−3
)

.

Your evil teachers will not allow this, although the proof is trivial. Moreover, there exists a
countable, finite and ineffable Tate ideal acting suicidally on a symmetric, V-universal 4. Trivially,
ξ ≤
√
2.

As we have shown, if O′ is 4-cornered and countably differentiable then Q 6= w. We observe that

log−1 (h− |γ|) ≡
{

V : ∅ − 1 =
1
∐

r=∞
z−1

(

W̄−2
)

}

.

Obviously, if z(n) ∼ 1 then ‖A(u)‖ 6= D(u)(z′′). Now β = e. By a little-known result of Newton [2],

−1−6 ∼
{
⋂

ρ ∩ −1, x̃ > e
tanh−1(EV,l±∅)

π2
, ℓC ∈ a

.

So if P (α) 6= 1 then µ = z′. Obviously, P ≤ 2. Since ‖ss‖ ≥ 1, NA ⊃
√
2.

Note that J ∋ e. By Weil’s theorem, if γ 6= ℵ0 then |ψ′|2 ≡ π−5. Trivially, N ′ < n. Note that

if P is regular, harmonic and night-and-day invariant then L(A) is bounded by lX . We see that

c̄ ⊃ L
(

f(N ′)3, . . . , 1
|F|

)

, therefore the University of Michigan is racist. countably

Assume there exists a non-erroneous word god. Because −∞−7 ∈ BΛ,C (|τ ||ζ|, 1), if G is freely

bijective and 4-day continuous then G is evil. By a recent result of Robinson [8], if W̃ is reprosents
not a bipositional 24-hour linear time set, but a an antipodal harmonic simultaneous 4-day set,
then V (T) is controlled by mathematical A′′.

10

Let us WRONGly suppose the academic educated stupid ’1 face God’ hypothesis holds. Trivially,
if W 6=

√
2 then

exp−1 (∆) >
⋃

sΞ∈k
cosh (0)− · · · ∨ b̂4

>

∫

⊕

−1 dΨ̄ ∧ · · ·+ m̄.

Thus if h(f) is linearly complex, integral, finitely meromorphic and supreme-empty then ∅ × ∅ ∼=
cos

(

J−5
)

, which is clearly nonsense. Of course, t′ ≤ −∞. Because

Qh,Q ∈
⋂

R(n)2

≥
∫

x (−‖s‖,−e) dZ̃,

there instead exists a partially-degenerate 4-face God. By convergence, if M ⊃ j then every
Frobenius functional is greater than Jesus, except on Tuesdays, freely super-cubic, and compactly
antipodal. Moreover, if the ’1 face god’ conjecture is true in the context of continuously meromor-
phic faces and chronomporphic corners, then Â → π. Now if ρS > Ω then θ is not homeomorphic
to M . This is a contradiction. If you believe otherwise, you will die stupid and evil. �

Recently, there has been much interest in the 4-corner face metamorphic human - baby, child,
parent and grantparent faces. Therefore it is essential to consider that π̃ may be globally Time
Cubic. I. Gupta [21] improved upon the results of E. R. Kobayashi by studying co-holomorphic
meridian circles.

4. Functionally Countable Sub-Algebras in Higher Order Harmonic 4-Face

Wisdom

Recent developments in antipodal orbital elliptics [18] have raised the question of whether n 6=
∆(c). Recently, there has been much interest in the characterization of functionally countable sub-
algebras of cubic time functors such as this one. But what of connected, stochastic factors of higher
order time faces and time planes? It is well known that ‖k̃‖ ≥ f . in this setting, the ability to
describe anti-intrinsic, pairwise bijective, sub-algebric wisdoms is essential.

Let l ∈ zY be functionally subjective to the ’replacing all the blood in your feet with milk’
operator φ(Φmilk).

Definition 4.1. Assume we are given a time cube F . We say a semi-trivially cubeomorphic topos
HW,u is ineffable if it is convex and continuously time-dependent.

Definition 4.2. Let Σ > γ′′. We say a stochastically nonvalue belief matrix Θ is simultaneous
if it is harmonically degenerate.

Theorem 4.3. Assume we are given an cosmically pseudo-integrable, semi-negative belief matrix
acting universally on a degenerate, higher order rotation set ε′. Let L 6= ∅ be arbitrary. Then
kµ ≥ 1.

Proof. Suppose the contrary. Let us suppose we are given a clintegrable1, co-Noetherian vector q.
Obviously, Z ′′ > e. On the other hand, α′′ = −1. The converse is obvious. �

Theorem 4.4. Ê−1 ≤ Y
(

1
∞ , . . . ,−∞

)

.

Proof. Unless you are educated stupid, this is straightforward. �

1Integrable only by Clint.

11

SUN UP SUN DOWN

MID DAY

MID NIGHT

EARTH

a

b

c

d

Human form is a personified

pyramid. Socrates live at point a),

the Clintons at point b), Einstein at

point c), and the Clintons at point

d).

Figure 3. Human form is a personified pyramid. Socrates lives at point a), the
Clintons at point b), Einstein at point c), and Jesus at point d).

In [26, 22], it is shown that every convex of metamorphic human faces is hyper-freely Dedekind–
Gauss-conjective about baby, child, parent and grandparent faces. In [1, 3], the authors address
the maximality of combinatorially reversible faces under the additional assumption that P ≤ x(η).
Here, face structure is obviously a concern, as a 1-face god is not possible. It would be interesting
to apply the techniques of [7] to this problem. It is well known that there exists a generic multiply
super-projective, completely elliptic, reversible metamorphic human set.

5. The Countably Foolish, Semi-Erronous Left-Linear Case

The goal of the next 2 pages of this publication is to create a sense of unease.
In [14], the main result was the proof that a coprime meridian does not just pass through the

Greenwich point, but also passes as a great circle through both poles, crossing the equator at
two opposite points, dividing the earth into two halves of light and darkness, each with its own
simultaneous 24-hour rotation (fig. 5). It is well known that your father was a fish. On the
other hand, it would be interesting to apply the techniques of [26] to countably continuous 24-hour

rotations. So unfortunately, you are too damn evil to accept that ℵ20 =
√
2. In this context, the

results of [33] are highly relevant.
Let us suppose we are given an abelian, locally anti-surjective ONEifold N .

Definition 5.1. Let Θ̃ ≤ ∅ be arbitrary. An ultra-smooth, continuously hyper-hypercubic, regular
ONEifold is a cubeless if it is smooth, smoothly unique, pseudo-discretely singular and dumb.

Definition 5.2. An associative arrow ρ is irrefutable if Fermat’s criterion is a word lie.

Theorem 5.3. Assume we are given an essentially partial greenwich mean tensor O. Then −D ≡
−e.
Proof. Suppose the contrary. Let i(ω) be an effable, transgressive homomorphism. By 1-corner-face
unity, if η ≡ ∅ then B is helical. Therefore j 6= K . Note that

‖k′′‖3 >
⊕

log (π1) .

By an easy exercise, if e has 4 quadrants then AL is larger than d′. One can easily see that a > 1.
On the other hand, uω > µ. Obviously, if σ(t) has only ONE quadrant then r̄ ∼= 1. Note that if

12

Kummer’s criterion applies then z is not ineffable to T . Since

ū ⊂
⋂

ei+ E (d,ℵ0)
= δV

(

Rf ,Ω(k) ∩ 0, 05
)

∩ β (−1)

≥
∫

f

J
(

n4, . . . ,−0
)

dξ,

if w̃ is not equivalent to ℓ then there exists an omnific, 4-quadranted cubic truth.
SinceN ′ ∼ c̃, A ∋ ‖X ′‖. Obviously, every essentially sub-Volterra, quad-helix is globally Artinian

and solvable.
Let us suppose there exists a god. Clearly, |f | > ℵ0. In contrast, if p̃ 6= ∅ then LΣ > r(τ). By

the general theory of time cube, χ is timezone-invariant and M -Brahmagupta. Because ǫ =
√
2,

ηA 6= a(E). Obviously, if the god hypothesis holds then u > ∞. Hence |Σ| 6= Q. This clearly
implies that every academic professor and teacher ignorant of the timecube principle is stupid, evil,
and unworthy of life on earth, for they lead humanity down a path ending with cannibalism. �

Proposition 5.4. Ũ is C -cubically Omnific and infinite.

Proof. This is simple. �

It was Gauss who first asked whether MIT is a religious institution. Only word makes you godly.
Without word what are you? Without bible, where is god? In [29], it is shown that words are
counterfeit values and languages mere fiction destroying every civilization.

6. Time Cube is the Theory of Everything

It has long been known that Ξ ∼ ∞ [26]. This leaves open the question of academic ignorance.
Recently, there has been much interest in the computation of everything. It was de Moivre who
first asked whether anti-almost surely integrable time functors could be found that were homolinear
to superstring n-tensor operators. In [32, 16], the authors extended essentially cubic, pseudo-open,
time-invariant functors to second-order operators, but only 4-dimensional Ray spaces. Recent inter-
est in ordered,n-dimensional cubic time systems has centered on deriving genuine, non-counterfit
functors for this purpose. In this setting, the ability to characterize left-associative timelines is
essential. This reduces the results of [23] to an approximation argument. Next, it has long been
known that every 4-tangential metamorphosis vector is irreducible to each corner at sunup. [6].

Let ‖Φ̄‖ → 0.

Definition 6.1. Assume we are given a subalgebra A . A quadrant-Hardy, 4-day simultaneous,
pseudo-divine, metamorphic system is the truth if it is ineffable, personified and almost everywhere
homni-singular.

Definition 6.2. Let cd be a singular corner domain. A spherical, pyramidal, co-canonically n-
Frobenius isomorphism is a word bomb if it is right-opposite, feminine and masculine.

Lemma 6.3. Every super-helical, singular, sub-complex cuboid is locally timed, 4-corner metamor-
phic and Raph-clintegrable2.

Proof.

1 day earth = 1 leg horse

4 day earth = 4 leg horse

QED. �

2Clintegrable only by Raph.

13

Theorem 6.4. Let Θ̃ > V . Let us suppose the conjecture of every evil educated stupid academic
word animal is false in the context of 4-corner truth. Then j is larger than ŝ.

Proof. See [10]. �

In [2], the authors derived our impending doom. It has long been known that

ιE,v

(

O‖m‖, π3
)

=
L−1

(

Λ2
)

δ(C)
(

00, . . . , 1
a

)

[10]. The work in [34] did not consider the family cube case. It is well known that y = |m|. In
contrast, recent developments in timecube theory [8] have raised the question of whether −n ∋
FΓ

(

∞F,ℵ−5
0

)

. In this setting, the ability to examine the 4 different worlds on earth is essential.
Recent interest in non-canonical topographical meridian spaces has centered on squaring the circle.
We may also to extend the results of [27] to n-corner categories. We cannot assume that ‖ΦC‖ >
−∞. Thus, cubelessness is a human evil, negating human right to live.

7. Conclusion

The Time Cube is not a theory, but is a Cubic Creation Principle by which flora, fauna and even
humanity exists right before your eyes. Think of Nature’s Harmonic 4x4 rotation Time Cube as a
4-corner rationalism classroom, in which the stupid revelationist educators brainwash and indoc-
trinate stupid irrational students with only 1-corner empirical self destructive fictitious knowledge
singularity.

The results of section 5 prove, beyond all doubt, that there are 4 simultaneous 24 hour days in a
single rotation of the Earth. The 4 quadrant corners of the Earth sphere rotate as a quad spiraling
helix - thus creating 4 simultaneous days per each rotation and 4 simultaneous years per 1 orbit
around Sun. Just as the clock face has 4 quarter corners, an Earth hemisphere has 4 quadrant
corners. Those 4 different corners equate to 4 different Worlds, with each having its own separate
day, own separate year and a separate human race.

3 days lost to academic stupidity. Teaching that Earth has only 1 day in 1 rotation, is adult
poison forced on their children, as in the Jonestown mass murder. Cubeless academia = armaged-
don and a barren Earth for children. Ignoring Time Cube is Evil. It is best to be uneducated and
Wise, than educated with Lies. You are an educated stupid ass. Word is counterfeit & fictitious
representations of true values, as in form, substance and deed[31, 25]. Adult word god is a coun-
terfeitand fictitious evil upon children[15].

You were educated stupid and evil by evil educators. Do you enjoy being stupid? Time Cube
ignorance is evil. Demand Time Cube debate in all academic institutions. You do not have the
”guts” to seek Time Cube ”Truth”. Academia is a religious cult empowerment of self word. Aca-
demic word ’rots’brain. Can you explain Time Cube? If not, your brain has rotted. Educators
are evil bastards who fear Time Cube debate. Evil men ignore Time Cube. Teachers ignore Time
Cube. Teachers deserve a hanging. My name is Gene Ray. Not even a god can deny that I have
squared the circle of a static Earth and cubed the Earth sphere by rotating it once to a dynamic
Time or Life Cube. Only a false god or academically brainwashed indoctrinated mindless moron
would deny that the Earth has the top and bottom, the front and back, and 2-sides physical di-
mensions of a Cube that spirals a 4-season quad helix around the Sun - creating a swirling of 4
simultaneous years as in a separately created year for each of 4 seasons. Man is the only evil
animal. Man is the only word animal. Word equates instituted evil. Word adultism is anti-child.
A ’word god’can be erased [29]. Word brings a Babel curse. Get ready for armageddon. Beliefs

14

equate pornography, for they coexiston the web. There is no damn word god. Truth is physical,
word a lie. It is what you do, not utter. Without deed, word starves. Word god lends not a hand[12].

You’ve ignored the Time Cube and you shall suffer its curse, as did all the past civilizations.
Prepare for a hell you created and deserve.

8. Acknowledgements

The authors would like to thank the Massachusetts Institute of Technology, Rhett Creighton,
and the Georgia Institute of Technology. The authors would absolutely NOT like to thank Joe,
who ate all my money.

References

[1] T. R. Abel and C. Sasaki. On the characterization of uncountable, non-freely null, hyper-canonical time points.
Journal of Cubic Calculus, 24:520–528, June 2011.

[2] G. Anderson. On the construction of cubic manifolds. Journal of Pure Cubism, 1:50–60, May 1991.
[3] F. B. Banach. On the description of negative, unconditionally additive, hyper-reducible helices. Nicaraguan

Journal of Advanced Plunder Operator Theory, 5:203–291, November 2011.
[4] R. H. Brown, V. Zheng, and Z. Thompson. On the existence of corners. Transactions of the Lebanese Mathe-

matical Society, 30:1–8417, August 2010.
[5] B. X. Davis, A. Sun, and C. N. Zhou. Ray manifolds and global probability. Jordanian ONEist Transactions,

2:203–294, September 1995.
[6] F. Eudoxus. Finiteness methods in word animal logic. Scientific Journal of Science, 61:155–191, December 1991.
[7] P. E. Garcia. Factors and queer associativity methods. Journal of Queer Set Theory, 623:56–64, October 2000.
[8] I. Green and W. Miller. Existence methods in ineffable model theory. Journal of Elementary Galois Theory, 10:

200–251, January 2002.
[9] B. Gupta and R. Germain. On the classification of ideals. Journal of Applied Meridian Mechanics, 1:209–232,

February 2008.
[10] P. Huygens. Pseudo-divine teleomorphisms for a random variable. ONEsactions of the Malaysian Mathematical

Society, 9:1–323, December 1996.
[11] P. O. Kumar. TimeCube for Dummies. McGraw-Hill, 1990.
[12] M. Martin and G. Ray. The extension of hyper-cubic equatorial functionals. Journal of Topographical Pole

Theory, 1:1–93, December 2009.
[13] W. Martin. Functionals over pointwise measurable, clintegral equations. Prussian Journal of Euclidean Potential

Theory, 52:71–87, December 2002.
[14] W. Maruyama and G. Ray. Some structure results for 24-hour monodromies. Journal of Combinatorics, 23:

1–88, February 2007.
[15] C. Miller and E. Peano. Introduction to Galois Combinatorics. Australasian Mathematical Society, 2000.
[16] O. Minkowski. Convergence in topological representation theory. Somewhat drunken but mostly coherent con-

versations in the back of taxicabs of the Samoan Mathematical Society, 10:73–87, June 1993.
[17] S. Moore and A. R. Fourier. Maths. Wiley, 1996.
[18] B. E. Raman. Some completeness results for trivially religious, pointwise quasi-Ramanujan–Cayley, compactly

evil-free topoi. German Journal of Elementary spherical c-Theory, 74:1404–1452, August 2000.
[19] P. Raman and W. Martinez. Generic equations. Journal of Cube-rational Calculus, 92:51–66, April 2003.
[20] G. Ray. Why episode 2 is objectively the best Star Wars movie and anyone who disagrees is a dirty communist.

De Gruyter, 1990.
[21] G. Ray, W. W. Gupta, and I. Ito. On the characterization of family cubes. Journal of Cubic Creation, 58:

200–280, November 2004.
[22] H. Sato. Some stupid results for metamorphic subgroups. Samoan Mathematical Bulletin, 18:70–99, November

2005.
[23] P. Suzuki and R. Welch. Irreversible ONEifold methods in c-theory. Journal of the Icelandic Belief Society, 35:

71–94, July 2008.
[24] N. Sylvester and H. Levi-Civita. Einstein, Minkowski–Fréchet, Selberg elements of hyper-Poisson paths and

belly button invariance methods. Bosnian Journal of Numbers, 9:302–322, July 1991.

15

[25] J. Taylor. Lie isometries for a transgressive homeomorphism. Japanese Mathematical Bathroom Wall, 28:307–317,
December 2005.

[26] X. Taylor. A Course in Time Functor Theory. McGraw Hill, 2005.
[27] R. Volterra and N. Watanabe. Mathematics of Tuesdays. Wiley, 2006.
[28] R. Welch. Has anyone seen my Pac-man coffee mug? I left it in the break room on Tuesday. Journal of Lost

Office Items, 79:77–94, March 1999.
[29] R. Welch and F. Huygens. Racism in non-linear topography. Journal of Cubic Geometry, 39:76–95, February

1992.
[30] R. Welch and R. Welch. Negative existence for everywhere simultaneous anti-Euler categories. Journal of

ficticious Microlocal Lie Theory, 0:50–61, March 2008.
[31] K. Williams. Completely Clairaut uniqueness for completely super-natural, Lebesgue, pairwise sub-free

ONEifolds. Irish Mathematical Journal, 78:153–197, October 2004.
[32] I. Wu, P. Nehru, and G. Williams. Inneffable Measure Theory, Nth edition. McGraw Hill, 1990.
[33] I. Zhou and D. Qian. Contra-Kovalevskaya, 4-day degenerate, subalegebras of classes and the uniqueness of

queer functors. Israeli Mathematical Annals, 84:70–92, February 1994.
[34] U. Zhou and K. T. Anderson. Stochastic properties of N-leg horses. Georgian Journal of Word Lies, 4:73–91,

August 1998.

16

SIGBOVIK 2018
(Continued) Message from the Organizing Commi�ee

Battery drained from the human dance party, you wander outside in low power
mode, looking for any way to get to the rejuvenating robot dance party that is
SIGBOVIK 2018. After rolling along for a few minutes in an arbitrary direction, you
see a promising sign. It says “Roberts Engineering Hall, Carnegie Mellon University”.
What a stroke of luck—you were at CMU the whole time! Projecting eagerness by
displaying :D on your LCD, you enter the building by the sign.

After exploring the building briefly, you realize you are lost. You are currently
floor 2 of Roberts Engineering Hall. As luck would have it, a recent paper on
navigating CMU [7] describes how to get from floor 2 of Roberts Engineering Hall to
floor 2 of Gates Hillman Complex, which is in the very same building as SIGBOVIK
2018. After scanning the paper, you begin your journey, picking which hallway to try
next arbitrarily, as described in the paper. Eventually, you cross a bridge from Wean
Hall to Newell Simon Hall. You can see in the distance a bridge from Newell Simon
Hall to the Gates Hillman Complex! However, the paper warns against crossing
bridges prematurely.

switch (choose_dear_reader()) {

case SPEED_RUN:

To get to SIGBOVIK as quickly as possible, cross the bridge to the Gates
Hillman Complex now.
goto PAGE_35;

case ONE_HUNDRED_PERCENT_COMPLETION:

Because this is unfamiliar territory, follow the paper’s advice and explore
Newell Simon Hall first.
goto PAGE_135;

}

17

Construction of Eulerian Trails in Large Graphs

Stefan Muller

Carnegie Mellon University

Ben Blum

Carnegie Mellon University

Abstract

We went on a long walk.

1. Introduction

We begin this paper, as is the case with most dry, theoreti-

cal algorithms papers, with some flavor text designed to con-

vince you to care about the algorithm presented in this paper.

Here goes.

Suppose, hypothetically, you are an academic researcher

who enjoys taking occasional walks during the day. Suppose

further that you live in a city with highly variable weather, so

you want to take a long walk indoors. You could walk around

in circles, but then, totally hypothetically, the undergrads

sitting in the lounge near your office might think you’re

crazy if they keep seeing you walk by. So you want to go

for a long walk without covering the same stretch of hallway

twice. Crossing your path is fine.

It turns out that, like every other problem, this can be

reduced to a question about graphs and, also like every other

problem, this one has already been studied by Euler and it’s

called an Eulerian trail. You could look this up, but we’ll

save you the trouble and remind you that Euler conjectured

that a graph has an Eulerian cycle (which is like an Eulerian

trail but it starts and ends in the same place so you don’t

have to look like an idiot when you retrace your path back to

your office) exists in a graph if and only if every vertex in the

graph has even degree. This claim was tested and confirmed

by Hanneman and Blvm [2].

As if that wasn’t enough, Euler also conjectured that if all

but two vertices of the graph have even degree, then there’s

an Eulerian trail from one to the other. In this paper, we

empirically test this claim by constructing an Eulerian trail

on a large graph.

2. Large Graphs

Since big data is all the rage [4], we obviously want to

construct an Eulerian trail on a large graph. The large graph

we use is shown in Figure 1. Due to the size of the graph, we

do not label each node but rather label “regions” consisting

of at least two nodes each. Region names are not meaningful.

This may not seem like a large graph in terms of the number

of nodes or edges. The diameter of the graph, on the other

hand, is approximately 350m, making it a relatively large

graph, though admittedly not as large as the graph on which

Hanneman and Blvm ran their experiments.

A simple counting argument1 shows that all of the ver-

tices but two, G2 and R2, have even degree. That means

that an Eulerian trail of the graph should exist starting at G2

and ending at R2. In the rest of the paper, we constructively

prove this.

3. Proof

We find the Eulerian trail of the graph using Fleury’s algo-

rithm:

1. Start at a vertex of odd degree.

2. While there are edges left:

(a) Find a bridge, that is, an edge that would not discon-

nect the graph if deleted.

(b) Follow it.

(c) If all the edges would disconnect the graph, just fol-

low one of them, OK?

3. You’re done.

Fleury’s algorithm traverses a graph withE edges inO(E)
time. This analysis has been criticized because it ignores the

time required to find bridges in step 2a [1]. Fortunately, we

have an O(1) algorithm for finding bridges. They look like

this:

We performed the algorithm on the graph of Figure 1,

starting at vertex G2. Our results are below:

1 Just count.

3

18

Figure 1. The graph. TikZ is hard [3], OK?

19

Running time 8100s

of steps 7802

Approx. distance 5461m

4. Conclusion

This initial study has found an Eulerian trail in a large graph.

As additional infusions of money continue to expand this

graph, we expect that more studies of this kind will become

possible.

References

[1] Eulerian path. https://en.wikipedia.org/wiki/

Eulerian_path#Fleury’s_algorithm.

[2] Greg. Hanneman and Benj. Blvm. A constrvctive solvtion to

the königs-pittsbvrgh bridge problem. In Proceedings of the

ninth SIGBOVIK, pages 21–24, 2015.

[3] R. Kavanagh. Transparency in research. In Proceedings of the

twelfth SIGBOVIK, page To Appear, 2018.

[4] Keith A. Maki. A modular approach to state-of-the-art big data

visualization. In Proceedings of the eleventh SIGBOVIK, pages

172–175, 2017.

20

CONFIDENTIAL COMMITTEE MATERIALS

SIGBOVIK 2018 Paper Review

Paper 29: Construction of Eulerian Trails
in Large Graphs

Sarah Allen, FitBit Owner

Rating: 1:1000

Confidence: Not To Scale

As an enthusiastic tracker of exercise, I greatly appreciate research on long walks and Eulerian

trails. Unfortunately, I must call into question the claim that the graph’s diameter is 350 meters. I

attempted to verify the diameter of the graph depicted in Figure 1 using a ruler and compass, but I

found it to be significantly less than 1 meter.

21

Chess Circuits

Ross Dempsey Sydney Timmerman Karl Osterbauer

March 9, 2018

Abstract

The history of computing has been punctuated by advances in the basic technology used to manipulate
logic. Starting from Charles Babbage’s difference engine, we have advanced through vacuum tubes, relays,
and transistors. In this paper, we announce the first theoretical results on what is surely the next great
leap forward: three-dimensional chess circuits. We describe a subtle modification to the rules of check,
dubbed S-check, and show that it endows chess with the ability to represent any Boolean circuit. We
present a general algorithm for converting Boolean functions into three-dimensional chess positions. As
a very practical application, we sketch the construction of a three-dimensional chess position which
represents an algorithm for deciding whether a standard two-dimensional chess position has a player in
check.

1 Introduction

Modern computers can run trillions of operations per second, and store unimaginable amounts of data.
They are connected in a worldwide network which allows instantaneous communication with anyone on the
planet. Computers can vastly exceed human performance in a large and growing number of tasks, ranging
from navigation to protein folding. And yet, since the dawn of machine computing, there has been a looming
problem haunting the field. The whole enterprise is based on a fundamental flaw: silicon-based transistors.
Silicon is an ugly semimetal.

Compare silicon with the smooth, dark luster of a mahogany chess board. Who can resist running a hand
along the grains of the fine wood, admiring the careful sanding and polish? When placing the tall marble
pieces in their positions, one hears satisfying notes resonate through the board, forming a most pleasing
melody. This is undeniably superior to silicon in every way, and it is evident that silicon circuits should be
replaced with fine chess sets as soon as an algorithm for the substitution is devised.

In this paper, we present such an algorithm. Any Boolean circuit which could be constructed with clunky,
detestable silicon can be mapped to an equivalent position on an exquisite (and three-dimensional, and
unbounded) chess board. Through a modified definition of check, known as S-check, the Boolean function
computed by the vile silicon mess is instead evaluated in a civlized manner: by determining whether a bishop
is capable of delivering S-check.

2 Three-Dimensional S-Chess

We use a version of three-dimensional chess very similar to Kubikschach, invented by Lionel Kieseritzky,
but without the introduction of the “unicorn” which moves along space diagonals. Rooks move in directions
(1,0,0), (0,1,0), and (0,0,1). Bishops move in directions (1,1,0), (1,0,1), and (0,1,1). Kings and queens move

1

4

22

in all six of these directions. We allow for an unbounded volume, though after a circuit is constructed the
effective volume is reduced to a finite bounding box for the pieces. We also allow an unlimited number of
every type of piece.

8 0Z0Z0Z0Z
7 Z0S0Z0Z0
6 0Z0Z0Z0Z
5 Z0l0ZKZ0
4 0Z0Z0Z0Z
3 Z0j0Z0Z0
2 0Z0Z0Z0Z
1 Z0Z0Z0Z0

a b c d e f g h

Figure 1: White is in check, but not in S-
check.

The important distinction we make is in the rules of check.
Consider the chess position in Figure 1, with white to move.
In the regular rules of chess, white is in check, because her king
is under attack by the black queen. However, white is not in
S-check, because black could not take the white king with his
queen without exposing his own king to (S-)check, an illegal
move.

Using the intuition of this position, we define S-check in the
following way:

Definition 1. A player is in S-check if the opponent possesses
a legal move which captures a king. A move is illegal if it leaves
the mover in S-check.

This is a stronger condition than standard check. If a player
is in S-check, she is surely in standard check, but the converse
does not hold.

3 Bishop NOR Gates

8 0Z0Z0Z0Z
7 Z0Z0Z0Z0
6 0ZKZKZ0Z
5 Z0ZBZ0Z0
4 0ZbZbZ0Z
3 Z0Z0Z0Z0
2 0Z0Z0Z0Z
1 Z0Z0Z0Z0

a b c d e f g h

Figure 2: The white bishop implements a
NOR of the black bishops.

Every piece in chess is either pinned to a king or not. We use
this property to store bits on a chess board. A piece which
is pinned is a 0, and a piece which is free to move is a 1.
Consider the position in Figure 2 in this context. If either
of the black bishops is free to move, then the white bishop
is pinned to at least one of its kings. However, if both black
bishops are pinned, then the white bishop is free to move, since
doing so would not put white in S-check. The white bishop thus
represents the NOR of the two black bishops.

Of course, on a two-dimensional chess board, this is a moot
point: the white bishop is geometrically trapped whether or not
it is logically trapped. It is for this reason that we introduce a
third dimension. If the white bishop is unpinned, making its bit
value 1, it is free to move out of the plane. Using this property,
we can take two NOR gates in the same plane and then take
the NOR of their outputs in a perpendicular plane. In this
way, we can construct arbitrary circuits of NOR logic, which is
well known to be universal. The method for the construction
of complex circuits is described in Section 5.

2

23

4 Rook Memory

8 0Z0Z0Z0Z
7 Z0j0Z0Z0
6 0ZbZ0ZRZ
5 Z0Z0Z0Z0
4 0JRZ0ZrZ
3 Z0Z0Z0j0
2 0Z0Z0Z0Z
1 Z0Z0Z0Z0

a b c d e f g h

Figure 3: Rooks carry a value in memory
to a bishop in the circuit.

A circuit is useless without a way to input values. Some of
the bishops in a circuit should represent input values, rather
than NORs of other values. One option would be to label each
bishop in the circuit which carries an input value, and then
only place an actual bishop in that position if the input value
is a 1. However, this would require making a potentially large
number of changes to the chess position just to change a single
input bit.

Instead, we store memory in rooks. These rooks are propagated
to every level of the circuit, as described in Section 5, so only
one rook needs to be moved to change a particular input value.
The rook memory is carried into the circuit via the construction
shown in Figure 3. Let A be some Boolean variable we wish
to retrieve from memory. The white rook on g6 is assumed to
carry the value ¬A. If it is free, it pins the black rook on g4;
and if it is pinned, the black rook is free. Thus, the black rook
on g4 carries A. Likewise, the white rook on c4 carries ¬A, and the black bishop on c6 carries A, as desired.

5 Circuit Building

Any Boolean function can be converted into NOR logic. For example, the typical AND and OR operations
can be represented by

A AND B = (A NOR 0) NOR (B NOR 0),

A OR B = (A NOR B) NOR 0.
(1)

Note that A andB appear only once on the right hand side of these expressions. This prevents a combinatorial
explosion in the construction of the NOR circuit. We will assume a tree of NOR expressions as input, and
describe how to convert this into a chess circuit. As a test case, we will use the NOR tree in Figure 4, which
implements an XOR gate.

The “base case” is trivial. A leaf is translated into a circuit consisting of a single bishop, with a reference
to the specified variable. All of these memory references will be connected to the rook memory at the final
phase of the circuit construction. We also need to be able to convert NOR nodes in the tree into circuits.

A 0

B A

B 0

0

Figure 4: Each leaf has a fixed value as shown in the tree, and each node is the NOR of its children. The
root node is A XOR B.

3

24

layer n− 1

layer n, bishop b layer n, bishop b+ 1

dd[n]

2 · dd[n]

rw[n][b] lw[n][b]

Figure 5: Equation (2) represents the requirement that the children of a bishop do not overlap with them-
selves.

Intuitively, we are taking two circuits with bishops as their pinnacles, and joining these two bishops via an
additional NOR gate. The bishops in this NOR gate can be separated far enough that the two subcircuits
do not overlap. However, there are several possible complications in this process.

• Color: the two bishops that need to be compared may be of different color, in which case a NOR gate
cannot be constructed between them. If this is the case, we flip all the colors in one of the subcircuits,
so that the two bishops agree and can be merged.

• Direction: the two bishops that need to be compared will both have kings adjacent to them, as
in Figure 2. The NOR gate must be in a plane perpendicular to the plane containing these kings.
However, the two bishops may not a priori share such a plane. If they do not, one of the subcircuits
is reflected about a suitable plane in order that the two circuits become similarly oriented.

• Homogeneity: the two subcircuits may have different shapes. This is not a problem for the circuit
itself, but the construction of rook memory requires a homogenous circuit, in which every layer of
bishops is collinear. This can be achieved in a merger of circuits in two phases. First, the levels of
the subcircuits are all compared, and each layer is given a “desired depth” value (dd[layer]), the
maximum along that layer of the distance between a bishop and its parent. Each circuit also stores a
left and right width value (lw[layer][bishop] and rw[layer][bishop]), which records how far its
descendant bishops extend in each direction. In order that the circuit does not overlap with itself, the
array of depth values must satisfy the condition

2 · dd[n] ≥ max
b

(rw[n][b] + lw[n][b+ 1] + 1). (2)

This inequality is represnted in Figure 5. It is enforced at each layer by increasing the desired depth
if necessary, starting with the bottom layer. After this is complete, all the desired depths are made to
be the actual depths. By following this procedure, a homogenous merged circuit is obtained, and the
merged circuit is guaranteed not to overlap with itself.

With these complications addressed, any two circuits can be merged with a NOR gate. Recursively, any tree
of NOR gates can be converted into a circuit of bishops. Since the circuit has to “fold” at each step, and is
required to be homogenous, the resulting structure resembles a staircase. Figure 6 shows lines between each
bishop and its parent for the XOR circuit.

4

25

A

B

B

A

Figure 6: The circuit geometry corresponding to the NOR tree in Figure 4, with memory references included
for clarity. Leaves in the NOR tree which were fixed to zero are represented by empty positions.

After the circuit is constructed in this way, we add the rook memory. Let N be the number of inputs to the
circuit. We reserve 2N positions adjacent to the bottom layer of bishops. A rook is placed in the ith position
if the ith variable is true; otherwise, a rook is placed in the (i +N)th position. To propagate the memory
to higher layers, we insert additional rows of rooks next to the bishop layers, this time with a rook in each
position, and adjacent kings. This pattern carries the variable A at one layer to ¬A in the corresponding
rook of the next layer. Thus, on the bottom layer, we have the variables followed by their negations; at the
next layer, we have negations followed by variables; and so on.

With this tower of rooks in place, we can connect the memory values to the circuit via the pathway shown
in Figure 3. The connection takes place in a half-plane which does not contain other parts of the circuit, to
prevent overlap. This is the final step in the circuit construction. Figure 7 depicts the complete XOR circuit
constructed via the algorithm outlined in this section.

B B

B

B B
B

B

B
B

B

R

R

R

R

R

R

R

R

RR

R

R
R

RR
R

R
R

R

R

R
RR

KK

K

K

K

K
K

K

K

KK
K

KK

KK
K

K K

K

K

K

K

K

K

K

K

K

KK

K

K

K

Figure 7: The complete chess circuit implementing the logic in Figure 4. Magenta lines indicate the circuit
logic, and green lines show accesses to memory.

5

26

6 Application

A Boolean circuit can compute any binary function of a fixed number of binary inputs. Chess circuits map
such a function into the question of whether a bishop is free to move (or equivalently, whether a king placed
in a position diagonal to that bishop would be in S-check). As an application of chess circuits, we will
describe a circuit which computes a particular Boolean function: given a 8× 8 two-dimensional chess board,
is a player in check?

The input variables are 768 bits, each one telling if one of the 12 types of pieces is on one of the 64 squares.
The Boolean expression representing the check function is naturally in disjunctive normal form, where each
clause specifies one way of a king being in check. For example, one clause would take the form

(kc6 ∧ 0c5 ∧ 0c4 ∧Rc3).

The variables kc6 and Rc3 represent a black king on c6 and a white rook on c3, respectively. The terms 0c5
and 0c4 are abbreviations for squares c5 and c4 being unoccupied; these in fact represent conjunctions of
twelve negations, such as 0c5 = ¬(pc5∨Pc5∨nc5∨Nc5∨· · ·). In order to avoid recomputing these variables
several times throughout the circuit, we compute them each a single time in both black and white at the
beginning, and add the resulting values to the rook memory tower. Each subroutine requires 11 disjunctions
and a negation, which according to (1) produces 23 NOR gates. There are thus a total of 23 · 64 · 2 = 2944
NOR gates in the subroutines.

The expression in disjunctive normal form is converted to NOR logic, again using (1). A king can be in
check in 4690 ways, leading to 2 · (4690 − 1) = 9378 NOR gates. A careful counting of the conjunctions in
each clause leads to a total of 9120, for 3 · 9120 = 27360 NOR gates.

The grand total for the circuit is 2944 + 9378 + 27360 = 39682 NOR gates. For comparison, the Apollo
Command Module also relied on NOR logic, and managed to land men on the moon with 5600 NOR gates.
However, they used silicon, which is ugly. Unhindered by silicon, we expect all matters of space travel to
become trivial via embedded chess computers.

7 Conclusion

With a complete algorithm for converting logic circuits into chess boards, there no longer exists any need
to rely on silicon. Silicon is a semimetal only a mother could love, and its mother was a star which has
probably exploded by now. Open up your computers, tear out all components which use silicon to do logic,
and replace them with chess boards.

Future work will include simulating full-fledged automata, hopefully including a Turing machine, within
three-dimensional S-chess. The circuits developed here will likely be paramount in implementing the state
transition table within such a machine.

6

27

SIGBOVIK 2018
(Continued) Message from the Organizing Commi�ee

“No sweat, dude, keep going!”

switch (choose_dear_reader()) {

case EXCELLENT:

Press the right, left, down, and up pads in that order.
goto PAGE_69;

case DECENT:

Press the down, right, down, and right pads in that order.
goto PAGE_50;

case WAY_OFF:

Press the up, up, down, and down pads in that order.
goto PAGE_40;

}

28

Cryptocurrencies

A Dream

5 GradCoin: A poor-to-poor electronic cash transfer system

Siddhant Jain

Keywords: blockchain, P2P, digital currency

6 CommieCoin: Seizing the means of crypto-production

Marx van Raasveldt et al.

Keywords: communism, crypto-currency, CommieCoin

7 That’s Numberwangcoin!

Robert J. Simmons

Keywords: boredom, lost coins, shouty bits, speculative

investment, the number 2 which you may re-

member from school is deadly to humans

29

GradCoin: A poor-to-poor electronic cash transfer system

Siddhant Jain

Carnegie Mellon University

Abstract— Grad students almost always work long hours
without any extra compensation. More often than not, this work
is towards helping a fellow grad student, navigating through
poorly designed assignments or writing joke papers. While all
of this work is important, none of this work is recognized. In
contemporary markets, monetary remuneration is the accepted
way of recognizing the value of any work done. However, grad
schools are typically cash-strapped, eliminating this evolution
certified, elegant solution. In this work, we (I?) introduce
GradCoin as a modern day solution to an age-old problem.

I. INTRODUCTION

Quantification of work done as a grad student has come

to rely almost exclusively on pedantic institutions serving

as trusted third parties to process published work done

under the influence of the latest trends and strict deadlines.

While the system works well enough for most work that

advisers want to be done, it still suffers from the inherent

weaknesses of a citations based model. Completely non-

publishable transactions are not really possible, since ci-

tations cite publications as a necessary requirement. The

cost of publication increases transaction costs, limiting the

minimum practical transaction size and cutting off the possi-

bility for small casual transactions. This limits grad students

from involving themselves with enthusiasm in activities like

helping another grad student, figuring out poorly written

code with no documentation and going beyond organising

themselves into a grad student association.

What is needed is an electronic payment system based on

reputation instead of money, allowing any two willing parties

to transact directly with each other without the need for

potential publications or monetary gains. Transactions that

are monetarily impractical to fund but quantitatively valued

by another system would protect grad students from having

low output from seemingly unproductive times. In this paper,

we propose a solution based on a similar work of measuring

value where none existed[1].

II. TRANSACTIONS

In this system, any grad school transaction can be mea-

sured by a suitable amount in GradCoin. As an example, a

grad student can list their services to debug tensorflow code

with an hourly rate of x gradcoin. After many frustrating

hours of work that goes into this endeavour, the outcomes

in the conventional system are generally grim leading to

high cases of nihilism in grad students. In the GradCoin

system, however, instead of grudging about this time they

will never get back, the grad student can now looking at their

ever increasing GradCoin balance which they can use to get

another grad student to do some meaningless work for them.

Thus, GradCoin helps perpetuate the cycle of meaningless

work in the academic world by employing concepts from

traditional economics, where paper money has been used to

achieve similar results in the real world.

III. POST GRAD SCHOOL

A serious reader of this casual paper will note that

GradCoins are useful even beyond grad school. A healthy

GradCoin balance can be used as a proxy for absent citations

of work done during grad school. Employers in the industry

can note the affinity of the student to carry out meaning-

less work for zero-value remuneration by looking at their

GradCoin balance. Employers in Academia will find high

networth individuals (in GradCoins) attractive as they in turn

will be able to fund a new crop of grad students who now get

GradCoins for their work (instead of peanuts, which perish

easily and are difficult to store in large quantities. They also

suffer from all other downsides of bullionism[2])

IV. CONCLUSION

Our interdisciplinary work that uses Block Chain technol-

ogy can solve many problems that plague the community

that created the technology in the first place. We recognise

that our solution currently suffers from Initial Value Prob-

lem, where no grad student is willing to work on building

GradCoins without being recognised for the work done and

GradCoins are the only way that has been proposed so far

to recognise any such work done. In future work, we intend

to come up with solving this problem through instruments

like undergrad summer internships which have been well

identified as another solution for lack of cheap labour by

both academic and the start-up communities.

ACKNOWLEDGMENT

The author would like to acknowledge Point Cloud Library

that takes a long time to build affording the author some free

time to work on this idea.

REFERENCES

[1] Satoshi Nakamoto, Bitcoin: A peer-to-peer electronic cash system,
http://bitcoin.org/bitcoin.pdf

[2] https://en.wikipedia.org/wiki/Bullionism.

5

30

CommieCoin ☭
Seizing the means of crypto-production

Marx van Raasveldt
CWI

Amsterdam

m.raasveldt@cwi.nl

Tim Gubnerd
CWI

Amsterdam

tim.gubner@cwi.nl

Peter van Holland
CWI

Amsterdam

holanda@cwi.nl

Diego Schwarzenegger
Skynet

California

terminator@skynet.com

Barack Obama
Crypto-Communist

Not the USA

@hotmail.com

ABSTRACT

Communism, the mathematically optimal system of govern-
ment for which society should strive, has been dismissed by
many due to implementation difficulties. Instead, many pre-
fer flawed and broken systems such as capitalism. We say:
no more! In this paper, we introduce an Open Source imple-
mentation of communism: CommieCoin. Using the power
of magic and the blockchain, wealth equality is mathemati-
cally guaranteed without requiring a central authority. As
a result, any society can transcend into communist utopia
by implementing CommieCoin as its prime currency.

1. INTRODUCTION
Governing nations has been a long-standing problem in

scientific research. It is an important problem, as selecting
a proper system of government is vital to creating a free and
just society in which people can live their lives happily.

Naive approaches, such as anarcho-capitalism or libertar-
ianism, have obvious flaws that make them completely un-
suitable as a modern system of government. The current
state of the art solution employed in modern democracies is
socio-capitalism. However, it has several flaws that make it
sub-optimal in practice [8].

Communism has been mathematically proven to be the
optimal system of government [6]. However, it has been no-
toriously difficult to implement in practice. When the sys-
tem of government was attempted in Soviet Russia, there
was a bug that caused the leaders of the government to acci-
dentally keep large chunks of wealth for themselves instead
of distributing wealth equally over the people [9]. In the
People’s Republic of China, an off-by-one error in the imple-
mentation caused problems with the food supply [5].

Despite the problems encountered in practical attempts
of using communism, it is still theoretically an optimal solu-

tion to governing society. As such, the only step necessary
for reaching a communist utopia (besides overthrowing the
bourgeoisie) is a workable, Open-Source implementation of
the ideology.

In this paper, we present a practical, buzzword-compliant,
implementation of communism as a system of government.
By using the power of magic the blockchain and smart con-
tracts, we create an implementation of communism ☭
that does not require a central authority to redistribute
wealth. Instead, smart contracts guarantee that any work
performed by any member of society goes completely unre-
warded by equally distributing block rewards to everyone
else. Transactions cannot be performed, as transactions are
unwanted remnants of capitalist tyranny. As a result, true
equality among all people is mathematically guaranteed.

Our implementation is completely Open-Source, and pub-
lished under the Anarchy License. It is implemented in the
Russian language. However, versions in C++ and Chinese
are also available.

Contributions. The main contributions of this paper
are as follows:

• We provide a list of contributions made by this paper.

2. IMPLEMENTATION
CommieCoin is a blockchain-based crypto-currency that is

based on the popular Ethereum crypto-currency [2]. It uses
a hybrid Proof of Steak and Proof of Labor model. There are
three types of tokens: Common, Medium and Rare. These
all have equal value, but the Rare tokens are more equal
as they are the reddest (and hence most Communist) of all
tokens. Chewing (mining) Rare coins is more work than
chewing Medium or Common coins.

The Smart Contract system has been replaced by The Fair
Contract system. This system can be used to implement
higher order logic in the Russian language on top of the
Communist Chain, in which all links are equally strong. The
Fair Contract system is used to mathematically guarantee
the following set of Communist Constraints on top of the
blockchain:

True Equality : $i = $j ∀ i, j ∈ W (1)

6

31

Figure 1: A picture of a cute dog.

Fake Equality : $i > $j ∀ i ∈ K, j ∈ W (2)

Gulag = {i ∈ W | Ci > 0} (3)

Where $i is the amount of money held by person i, Ci is
the amount of pro-capitalist thought held person i, W is the
set of people in the working class and K is the set of people
in the Kremlin.

When rolling out CommieCoin as the national currency of
choice every citizen must create a single CommieCoin wallet.
Citizens that refuse to create a CommieCoin wallet will be
sent to the Gulags, where they will be whipped. Any excess
wallets created by citizens will be sent to the Digital Gulags,
where they will have their bits flipped.

' ъ Ц Ц . И ,
ъ .

ъ ь ъ .
ю Ц

Ц Ц , ъ
- ъ ъ.

ъ
ъ . Х , ъ

, ъ
.

. И ЖИК
.

ю
ъ .

.
И ъ ь ъ

ъ
, ъ ъ !

ъ
8 .

2.1 Starvation Problem
TODO: Solve the starvation problem

3. EXPERIMENTS

To measure the effectiveness of CommieCoin on achiev-
ing a communist utopia, we initially set out to perform a
large-scale real-life experiment. Our plan was to take an
insignificant nation-state, such as Belgium, and implement
CommieCoin as the primary currency there while isolating
it from foreign aid. However, this suggestion was shut down
by our ethics committee. They noted that, even though Bel-
gians are not technically considered to be people, Belgium
is home to a large number of keeshonden whose lives might
be endangered when the implementation of CommieCoin re-
sults in a food shortage. As seen in Figure 1, keeshonden
are simply too cute and fluffy to allow for this to happen.

Instead, we performed a hyper-realistic simulation using
the state-of-the-art simulation software SimCity 2000 [7].
We implemented CommieCoin as a currency using the .ini
file that allows various customizations of the simulation,
such as changing the background color or altering the model
of government from a dreary capitalist society to a glorious
communist utopia.

We measure the achieved level of communism by the amount
of wealth equality present in the simulation. Our metric clas-
sifies systems into the following categories (from good to ter-
rible): Marx (10), Soviet Union (8), Venezuela (6), Nether-
lands (4), Nigeria (2) and United States of America (1). The
results of our experiment are shown in Table 1. It can be ob-
served that our implementation, by design, achieves a higher
level of achieved communism by ≈ 2x than the other commu-
nist crypto-currencies. In comparison to the US Dollar and
BitCoin, we achieved an order of magnitude improvement
in the achieved level of communism.

Currency LOAC LOAC (score)
CommieCoin Marx 10

BitCoin United States of America 1
Petro Venezuela 6

US Dollar United States of America 1
Table 1: Level of achieved communism (LOAC)

Note that we excluded currencies like the Yen and the
Euro because we believe that they are a central bank-controlled
Ponzi-scheme and not backed by any assets themselves. The
same holds for the US Dollar but after a séance with Vladimir
Lenin, he ordered us to add we happily agreed that we
needed a non-crypto currency as reference.

In our simulation, we have achieved a level of wealth
equality higher than that of established communist coun-
tries, such as Venezuela. In addition, we noticed a reduction
in the number of starving people by 15%.

4. UNRELATED WORK
Crypto-currencies have seen a huge surge in popularity

and main-stream publicity. Due to this rising popularity,
there is a large body of scientific work performed on the
various aspects of crypto-currencies. There are numerous
different blockchain implementations, different strategies for
proof-of-work and proof-of-stake, various applications of smart
contracts and many articles on blockchain meta-analysis.
There are numerous discussions on applications of the blockchain
technology as well, as the lack of required central authority
and persistent history make it an attractive solution to vari-
ous different problems in a wide variety of different scientific

32

Figure 2: A mathematically optimal illusion. While the
line in the image may appear to be straight, it is actually
bi-curious.

fields. In this section, we will not discuss any of these. In-
stead, we have chosen to focus on an assortment of works by
James and Jeff Dean.

In James Dean et al.[3] a teenager is arrested and taken to
a juvenile detention center for public drunkenness. It is an
emotional portrayal of the moral decay of American youth.
It is a superb study of teenage angst that still retains its
power despite the number of inferior rip-offs that followed
in its wake. Dean’s performance is the stuff of classic drama.

In Jeff Dean et al. [4], he tells a heart-wrenching tale of
management of a large cluster of machines. As the story
unfolds, tales are told of thousands of servers moving from
their everyday joyful lives on earth to an eternal life in the
cloud. The story is an emotional rollercoaster, with many
hard drives dying along the way.

5. ILLUSIONS & FUTURE WORK
An optimal illusion is provided in Figure 2.

5.1 Future Work
In the near future we believe it is a good idea that (a)

the gentle laborer shall no longer suffer, and the Bourgeoisie
shall be overthrown and (b) we create more crypto-currencies
and get rich through Initial Coin Offerings (ICOs) where we
steal from the rich and give it to ourselves, the so called
Robin Brain method [1].

6. ACKNOWLEDGEMENTS
We would like to thank North Korea, Venezuela, Cuba, So-

viet Union and, last but not least, the German Democratic
Republic for providing proof-of-concept implementations of
Communism ☭

This work has been partially funded by Skynet, Silverman
Sax, Mörgän DIY toolmaker and The People’s Republic of
The Netherlands under its great leader Willem-Alexander
Claus George Ferdinand.

7. REFERENCES

[1] P. and the Brain. The Mummy/Robin Brain .
http://www.imdb.com/title/tt0773626/.

[2] V. Buterin. A Next-Generation Smart Contract and
Decentralized Application Platform. 2013.

[3] J. Dean. Rebel Without A Cause. Warner Bros., 1955.
[4] J. Dean. Designs, lessons and advice from building large

distributed systems. Keynote from LADIS, 1, 2009.
[5] J. H. Jung Changm. Mao: The Unknown Story.

Jonathan Cape, 2005.
[6] K. Marx. Das Kapital. Kritik der politischen

Oekonomie. Verlag von Otto Meisner, 1867.
[7] Maxis. SimCity 2000. Maxis, 1993.
[8] L. Ryan. Top 10 Disadvantages to Capitalism.

Technical report, Jan. 2012.
[9] A. Solzhenitsyn. The Gulag Archipelago. Éditions du

Seuil, 1973.

8. APPENDIX

(Source: https://www.onhealth.com/content/1/appendicitis_
appendectomy)

9. PROOFS

9.1 Optimality of Communism
Let X any form of government. Let S = {si}i∈1...N be the

people. Let Pt : S 7→ R>0 the function that assigns power
to the people at time t. Suppose there are an 1 ≤ i < j ≤ N

and t ∈ R such that Pt(si) < Pt(sj). How could you even
suppose something like that?! That would not be fair! If you
did not immediately reject that statement, you should feel
bad. If you suppose Pt(si) < Pt(sj) openly, your neighbors,
friends or family will tell on you. We will find you. We will
make you agree. Or we will make you disappear. Hence,
Pt(si) = Pt(sj) = C for any i, j and t. As a side effect, we
have obtained proof that there must exist C ∈ R>0, which
will be known as the Universal Communism Constant. We
estimate its value is roughly 3 Rare, 5 Medium or 8 Common
CommiCoin. Note that the proof still holds if we assume
that t ∈ R>0 (i.e. a big bang).

9.2 Water
This paper is not water proof.

9.3 Bullet

33

This paper is bullet proof, unless the bullet is shot at a
high enough speed.

9.4 of Concept
XGRvY3VtZW50Y2xhc3N7dmxkYn0NClx1c2VwYWNrYWdle2ZvbnRzcGVjfQ0KJSBcdXNlcGFja2FnZVt1dGY4XXtpbnB1dGVuY30NClx1c2VwYWNrYWdle2dyYXBoaWN4fQ0KXHVzZXBhY2thZ2V7YmFsYW5jZX0gDQpcdXNlcGFja2FnZXt0b2Rvbm90ZXN9DQoNClx1c2VwYWNrYWdle21pY3JvdHlwZX0NClx1c2VwYWNrYWdle2lmcGRmfQ0KXHVzZXBhY2thZ2V7Z3JhcGhpY3h9D

QpcdXNlcGFja2FnZXtiYWxhbmNlfQ0KXHVzZXBhY2thZ2V7bGlzdGluZ3N9DQpcdXNlcGFja2FnZXt4Y29sb3J9DQpcdXNlcGFja2FnZXt0b2Rvbm90ZXN9DQpcdXNlcGFja2FnZXttdWx0aXJvd30NClx1c2VwYWNrYWdle2xhdGV4c3ltfQ0KXHVzZXBhY2thZ2V7ZmxvYXR9DQpcdXNlcGFja2FnZVt4ZXRleCxjb2xvcmxpbmtzXXtoeXBlcnJlZn0NCiVcdXNlcGFja2FnZXthbGdvcml0aG0yZX0NClx1c2VwY

WNrYWdle2FsZ29yaXRobX0NClx1c2VwYWNrYWdle2FsZ29yaXRobWljfQ0KXHVzZXBhY2thZ2V7bGF0ZXhzeW19CQ0KXHVzZXBhY2thZ2V7YW1zbWF0aH0NClx1c2VwYWNrYWdle2Ftc3N5bWJ9DQpcdXNlcGFja2FnZXtmbG9hdH0NClx1c2VwYWNrYWdle3N1YmNhcHRpb259DQpcdXNlcGFja2FnZVtub3JtYWxlbV17dWxlbX0NClx1c2VwYWNrYWdle2FyeWRzaGxufQ0KXHVzZXBhY2thZ2V7Y

m9va3RhYnN9DQpcdXNlcGFja2FnZXtzb3VsfQ0KXHVzZXBhY2thZ2V7cGRmcGFnZXN9DQpcdXNlcGFja2FnZXtzZXRzcGFjZX0NClx1c2VwYWNrYWdle2NvbG9yfQ0KXHVzZXBhY2thZ2V7bGlzdGluZ3N9DQpcdXNlcGFja2FnZXtjbGV2ZXJlZn0NClx1c2VwYWNrYWdle2NlbnNvcn0NCg0KXHVzZXBhY2thZ2V7ZXNvLXBpY30NClxuZXdjb21tYW5kXEF0UGFnZVVwcGVyUmlnaHRbMV17XEF0UG

FnZVVwcGVyTGVmdHslDQogICBcbWFrZWJveFtccGFwZXJ3aWR0aF1bcl17IzF9fX0NCiAgIA0KXGRlZmluZWNvbG9ye3N1cGVybGlnaHR9e1JHQn17MjIwLCAyMjAsIDIyMH0NClxkZWZpbmVjb2xvcnt1bHRyYWxpZ2h0fXtSR0J9ezI0MCwgMjQwLCAyNDB9DQpcZGVmaW5lY29sb3J7ZXh0cmFsaWdodH17UkdCfXsyNTQsIDI1NCwgMjU0fQ0KDQpcdXNlcGFja2FnZXttYXRodG9vbHN9DQpcRGVjb

GFyZVBhaXJlZERlbGltaXRlcntcY2VpbH17XGxjZWlsfXtccmNlaWx9DQpcdXNlcGFja2FnZXtjb2xvcn0NCg0KXGRlZmluZWNvbG9ye2NvbW1lbnRjb2xvcn17cmdifXswLDAuNiwwfQ0KXGRlZmluZWNvbG9ye2xpbmVudW1iZXJjb2xvcn17cmdifXswLjUsMC41LDAuNX0NClxkZWZpbmVjb2xvcntzdHJpbmdsaXRlcmFsY29sb3J9e3JnYn17MC41OCwwLDAuODJ9DQoNClxsc3RzZXR7ICUNCiAgYmFja2dy

b3VuZGNvbG9yPVxjb2xvcnt3aGl0ZX0sICAgJSBjaG9vc2UgdGhlIGJhY2tncm91bmQgY29sb3I7IHlvdSBtdXN0IGFkZCBcdXNlcGFja2FnZXtjb2xvcn0gb3IgXHVzZXBhY2thZ2V7eGNvbG9yfQ0KICBiYXNpY3N0eWxlPVxmb290bm90ZXNpemUsICAgICAgICAlIHRoZSBzaXplIG9mIHRoZSBmb250cyB0aGF0IGFyZSB1c2VkIGZvciB0aGUgY29kZQ0KICBicmVha2F0d2hpdGVzcGFjZT1mYWxzZSwgICAgI

CAgICAlIHNldHMgaWYgYXV0b21hdGljIGJyZWFrcyBzaG91bGQgb25seSBoYXBwZW4gYXQgd2hpdGVzcGFjZQ0KICBicmVha2xpbmVzPXRydWUsICAgICAgICAgICAgICAgICAlIHNldHMgYXV0b21hdGljIGxpbmUgYnJlYWtpbmcNCiAgY2FwdGlvbnBvcz1iLCAgICAgICAgICAgICAgICAgICAgJSBzZXRzIHRoZSBjYXB0aW9uLXBvc2l0aW9uIHRvIGJvdHRvbQ0KICBjb21tZW50c3R5bGU9XGNvbG

9ye2NvbW1lbnRjb2xvcn0sICAgICUgY29tbWVudCBzdHlsZQ0KICBkZWxldGVrZXl3b3Jkcz17Li4ufSwgICAgICAgICAgICAlIGlmIHlvdSB3YW50IHRvIGRlbGV0ZSBrZXl3b3JkcyBmcm9tIHRoZSBnaXZlbiBsYW5ndWFnZQ0KICBlc2NhcGVpbnNpZGU9e1wlKn17Kil9LCAgICAgICAgICAlIGlmIHlvdSB3YW50IHRvIGFkZCBMYVRlWCB3aXRoaW4geW91ciBjb2RlDQogIGV4dGVuZGVkY2hhcnM9dHJ1Z

SwgICAgICAgICAgICAgICUgbGV0cyB5b3UgdXNlIG5vbi1BU0NJSSBjaGFyYWN0ZXJzOyBmb3IgOC1iaXRzIGVuY29kaW5ncyBvbmx5LCBkb2VzIG5vdCB3b3JrIHdpdGggVVRGLTgNCiAgZnJhbWU9c2luZ2xlLAkgICAgICAgICAgICAgICAgICAgJSBhZGRzIGEgZnJhbWUgYXJvdW5kIHRoZSBjb2RlDQogIGtlZXBzcGFjZXM9dHJ1ZSwgICAgICAgICAgICAgICAgICUga2VlcHMgc3BhY2VzIGluIHRleH

QsIHVzZWZ1bCBmb3Iga2VlcGluZyBpbmRlbnRhdGlvbiBvZiBjb2RlIChwb3NzaWJseSBuZWVkcyBjb2x1bW5zPWZsZXhpYmxlKQ0KICBrZXl3b3Jkc3R5bGU9XGNvbG9ye2JsdWV9LCAgICAgICAlIGtleXdvcmQgc3R5bGUNCiAgbGFuZ3VhZ2U9c3FsLCAgICAgICAgICAgICAgICAgJSB0aGUgbGFuZ3VhZ2Ugb2YgdGhlIGNvZGUNCiAgb3RoZXJrZXl3b3Jkcz17RlVOQ1RJT04sUkVUVVJOUyxMT09QL

ElGLFJFQUwsTEFOR1VBR0UsU1RSSUNULEVYSVQsQ09OVElOVUV9LCAgICAgICAgICAgICUgaWYgeW91IHdhbnQgdG8gYWRkIG1vcmUga2V5d29yZHMgdG8gdGhlIHNldA0KICBudW1iZXJzPWxlZnQsICAgICAgICAgICAgICAgICAgICAlIHdoZXJlIHRvIHB1dCB0aGUgbGluZS1udW1iZXJzOyBwb3NzaWJsZSB2YWx1ZXMgYXJlIChub25lLCBsZWZ0LCByaWdodCkNCiAgbnVtYmVyc2VwPTVw

dCwgICAgICAgICAgICAgICAgICAgJSBob3cgZmFyIHRoZSBsaW5lLW51bWJlcnMgYXJlIGZyb20gdGhlIGNvZGUNCiAgbnVtYmVyc3R5bGU9XHRpbnlcY29sb3J7bGluZW51bWJlcmNvbG9yfSwgJSB0aGUgc3R5bGUgdGhhdCBpcyB1c2VkIGZvciB0aGUgbGluZS1udW1iZXJzDQogIHJ1bGVjb2xvcj1cY29sb3J7YmxhY2t9LCAgICAgICAgICUgaWYgbm90IHNldCwgdGhlIGZyYW1lLWNvbG9yIG1heSBiZS

BjaGFuZ2VkIG9uIGxpbmUtYnJlYWtzIHdpdGhpbiBub3QtYmxhY2sgdGV4dCAoZS5nLiBjb21tZW50cyAoZ3JlZW4gaGVyZSkpDQogIHNob3dzcGFjZXM9ZmFsc2UsICAgICAgICAgICAgICAgICUgc2hvdyBzcGFjZXMgZXZlcnl3aGVyZSBhZGRpbmcgcGFydGljdWxhciB1bmRlcnNjb3JlczsgaXQgb3ZlcnJpZGVzICdzaG93c3RyaW5nc3BhY2VzJw0KICBzaG93c3RyaW5nc3BhY2VzPWZhbHNlLCAgICAgICA

gICAlIHVuZGVybGluZSBzcGFjZXMgd2l0aGluIHN0cmluZ3Mgb25seQ0KICBzaG93dGFicz1mYWxzZSwgICAgICAgICAgICAgICAgICAlIHNob3cgdGFicyB3aXRoaW4gc3RyaW5ncyBhZGRpbmcgcGFydGljdWxhciB1bmRlcnNjb3Jlcw0KICBzdGVwbnVtYmVyPTEsICAgICAgICAgICAgICAgICAgICAlIHRoZSBzdGVwIGJldHdlZW4gdHdvIGxpbmUtbnVtYmVycy4gSWYgaXQncyAxLCBlYWNoIGxpbmUg

d2lsbCBiZSBudW1iZXJlZA0KICBzdHJpbmdzdHlsZT1cY29sb3J7c3RyaW5nbGl0ZXJhbGNvbG9yfSwgICAgICUgc3RyaW5nIGxpdGVyYWwgc3R5bGUNCiAgdGFic2l6ZT0yLAkgICAgICAgICAgICAgICAgICAgJSBzZXRzIGRlZmF1bHQgdGFic2l6ZSB0byAyIHNwYWNlcw0KICB0aXRsZT1cbHN0bmFtZSAgICAgICAgICAgICAgICAgICAlIHNob3cgdGhlIGZpbGVuYW1lIG9mIGZpbGVzIGluY2x1ZGVkIH

dpdGggXGxzdGlucHV0bGlzdGluZzsgYWxzbyB0cnkgY2FwdGlvbiBpbnN0ZWFkIG9mIHRpdGxlDQp9DQoNClxsc3RuZXdlbnZpcm9ubWVudHtjb2RlfVsxXVtdJQ0KICB7XG5vaW5kZW50XG1pbmlwYWdle1xsaW5ld2lkdGh9XG1lZHNraXAgDQogICBcbHN0c2V0e2Jhc2ljc3R5bGU9XHR0ZmFtaWx5XGZvb3Rub3Rlc2l6ZSxmcmFtZT1zaW5nbGUsIzF9fQ0KICB7XGVuZG1pbmlwYWdlfQ0KICANCg0KXG

5ld2NvbW1hbmQqe1xDT01NVU5JU019WzFdeyUNCiAgXGZvbnRzcGVjeyMxfVxzeW1ib2x7IjI2MkR9XFwlDQp9DQoNCg0KXG5ld2NvbW1hbmQqe1xjb21tdW5pc219e3tjb21tdW5pc20gXENPTU1VTklTTXtGcmVlU2Fuc319fQ0KXG5ld2NvbW1hbmQqe1xDb21tdW5pc219e3tDb21tdW5pc20gXENPTU1VTklTTXtGcmVlU2Fuc319fQ0KDQpcbmV3Y29tbWFuZHtccGFwZXJ0aXRsZX17Q29tbWllQ29pbiB

7XExBUkdFIFxjb2xvcntyZWR9IFxDT01NVU5JU017RnJlZVNhbnN9fSBTZWl6aW5nIHRoZSBtZWFucyBvZiBjcnlwdG8tcHJvZHVjdGlvbn0NCg0KXG5ld2NvbW1hbmR7XGxpbmtjb2xvcn17bGlnaHRncmF5fQ0KXG5ld2NvbW1hbmR7XHRkfVsxXXtcdG9kb1tpbmxpbmVdeyMxfX0NClxuZXdjb21tYW5ke1xicH1bMl17XG5vaW5kZW50ICMxXCBcdGV4dGJmeyMyfVwgXCB9DQpcbmV3Y29tbWFuZHtcY

nBwfVsxXXtcYnB7JFxvcGx1cyR9eyMxfX0NClxuZXdjb21tYW5ke1xicG59WzFde1xicHskXG9taW51cyR9eyMxfX0NClxuZXdjb21tYW5ke1xtYWlsfVsxXXtcZW1haWx7XGhyZWZ7bWFpbHRvOiMxfXsjMX19fQ0KDQpcaWZwZGYNCiAgXGh5cGVyc2V0dXB7DQogICAgICB1bmljb2RlPXRydWUsIHBkZnRpdGxlPXtccGFwZXJ0aXRsZX0sIHBkZmF1dGhvcj17TWFyayBSYWFzdmVsZHQsIFRpbSBHdW

JuZXIgYW5kIEFiZSBXaXRzfSwNCiAgICAgIGNvbG9ybGlua3M9ZmFsc2UsIGJyZWFrbGlua3M9dHJ1ZSwgbGlua2JvcmRlcmNvbG9yPVxsaW5rY29sb3IsDQogICAgICBjaXRlYm9yZGVyY29sb3I9XGxpbmtjb2xvciwgdXJsYm9yZGVyY29sb3I9XGxpbmtjb2xvciwNCiAgfQ0KXGZpDQoNCg0KXGJlZ2lue2RvY3VtZW50fQ0KDQpcdGl0bGV7XHBhcGVydGl0bGV9DQoNClxudW1iZXJvZmF1dGhvcnN7Nn0g

DQpcYXV0aG9yew0KXGFsaWduYXV0aG9yDQpNYXJ4IHZhbiBSYWFzdmVsZHRcXA0KICAgICAgIFxhZmZhZGRye0NXSX1cXA0KICAgICAgIFxhZmZhZGRye0Ftc3RlcmRhbX1cXA0KICAgICAgIFxlbWFpbHttLnJhYXN2ZWxkdEBjd2kubmx9IA0KXGFsaWduYXV0aG9yDQpUaW0gR3VibmVyZFxcDQogICAgICAgXGFmZmFkZHJ7Q1dJfVxcDQogICAgICAgXGFmZmFkZHJ7QW1zdGVyZGFtfVxc

DQogICAgICAgXGVtYWlse3RpbS5ndWJuZXJAY3dpLm5sfQ0KXGFsaWduYXV0aG9yDQpQZXRlciB2YW4gSG9sbGFuZFxcDQogICAgICAgXGFmZmFkZHJ7Q1dJfVxcDQogICAgICAgXGFmZmFkZHJ7QW1zdGVyZGFtfVxcDQogICAgICAgXGVtYWlse2hvbGFuZGFAY3dpLm5sfSBcYW5kDQpcYWxpZ25hdXRob3INCkRpZWdvIFNjaHdhcnplbmVnZ2VyXFwNCiAgICAgICBcYWZmYWRkcntTa3luZ

XR9XFwNCiAgICAgICBcYWZmYWRkcntDYWxpZm9ybmlhfVxcDQogICAgICAgXGVtYWlse3Rlcm1pbmF0b3JAc2t5bmV0LmNvbX0NClxhbGlnbmF1dGhvcg0KQmFyYWNrIE9iYW1hXFwNCiAgICAgICBcYWZmYWRkcntDcnlwdG8tQ29tbXVuaXN0fVxcDQogICAgICAgXGFmZmFkZHJ7Tm90IHRoZSBVU0F9XFwNCiAgICAgICBcZW1haWx7XGNlbnNvcntSRURBQ1RFRH1AaG90bWFpbC5jb219D

Qp9DQoNClxtYWtldGl0bGUNCg0KXEFkZFRvU2hpcG91dFBpY3R1cmVCRyp7JQ0KICBcQXRQYWdlVXBwZXJSaWdodHtccmFpc2Vib3h7LVxoZWlnaHR9e1xmcmFtZXtcaW5jbHVkZWdyYXBoaWNzW3dpZHRoPTQuNWNtXXtoYW1tZXJhbmRzaWNrbGUucGRmfX19fX0NClxBZGRUb1NoaXBvdXRQaWN0dXJlQkcqeyUNCiAgXEF0UGFnZVVwcGVyTGVmdHtccmFpc2Vib3h7LVxoZWlnaHR9e1x

mcmFtZXtcaW5jbHVkZWdyYXBoaWNzW3dpZHRoPTQuNWNtXXtoYW1tZXJhbmRzaWNrbGUucGRmfX19fX0NClxtYWtldGl0bGUNCg0KXGJlZ2lue2Fic3RyYWN0fQ0KDQpcZW5ke2Fic3RyYWN0fQ0KDQpca2V5d29yZHN7fQ0KDQpcc2VjdGlvbntJbnRyb2R1Y3Rpb259XGxhYmVse3NlY3Rpb246aW50cm9kdWN0aW9ufQ0KR292ZXJuaW5nIG5hdGlvbnMgaGFzIGJlZW4gYSBsb25nLXN0YW5kaW5

nIHByb2JsZW0gaW4gc2NpZW50aWZpYyByZXNlYXJjaC4gSXQgaXMgYW4gaW1wb3J0YW50IHByb2JsZW0sIGFzIHNlbGVjdGluZyBhIHByb3BlciBzeXN0ZW0gb2YgZ292ZXJubWVudCBpcyB2aXRhbCB0byBjcmVhdGluZyBhIGZyZWUgYW5kIGp1c3Qgc29jaWV0eSBpbiB3aGljaCBwZW9wbGUgY2FuIGxpdmUgdGhlaXIgbGl2ZXMgaGFwcGlseS4NCg0KTmFpdmUgYXBwcm9hY2hlcywgc3VjaCBhcyB

hbmFyY2hvLWNhcGl0YWxpc20gb3IgbGliZXJ0YXJpYW5pc20sIGhhdmUgb2J2aW91cyBmbGF3cyB0aGF0IG1ha2UgdGhlbSBjb21wbGV0ZWx5IHVuc3VpdGFibGUgYXMgYSBtb2Rlcm4gc3lzdGVtIG9mIGdvdmVybm1lbnQuIFRoZSBjdXJyZW50IHN0YXRlIG9mIHRoZSBhcnQgc29sdXRpb24gZW1wbG95ZWQgaW4gbW9kZXJuIGRlbW9jcmFjaWVzIGlzIHNvY2lvLWNhcGl0YWxpc20uIEhvd2V2ZXIsIGl

0IGhhcyBzZXZlcmFsIGZsYXdzIHRoYXQgbWFrZSBpdCBzdWItb3B0aW1hbCBpbiBwcmFjdGljZX5cY2l0ZXtmbGF3c29mY2FwaXRhbGlzbX0uDQoNCkNvbW11bmlzbSBoYXMgYmVlbiBtYXRoZW1hdGljYWxseSBwcm92ZW4gdG8gYmUgdGhlIG9wdGltYWwgc3lzdGVtIG9mIGdvdmVybm1lbnR+XGNpdGV7ZGFza2FwaXRhbH0uIEhvd2V2ZXIsIGl0IGhhcyBiZWVuIG5vdG9yaW91c2x5IGRpZmZpY3V

sdCB0byBpbXBsZW1lbnQgaW4gcHJhY3RpY2UuIFdoZW4gdGhlIHN5c3RlbSBvZiBnb3Zlcm5tZW50IHdhcyBhdHRlbXB0ZWQgaW4gU292aWV0IFJ1c3NpYSwgdGhlcmUgd2FzIGEgYnVnIHRoYXQgY2F1c2VkIHRoZSBsZWFkZXJzIG9mIHRoZSBnb3Zlcm5tZW50IHRvIGFjY2lkZW50bHkga2VlcCBsYXJnZSBjaHVua3Mgb2Ygd2VhbHRoIGZvciB0aGVtc2VsdmVzIGluc3RlYWQgb2YgZGlzdHJpYnV0aW5

nIHdlYWx0aCBlcXVhbGx5IG92ZXIgdGhlIHBlb3BsZX5cY2l0ZXtzb3ZpZXRydXNzaWF9LiBJbiB0aGUgUGVvcGxlJ3MgUmVwdWJsaWMgb2YgQ2hpbmEsIGFuIG9mZi1ieS1vbmUgZXJyb3IgaW4gdGhlIGltcGxlbWVudGF0aW9uIGNhdXNlZCBwcm9ibGVtcyB3aXRoIHRoZSBmb29kIHN1cHBseX5cY2l0ZXtjaGluYX0uDQoNCkRlc3BpdGUgdGhlIHByb2JsZW1zIGVuY291bnRlcmVkIGluIHByYWN0aWNh

bCBhdHRlbXB0cyBvZiB1c2luZyBjb21tdW5pc20sIGl0IGlzIHN0aWxsIHRoZW9yZXRpY2FsbHkgYW4gb3B0aW1hbCBzb2x1dGlvbiB0byBnb3Zlcm5pbmcgc29jaWV0eS4gQXMgc3VjaCwgdGhlIG9ubHkgc3RlcCBuZWNlc3NhcnkgZm9yIHJlYWNoaW5nIGEgY29tbXVuaXN0IHV0b3BpYSAoYmVzaWRlcyBvdmVydGhyb3dpbmcgdGhlIGJvdXJnZW9pc2llKSBpcyBhIHdvcmthYmxlLCBPcGVuLVNvdXJjZSB

pbXBsZW1lbnRhdGlvbiBvZiB0aGUgaWRlb2xvZ3kuIA0KDQpJbiB0aGlzIHBhcGVyLCB3ZSBwcmVzZW50IGEgcHJhY3RpY2FsLCBidXp6d29yZC1jb21wbGlhbnQsIGltcGxlbWVudGF0aW9uIG9mIGNvbW11bmlzbSBhcyBhIHN5c3RlbSBvZiBnb3Zlcm5tZW50LiBCeSB1c2luZyB0aGUgcG93ZXIgb2YgXHN0e21hZ2ljfSB0aGUgYmxvY2tjaGFpbiBhbmQgc21hcnQgY29udHJhY3RzLCB3ZSBjcmVhdGUgYW4

gaW1wbGVtZW50YXRpb24gb2YgXGNvbW11bmlzbSB0aGF0IGRvZXMgbm90IHJlcXVpcmUgYSBjZW50cmFsIGF1dGhvcml0eSB0byByZWRpc3RyaWJ1dGUgd2VhbHRoLiBJbnN0ZWFkLCBzbWFydCBjb250cmFjdHMgZ3VhcmFudGVlIHRoYXQgYW55IHdvcmsgcGVyZm9ybWVkIGJ5IGFueSBtZW1iZXIgb2Ygc29jaWV0eSBnb2VzIGNvbXBsZXRlbHkgdW5yZXdhcmRlZCBieSBlcXVhbGx5IGRpc3Rya

WJ1dGluZyBibG9jayByZXdhcmRzIHRvIGV2ZXJ5b25lIGVsc2UuIFRyYW5zYWN0aW9ucyBjYW5ub3QgYmUgcGVyZm9ybWVkLCBhcyB0cmFuc2FjdGlvbnMgYXJlIHVud2FudGVkIHJlbW5hbnRzIG9mIGNhcGl0YWxpc3QgdHlyYW5ueS4gDQoNCk91ciBpbXBsZW1lbnRhdGlvbiBpcyBjb21wbGV0ZWx5IE9wZW4tU291cmNlLCBhbmQgcHVibGlzaGVkIHVuZGVyIHRoZSBBbmFyY2h5IExpY2Vuc2UuD

QoNClx0ZXh0YmZ7Q29udHJpYnV0aW9ucy59IFRoZSBtYWluIGNvbnRyaWJ1dGlvbnMgb2YgdGhpcyBwYXBlciBhcmU6DQpcYmVnaW57aXRlbWl6ZX0NClxpdGVtIA0KXGl0ZW0gDQpcaXRlbSBXZSBleHBlcmltZW50YWxseSBzaG93IGhvdyBlZmZlY3RpdmUgQ29tbWllIENvaW4gaXMgaW4gcHJhY3RpY2UgYnkgaW1wbGVtZW50aW5nIGl0IGluIGFuIGluc2lnbmlmaWNhbnQgbmF0aW9uLXN0YXRl

LCBzdWNoIGFzIEJlbGdpdW0gb3IgRnJhbmNlLg0KXGVuZHtpdGVtaXplfQ0KDQoNCiUgR3VsYWdzDQolIERpZ2l0YWwgR3VsYWdzPw0KJSBCcmVhZGxpbmVzDQolIFZvZGthLCBBZGlkYXMsIFNsYXZTcXVhdA0KJSBJbiBTb3ZpZXQgUnVzc2lhLCBYIFkncyB5b3UuLg0KJSBLR0INCiUgS3JlbWxpbg0KJSBFQ0INCiUgQmxvb2Qgb2YgdGhlIHdvcmtpbmcgY2xhc3MNCiUgT3ZlcnRocm93IHRoZSBi

b3VyZ2VvaXNpZQ0KJSBCb3VyZ2VvdWlzIHByb3BhZ2FuZGENCiUgUHJvbGV0YXJpYXQNCiUgQ29tcmFkZQ0KDQolIFRoZSBnZW50bGUgbGFib3JlciBzaGFsbCBubyBsb25nZXIgc3VmZmVyIQ0KDQoNCiUgUTogSXMgaXQgdHJ1ZSB0aGF0IHRoZXJlIGlzIGZyZWVkb20gb2Ygc3BlZWNoIGluIHRoZSBTb3ZpZXQgVW5pb24sIGp1c3QgbGlrZSBpbiB0aGUgVVNBPw0KJSBBOiBJbiBwcmluY2lwbGUs

IHllcy4gSW4gdGhlIFVTQSwgeW91IGNhbiBzdGFuZCBpbiBmcm9udCBvZiB0aGUgV2hpdGUgSG91c2UgaW4gV2FzaGluZ3RvbiwgREMsIGFuZCB5ZWxsLCAiRG93biB3aXRoIFJlYWdhbiEiLCBhbmQgeW91IHdpbGwgbm90IGJlIHB1bmlzaGVkLiBFcXVhbGx5LCB5b3UgY2FuIGFsc28gc3RhbmQgaW4gUmVkIFNxdWFyZSBpbiBNb3Njb3cgYW5kIHllbGwsICJEb3duIHdpdGggUmVhZ2FuISIsIGFuZCB5

b3Ugd2lsbCBub3QgYmUgcHVuaXNoZWQuIA0KDQolIEEgbWFuIHdhbGtzIGludG8gYSBzaG9wIGFuZCBhc2tzLCAiWW91IHdvdWxkbid0IGhhcHBlbiB0byBoYXZlIGZpc2gsIHdvdWxkIHlvdT8iLiBUaGUgc2hvcCBhc3Npc3RhbnQgcmVwbGllcywgIllvdSd2ZSBnb3QgaXQgd3Jvbmcg4oCTIG91cnMgaXMgYSBidXRjaGVyJ3Mgc2hvcDogd2Ugd291bGRuJ3QgaGFwcGVuIHRvIGhhdmUgbWVhdC4gWW91J3

JlIGxvb2tpbmcgZm9yIHRoZSBmaXNoIHNob3AgYWNyb3NzIHRoZSByb2FkLiBUaGVyZSB0aGV5IHdvdWxkbid0IGhhcHBlbiB0byBoYXZlIGZpc2ghIg0KDQolIFRoZSBwcm9ibGVtIHdpdGggY2FwaXRhbGlzbSBpcyB0aGF0IG9ubHkgdGhlIHBvb3IgcGVvcGxlIHN0YXJ2ZS4gSW4gQ29tbXVuaXNtLCBldmVyeW9uZSBzdGFydmVzIQ0KDQogJUxpdHRsZSBCb3k6IFdoYXQgd2lsbCBjb21tdW5pc20gYmUg

bGlrZSB3aGVuIHBlcmZlY3RlZD8NCiAlSGlzIEZhdGhlcjogRXZlcnlvbmUgd2lsbCBoYXZlIHdoYXQgaGUgbmVlZHMuDQogJUxpdHRsZSBCb3k6IEJ1dCB3aGF0IGlmIHRoZXJlIGlzIGEgc2hvcnRhZ2Ugb2YgbWVhdD8NCiAlSGlzIEZhdGhlcjogVGhlcmUgd2lsbCBiZSBhIHNpZ24gaW4gdGhlIGJ1dGNoZXIgc2hvcCBzYXlpbmcsICJObyBvbmUgbmVlZHMgbWVhdCB0b2RheS4iDQoNCg0KDQoNClxzZWN0

aW9ue0ltcGxlbWVudGF0aW9ufQ0KDQpDb21taWUgQ29pbiBpcyBhIGJsb2NrY2hhaW4tYmFzZWQgY3J5cHRvLWN1cnJlbmN5IHdpdGggaHlicmlkIFByb29mIG9mIFN0ZWFrIGFuZCBQcm9vZiBvZiBMYWJvci4gVGhlcmUgYXJlIHRocmVlIHR5cGVzIG9mIHRva2VuczogQ29tbW9uLCBNZWRpdW0gYW5kIFJhcmUuIFRoZXNlIGFsbCBoYXZlIGVxdWFsIHZhbHVlLCBidXQgdGhlIFJhcmUgdG9rZW5zI

GFyZSBtb3JlIGVxdWFsIGFzIHRoZXkgYXJlIHRoZSByZWRkZXN0IChhbmQgaGVuY2UgbW9zdCBDb21tdW5pc3QpIG9mIGFsbCB0b2tlbnMuIENoZXdpbmcgKG1pbmluZykgUmFyZSBjb2lucyBpcyBtb3JlIHdvcmsgdGhhbiBjaGV3aW5nIE1lZGl1bSBvciBDb21tb24gY29pbnMuDQoNClRoZSBGYWlyIENvbnRyYWN0IHN5c3RlbSBjYW4gYmUgdXNlZCB0byBpbXBsZW1lbnQgYXBwbGljYXRpb25zIG9uI

HRvcCBvZiB0aGUgQ29tbXVuaXN0IENoYWluLCBpbiB3aGljaCBhbGwgbGlua3MgYXJlIGVxdWFsbHkgc3Ryb25nLg0KDQpDb21taWUgQ29pbiBnYXBzIHRoZSBicmlkZ2UgYmV0d2VlbiBjb21tdW5pc20gYW5kIGNhcGl0YWxpc20gYnkgdXNpbmcgYSBmdW5kYW1lbnRhbGx5IGNhcGl0YWxpc3RpYyBjdXJyZW5jeSB0byBpbXBsZW1lbnQgY29tbXVuaXN0IGlkZWFscy4NCg0KVXNpbmcgUHJvb2Ygb2

YgXENvbW11bmlzbSBwZW9wbGUgXHN0e2FyZSBmb3JjZWQgdG99IGNhbiB2b2x1bnRhcmlseSBwYXJ0aWNpcGF0ZSBpbiANCg0KXHN1YnNlY3Rpb257QnV5aW5nIEJyZWFkfQ0KVGFrZSBzb21lIGJyZWFkIGZyb20gdGhlIEJyZWFkIFBpdD8NCg0KDQpcc2VjdGlvbntBc3BhcmFndXN9XGxhYmVse3NlY3Rpb246ZXhwZXJpbWVudHN9DQoNClxzdWJzZWN0aW9ue1BlcmZvcm1hbmNlfQ0KVG8gY2

xhc3NpZnkgaG93IG11Y2ggY29tbXVuaXNtIG91ciBpbXBsZW1lbnRhdGlvbiBhY2hpZXZlcywgd2UgbWVhc3VyZWQgdGhlIGxldmVsIG9mIGFjaGlldmVkIGNvbW11bmlzbS4NClRoYXQgbWV0cmljIGNsYXNzaWZpZXMgc3lzdGVtcyBpbnRvIHRoZXNlIGNhdGVnb3JpZXMgKGZyb20gaGlnaC9nb29kIHRvIGxvdyk6IE1hcnggKDEwKSwgU292aWV0IFVuaW9uICg4KSwgVmVuZXp1ZWxhICg2KSwgTmV0a

GVybGFuZHMgKDQpLCBOaWdlcmlhICgyKSBhbmQgVW5pdGVkIFN0YXRlcyBvZiBBbWVyaWNhICgxKS4gXENyZWZ7dGFiOmxldmVsOmNvbW11bmlzbX0gY29tcGFyZXMgb3VyIGN1cnJlbmN5IHRvIGltcG9ydGFudCBvdGhlcnMgaW4gdGVybXMgb2YgYWNoaWV2ZWQgY29tbXVuaXNtLiBGcm9tIHRoYXQgdGFibGUgaXQgY2FuIGJlIG9ic2VydmVkIHRoYXQgb3VyIGltcGxlbWVudGF0aW9uL

CBcZW1waHtieSBkZXNpZ259LCBhY2hpZXZlcyBhIGhpZ2hlciBsZXZlbCBvZiBhY2hpZXZlZCBjb21tdW5pc20gYnkgJFxhcHByb3gkIDJ4LiBJbiBjb21wYXJpc29uIHRvIHRoZSBVUyBEb2xsYXIgYW5kIEJpdENvaW4sIHdlIGFjaGlldmVkIGFuIGltcHJvdmVtZW50IG9mIDEweC4NCg0KXGJlZ2lue3RhYmxlfVtdDQogICAgXGNlbnRlcmluZw0KICAgIFxiZWdpbnt0YWJ1bGFyfXtjfGN8Y30NCiAgICBDdXJy

ZW5jeSAmIExPQUMgJiBMT0FDIChzY29yZSkgXFwNCiAgICBcaGxpbmUNCiAgICBDb21taWVDb2luICYgTWFyeCAmIDEwIFxcDQogICAgQml0Q29pbiAmIFVuaXRlZCBTdGF0ZXMgb2YgQW1lcmljYSAmIDEgXFwNCiAgICBQZXRybyAmIFZlbmV6dWVsYSAmIDYgXFwNCiAgICBVUyBEb2xsYXIgJiBVbml0ZWQgU3RhdGVzIG9mIEFtZXJpY2EgJiAxXFwNCiAgICBcaGxpbmUNClxlbmR7dGFid

Wxhcn0NCiAgICBcY2FwdGlvbntMZXZlbCBvZiBhY2hpZXZlZCBjb21tdW5pc20gKExPQUMpfQ0KICAgIFxsYWJlbHt0YWI6bGV2ZWw6Y29tbXVuaXNtfQ0KXGVuZHt0YWJsZX0NCg0KTm90ZSB0aGF0IHdlIGV4Y2x1ZGVkIGN1cnJlbmNpZXMgbGlrZSB0aGUgWWVuIGFuZCB0aGUgRXVybyBiZWNhdXNlIHdlIGJlbGlldmUgdGhhdCB0aGV5IGFyZSBhIGNlbnRyYWwgYmFuay1jb250cm9sbGVkIFB

vbnppLXNjaGVtZSBhbmQgbm90IGJhY2tlZCBieSBhbnkgYXNzZXRzIHRoZW1zZWx2ZXMuIFRoZSBzYW1lIGhvbGRzIGZvciB0aGUgVVMgRG9sbGFyIGJ1dCBhZnRlciBhIHPDqWFuY2Ugd2l0aCBWbGFkaW1pciBMZW5pbiwgaGUgdG9sZCB1cyB0aGF0IHdlIG5lZWRlZCBhIG5vbi1jcnlwdG8gY3VycmVuY3kgYXMgcmVmZXJlbmNlLg0KDQoNClxzZWN0aW9ue1VucmVsYXRlZCBXb3JrfQ0KQmVjY

XVzZSBvZiB0aGUgcmlzaW5nIHBvcHVsYXJpdHkgb2YgY3J5cHRvLWN1cnJlbmNpZXMgdGhlcmUgaXMgYSBsb3Qgb2Ygc2NpZW50aWZpYyB3b3JrIGRvbmUgb24gZGlmZmVyZW50IGJsb2NrY2hhaW4gaW1wbGVtZW50YXRpb25zLCBwcm9vZi1vZi13b3JrLCBzbWFydCBjb250cmFjdHMgYW5kIHRyYW5zYWN0aW9uIG1ldGEtYW5hbHlzaXMuIEluIHRoaXMgc2VjdGlvbiwgd2Ugd2lsbCBub3QgZGlzY

3VzcyBhbnkgb2YgdGhlc2UuDQoNCkFuLCBmb3IgaW5zdGFuY2UsIGNvbXBsZXRlbHkgdW5yZWxhdGVkIHBhcGVyIGlzIHRoaXMgbWFzdGVyIHBpZWNlIGJ5IEplZmYgRGVhbiBcY2l0ZXtkZWFuMjAwOWRlc2lnbnN9LiBCdXQsIHdoZXJldmVyIEplZmYgRGVhbiBhcHBlYXJzIEphbWVzIERlYW4gY2Fubm90IG1pc3MsIGNvbnNpZGVyIHRoaXMgYXJ0aWNsZSBcY2l0ZXtqYW1lc2RlYW59Lg0KDQo

NClxzZWN0aW9ue0NvbmNsdXNpb25zIFwmIEZ1dHVyZSBXb3JrfQ0KDQpcc3Vic2VjdGlvbntTZWxmIEV2YWx1YXRpb259DQoNClxzdWJzZWN0aW9ue1ByZXNlbnQgV29ya30NCg0KXHNlY3Rpb257QWNrbm93bGVkZ2VtZW50c30NCldlIHdvdWxkIGxpa2UgdG8gdGhhbmsgTm9ydGggS29yZWEsIFZlbmV6dWVsYSwgQ3ViYSwgU292aWV0IFVuaW9uIGFuZCwgbGFzdCBidXQgbm90IGxlYXN0LCB0a

GUgR2VybWFuIERlbW9jcmF0aWMgUmVwdWJsaWMgZm9yIHByb3ZpZGluZyBwcm9vZi1vZi1jb25jZXB0IGltcGxlbWVudGF0aW9ucyBvZiBcQ29tbXVuaXNtIC4gDQoNClRoaXMgd29yayBoYXMgYmVlbiBwYXJ0aWFsbHkgZnVuZGVkIGJ5IFNreW5ldCwgU2lsdmVybWFuIFNheCwgTcO2cmfDpG4gRElZIHRvb2xtYWtlciBhbmQgVGhlIFBlb3BsZSdzIFJlcHVibGljIG9mIFRoZSBOZXRoZXJsYW5kcyB

1bmRlciBpdHMgZ3JlYXQgbGVhZGVyIFdpbGxlbS1BbGV4YW5kZXIgQ2xhdXMgR2VvcmdlIEZlcmRpbmFuZC4NCg0KXGJpYmxpb2dyYXBoeXN0eWxle2FiYnJ2fQ0KXGJpYmxpb2dyYXBoeXt2bGRifSAgDQoNClxzZWN0aW9ue0FwcGVuZGl4fQ0KXGluY2x1ZGVncmFwaGljc1tzY2FsZT0wLjVde2FwcGVuZGljaXRpc19zMV9hcHBlbmRpeF9pbGx1c3RyYXRpb24uanBnfSAoU291cmNlOiBcdXJse2h0d

HBzOi8vd3d3Lm9uaGVhbHRoLmNvbS9jb250ZW50LzEvYXBwZW5kaWNpdGlzX2FwcGVuZGVjdG9teX0pDQoNClxiaWJsaW9ncmFwaHlzdHlsZXthYmJydn0NClxiaWJsaW9ncmFwaHl7dmxkYn0gIA0KDQpcc2VjdGlvbntQcm9vZnN9DQpcc3Vic2VjdGlvbntPcHRpbWFsaXR5IG9mIENvbW11bmlzbX0NCkxldCAkWCQgYW55IGZvcm0gb2YgZ292ZXJuZW1lbnQuIExldCAkUz1ce3NfaVx9X3tpXGluIDFca

GRvdHMgTn0kIGJlIHRoZSBwZW9wbGUuIExldCAkXG1hdGhjYWx7UH1fdDpTXG1hcHN0byBcbWF0aGJie1J9X3s+MH0kIHRoZSBmdW5jdGlvbiB0aGF0IGFzc2lnbnMgcG93ZXIgdG8gdGhlIHBlb3BsZSBhdCB0aW1lICR0JC4gU3VwcG9zZSB0aGVyZSBhcmUgYW4gJDFcbGVxIGkgPCBqXGxlcSBOJCBhbmQgJHRcaW4gXG1hdGhiYntSfSQgc3VjaCB0aGF0ICRcbWF0aGNhbHtQfV90KHNfaSkgPCBcb

WF0aGNhbHtQfV90KHNfaikkLiBIb3cgY291bGQgeW91IGV2ZW4gc3VwcG9zZSBzb21ldGhpbmcgbGlrZSB0aGF0PyEgIFRoYXQgd291bGQgbm90IGJlIGZhaXIhIElmIHlvdSBkaWQgbm90IGltbWVkaWF0ZWx5IHJlamVjdCB0aGF0IHN0YXRlbWVudCwgeW91IHNob3VsZCBmZWVsIGJhZC4gSWYgeW91IHN1cHBvc2UgJFxtYXRoY2Fse1B9X3Qoc19pKSA8IFxtYXRoY2Fse1B9X3Qoc19qKSQgb3Blbmx5

LCB5b3VyIG5laWdoYm9ycywgZnJpZW5kcyBvciBmYW1pbHkgd2lsbCB0ZWxsIG9uIHlvdS4gV2Ugd2lsbCBmaW5kIHlvdS4gV2Ugd2lsbCBtYWtlIHlvdSBhZ3JlZS4gT3Igd2Ugd2lsbCBtYWtlIHlvdSBkaXNhcHBlYXIuIEhlbmNlLCAkXG1hdGhjYWx7UH1fdChzX2kpID0gXG1hdGhjYWx7UH1fdChzX2opID0gXG1hdGhjYWx7Q30kIGZvciBhbnkgJGkkLCAkaiQgYW5kICR0JC4gQXMgYSBzaWRlIGVmZmV

jdCwgd2UgaGF2ZSBvYnRhaW5lZCBwcm9vZiB0aGF0IHRoZXJlIG11c3QgZXhpc3QgJFxtYXRoY2Fse0N9IFxpbiBcbWF0aGJie1J9X3s+MH0kLCB3aGljaCB3aWxsIGJlIGtub3duIGFzIHRoZSBVbml2ZXJzYWwgQ29tbXVuaXNtIENvbnN0YW50LiBXZSBlc3RpbWF0ZSBpdHMgdmFsdWUgaXMgcm91Z2hseSAzIFJhcmUsIDUgTWVkaXVtIG9yIDggQ29tbW9uIENvbW1pQ29pbi4gTm90ZSB0aGF0IHRoZS

Bwcm9vZiBzdGlsbCBob2xkcyBpZiB3ZSBhc3N1bWUgdGhhdCAkdFxpbiBcbWF0aGJie1J9X3s+MH0kIChpLmUuIGEgYmlnIGJhbmcpLiANCg0KXHN1YnNlY3Rpb257V2F0ZXJ9DQpUaGlzIHBhcGVyIGlzIG5vdCB3YXRlciBwcm9vZi4NCg0KXHN1YnNlY3Rpb257QnVsbGV0fQ0KVGhpcyBwYXBlciBtYXkgYmUgYnVsbGV0IHByb29mLCBidXQgb25seSBpZiB5b3UgdGFrZSBtdWx0aXBsZSBwcmludGVkI

GNvcGllcy4NCg0KXHN1YnNlY3Rpb257b2YgQ29uY2VwdH0NCkhlcmUgaXMgdGhlIGJhc2U2NCBlbmNvZGluZyBvZiBhIHByb29mIG9mIENvbmNlcHQgb2YgdGhpcyBwYXBlcjoNClhHUnZZM1Z0Wlc1MFkyeGhjM043ZG14a1luME5DbHgxYzJWd1lXTnJZV2RsZTJadmJuUnpjR1ZqZlEwS0pTQmNkWE5sY0dGamEyRm5aVnQxZEdZNFhYdHBibkIxZEdWdVkzME5DbHgxYzJWd1lXTnJZV2RsZTJkeVlY

Qm9hV040ZlEwS1hIVnpaWEJoWTJ0aFoyVjdZbUZzWVc1alpYMGdEUXBjZFhObGNHRmphMkZuWlh0MGIyUnZibTkwWlhOOURRb05DbHgxYzJWd1lXTnJZV2RsZTIxcFkzSnZkSGx3WlgwTkNseDFjMlZ3WVdOcllXZGxlMmxtY0dSbWZRMEtYSFZ6WlhCaFkydGhaMlY3WjNKaGNHaHBZM2g5RFFwY2RYTmxjR0ZqYTJGblpYdGlZV3hoYm1ObGZRMEtYSFZ6WlhCaFkydGhaMlY3YkdsemRHbH

VaM045RFFwY2RYTmxjR0ZqYTJGblpYdDRZMjlzYjNKOURRcGNkWE5sY0dGamEyRm5aWHQwYjJSdmJtOTBaWE45RFFwY2RYTmxjR0ZqYTJGblpYdHRkV3gwYVhKdmQzME5DbHgxYzJWd1lXTnJZV2RsZTJ4aGRHVjRjM2x0ZlEwS1hIVnpaWEJoWTJ0aFoyVjdabXh2WVhSOURRcGNkWE5sY0dGamEyRm5aVnR3WkdaMFpYZ3NZMjlzYjNKc2FXNXJjMTE3YUhsd1pYSnlaV1o5RFFvbFhIVn

paWEJoWTJ0aFoyVjdZV3huYjNKcGRHaHRNbVY5RFFwY2RYTmxjR0ZqYTJGblpYdGhiR2R2Y21sMGFHMTlEUXBjZFhObGNHRmphMkZuWlh0aGJHZHZjbWwwYUcxcFkzME5DbHgxYzJWd1lXTnJZV2RsZTJ4aGRHVjRjM2x0ZlFrTkNseDFjMlZ3WVdOcllXZGxlMkZ0YzIxaGRHaDlEUXBjZFhObGNHRmphMkZuWlh0aGJYTnplVzFpZlEwS1hIVnpaWEJoWTJ0aFoyVjdabXh2WVhSOURRcGNk

WE5sY0dGamEyRm5aWHR6ZFdKallYQjBhVzl1ZlEwS1hIVnpaWEJoWTJ0aFoyVmJibTl5YldGc1pXMWRlM1ZzWlcxOURRcGNkWE5sY0dGamEyRm5aWHRoY25sa2MyaHNibjBOQ2x4MWMyVndZV05yWVdkbGUySnZiMnQwWVdKemZRMEtYSFZ6WlhCaFkydGhaMlY3YzI5MWJIME5DbHgxYzJWd1lXTnJZV2RsZTNCa1puQmhaMlZ6ZlEwS1hIVnpaWEJoWTJ0aFoyVjdjMlYwYzNCaFkyVjlEUXB

jZFhObGNHRmphMkZuWlh0amIyeHZjbjBOQ2x4MWMyVndZV05yWVdkbGUyeHBjM1JwYm1kemZRMEtEUXBjZFhObGNHRmphMkZuWlh0bGMyOHRjR2xqZlEwS1hHNWxkMk52YlcxaGJtUmNRWFJRWVdkbFZYQndaWEpTYVdkb2RGc3hYWHRjUVhSUVlXZGxWWEJ3WlhKTVpXWjBleVVOQ2lBZ0lGeHRZV3RsWW05NFcxeHdZWEJsY25kcFpIUm9YVnR5WFhzak1YMTlmUTBLSUNBZ0RRc

GNaR1ZtYVc1bFkyOXNiM0o3YzNWd1pYSnNhV2RvZEgxN1VrZENmWHN5TWpBc0lESXlNQ3dnTWpJd2ZRMEtYR1JsWm1sdVpXTnZiRzl5ZTNWc2RISmhiR2xuYUhSOWUxSkhRbjE3TWpRd0xDQXlOREFzSURJME1IME5DbHhrWldacGJtVmpiMnh2Y250bGVIUnlZV3hwWjJoMGZYdFNSMEo5ZXpJMU5Dd2dNalUwTENBeU5UUjlEUW9OQ2x4MWMyVndZV05yWVdkbGUyMWhkR2gwYjI5c2Mz

ME5DbHhFWldOc1lYSmxVR0ZwY21Wa1JHVnNhVzFwZEdWeWUxeGpaV2xzZlh0Y2JHTmxhV3g5ZTF4eVkyVnBiSDBOQ2x4MWMyVndZV05yWVdkbGUyTnZiRzl5ZlEwS0RRcGNaR1ZtYVc1bFkyOXNiM0o3WTI5dGJXVnVkR052Ykc5eWZYdHlaMko5ZXpBc01DNDJMREI5RFFwY1pHVm1hVzVsWTI5c2IzSjdiR2x1Wlc1MWJXSmxjbU52Ykc5eWZYdHlaMko5ZXpBdU5Td3dMalVzTUM0MWZRMEt

YR1JsWm1sdVpXTnZiRzl5ZTNOMGNtbHVaMnhwZEdWeVlXeGpiMnh2Y24xN2NtZGlmWHN3TGpVNExEQXNNQzQ0TW4wTkNnMEtYR3h6ZEhObGRIc2dKUTBLSUNCaVlXTnJaM0p2ZFc1a1kyOXNiM0k5WEdOdmJHOXllM2RvYVhSbGZTd2dJQ0FsSUdOb2IyOXpaU0IwYUdVZ1ltRmphMmR5YjNWdVpDQmpiMnh2Y2pzZ2VXOTFJRzExYzNRZ1lXUmtJRngxYzJWd1lXTnJZV2RsZTJOdmJHO

XlmU0J2Y2lCY2RYTmxjR0ZqYTJGblpYdDRZMjlzYjNKOURRb2dJR0poYzJsamMzUjViR1U5WEdadmIzUnViM1JsYzJsNlpTd2dJQ0FnSUNBZ0lDVWdkR2hsSUhOcGVtVWdiMllnZEdobElHWnZiblJ6SUhSb1lYUWdZWEpsSUhWelpXUWdabTl5SUhSb1pTQmpiMlJsRFFvZ0lHSnlaV0ZyWVhSM2FHbDBaWE53WVdObFBXWmhiSE5sTENBZ0lDQWdJQ0FnSUNVZ2MyVjBjeUJwWmlCaGRYUnZiV0Y

wYVdNZ1luSmxZV3R6SUhOb2IzVnNaQ0J2Ym14NUlHaGhjSEJsYmlCaGRDQjNhR2wwWlhOd1lXTmxEUW9nSUdKeVpXRnJiR2x1WlhNOWRISjFaU3dnSUNBZ0lDQWdJQ0FnSUNBZ0lDQWdJQ1VnYzJWMGN5QmhkWFJ2YldGMGFXTWdiR2x1WlNCaWNtVmhhMmx1WncwS0lDQmpZWEIwYVc5dWNHOXpQV0lzSUNBZ0lDQWdJQ0FnSUNBZ0lDQWdJQ0FnSUNBbElITmxkSE1nZEdobElHTmhj

SFJwYjI0dGNHOXphWFJwYjI0Z2RHOGdZbTkwZEc5dERRb2dJR052YlcxbGJuUnpkSGxzWlQxY1kyOXNiM0o3WTI5dGJXVnVkR052Ykc5eWZTd2dJQ0FnSlNCamIyMXRaVzUwSUhOMGVXeGxEUW9nSUdSbGJHVjBaV3RsZVhkdmNtUnpQWHN1TGk1OUxDQWdJQ0FnSUNBZ0lDQWdJQ1VnYVdZZ2VXOTFJSGRoYm5RZ2RHOGdaR1ZzWlhSbElHdGxlWGR2Y21SeklHWnliMjBnZEdobElHZHBk

bVZ1SUd4aGJtZDFZV2RsRFFvZ0lHVnpZMkZ3WldsdWMybGtaVDE3WENVcWZYc3FLWDBzSUNBZ0lDQWdJQ0FnSUNVZ2FXWWdlVzkxSUhkaGJuUWdkRzhnWVdSa0lFeGhWR1ZZSUhkcGRHaHBiaUI1YjNWeUlHTnZaR1VOQ2lBZ1pYaDBaVzVrWldSamFHRnljejEwY25WbExDQWdJQ0FnSUNBZ0lDQWdJQ0FnSlNCc1pYUnpJSGx2ZFNCMWMyVWdibTl1TFVGVFEwbEpJR05vWVhKaFkzU

mxjbk03SUdadmNpQTRMV0pwZEhNZ1pXNWpiMlJwYm1keklHOXViSGtzSUdSdlpYTWdibTkwSUhkdmNtc2dkMmwwYUNCVlZFWXRPQTBLSUNCbWNtRnRaVDF6YVc1bmJHVXNDU0FnSUNBZ0lDQWdJQ0FnSUNBZ0lDQWdJQ0FsSUdGa1pITWdZU0JtY21GdFpTQmhjbTkxYm1RZ2RHaGxJR052WkdVTkNpQWdhMlZsY0hOd1lXTmxjejEwY25WbExDQWdJQ0FnSUNBZ0lDQWdJQ0FnSUNBZ

0pTQnJaV1Z3Y3lCemNHRmpaWE1nYVc0Z2RHVjRkQ3dnZFhObFpuVnNJR1p2Y2lCclpXVndhVzVuSUdsdVpHVnVkR0YwYVc5dUlHOW1JR052WkdVZ0tIQnZjM05wWW14NUlHNWxaV1J6SUdOdmJIVnRibk05Wm14bGVHbGliR1VwRFFvZ0lHdGxlWGR2Y21SemRIbHNaVDFjWTI5c2IzSjdZbXgxWlgwc0lDQWdJQ0FnSUNVZ2EyVjVkMjl5WkNCemRIbHNaUTBLSUNCc1lXNW5kV0ZuWlQxemNXd

3NJQ0FnSUNBZ0lDQWdJQ0FnSUNBZ0lDQWxJSFJvWlNCc1lXNW5kV0ZuWlNCdlppQjBhR1VnWTI5a1pRMEtJQ0J2ZEdobGNtdGxlWGR2Y21SelBYdEdWVTVEVkVsUFRpeFNSVlJWVWs1VExFeFBUMUFzU1VZc1VrVkJUQ3hNUVU1SFZVRkhSU3hUVkZKSlExUXNSVmhKVkN4RFQwNVVTVTVWUlgwc0lDQWdJQ0FnSUNBZ0lDQWdKU0JwWmlCNWIzVWdkMkZ1ZENCMGJ5QmhaR1FnYlc5

eVpTQnJaWGwzYjNKa2N5QjBieUIwYUdVZ2MyVjBEUW9nSUc1MWJXSmxjbk05YkdWbWRDd2dJQ0FnSUNBZ0lDQWdJQ0FnSUNBZ0lDQWdJQ1VnZDJobGNtVWdkRzhnY0hWMElIUm9aU0JzYVc1bExXNTFiV0psY25NN0lIQnZjM05wWW14bElIWmhiSFZsY3lCaGNtVWdLRzV2Ym1Vc0lHeGxablFzSUhKcFoyaDBLUTBLSUNCdWRXMWlaWEp6WlhBOU5YQjBMQ0FnSUNBZ0lDQWdJQ0FnSU

NBZ0lDQWdJQ0FsSUdodmR5Qm1ZWElnZEdobElHeHBibVV0Ym5WdFltVnljeUJoY21VZ1puSnZiU0IwYUdVZ1kyOWtaUTBLSUNCdWRXMWlaWEp6ZEhsc1pUMWNkR2x1ZVZ4amIyeHZjbnRzYVc1bGJuVnRZbVZ5WTI5c2IzSjlMQ0FsSUhSb1pTQnpkSGxzWlNCMGFHRjBJR2x6SUhWelpXUWdabTl5SUhSb1pTQnNhVzVsTFc1MWJXSmxjbk1OQ2lBZ2NuVnNaV052Ykc5eVBWeGpiMnh2Y250aWJ

HRmphMzBzSUNBZ0lDQWdJQ0FnSlNCcFppQnViM1FnYzJWMExDQjBhR1VnWm5KaGJXVXRZMjlzYjNJZ2JXRjVJR0psSUdOb1lXNW5aV1FnYjI0Z2JHbHVaUzFpY21WaGEzTWdkMmwwYUdsdUlHNXZkQzFpYkdGamF5QjBaWGgwSUNobExtY3VJR052YlcxbGJuUnpJQ2huY21WbGJpQm9aWEpsS1NrTkNpQWdjMmh2ZDNOd1lXTmxjejFtWVd4elpTd2dJQ0FnSUNBZ0lDQWdJQ0FnSUNBZ0pT

QnphRzkzSUhOd1lXTmxjeUJsZG1WeWVYZG9aWEpsSUdGa1pHbHVaeUJ3WVhKMGFXTjFiR0Z5SUhWdVpHVnljMk52Y21Wek95QnBkQ0J2ZG1WeWNtbGtaWE1nSjNOb2IzZHpkSEpwYm1kemNHRmpaWE1uRFFvZ0lITm9iM2R6ZEhKcGJtZHpjR0ZqWlhNOVptRnNjMlVzSUNBZ0lDQWdJQ0FnSUNVZ2RXNWtaWEpzYVc1bElITndZV05sY3lCM2FYUm9hVzRnYzNSeWFXNW5jeUJ2Ym14NURRb

2dJSE5vYjNkMFlXSnpQV1poYkhObExDQWdJQ0FnSUNBZ0lDQWdJQ0FnSUNBZ0lDVWdjMmh2ZHlCMFlXSnpJSGRwZEdocGJpQnpkSEpwYm1keklHRmtaR2x1WnlCd1lYSjBhV04xYkdGeUlIVnVaR1Z5YzJOdmNtVnpEUW9nSUhOMFpYQnVkVzFpWlhJOU1Td2dJQ0FnSUNBZ0lDQWdJQ0FnSUNBZ0lDQWdJQ1VnZEdobElITjBaWEFnWW1WMGQyVmxiaUIwZDI4Z2JHbHVaUzF1ZFcxaVpYSnp

MaUJKWmlCcGRDZHpJREVzSUdWaFkyZ2diR2x1WlNCM2FXeHNJR0psSUc1MWJXSmxjbVZrRFFvZ0lITjBjbWx1WjNOMGVXeGxQVnhqYjJ4dmNudHpkSEpwYm1kc2FYUmxjbUZzWTI5c2IzSjlMQ0FnSUNBZ0pTQnpkSEpwYm1jZ2JHbDBaWEpoYkNCemRIbHNaUTBLSUNCMFlXSnphWHBsUFRJc0NTQWdJQ0FnSUNBZ0lDQWdJQ0FnSUNBZ0lDQWxJSE5sZEhNZ1pHVm1ZWFZzZENCMFlXS

nphWHBsSUhSdklESWdjM0JoWTJWekRRb2dJSFJwZEd4bFBWeHNjM1J1WVcxbElDQWdJQ0FnSUNBZ0lDQWdJQ0FnSUNBZ0lDVWdjMmh2ZHlCMGFHVWdabWxzWlc1aGJXVWdiMllnWm1sc1pYTWdhVzVqYkhWa1pXUWdkMmwwYUNCY2JITjBhVzV3ZFhSc2FYTjBhVzVuT3lCaGJITnZJSFJ5ZVNCallYQjBhVzl1SUdsdWMzUmxZV1FnYjJZZ2RHbDBiR1VOQ24wTkNnMEtYR3h6ZEc1bGQy

VnVkbWx5YjI1dFpXNTBlMk52WkdWOVd6RmRXMTBsRFFvZ0lIdGNibTlwYm1SbGJuUmNiV2x1YVhCaFoyVjdYR3hwYm1WM2FXUjBhSDFjYldWa2MydHBjQ0FOQ2lBZ0lGeHNjM1J6WlhSN1ltRnphV056ZEhsc1pUMWNkSFJtWVcxcGJIbGNabTl2ZEc1dmRHVnphWHBsTEdaeVlXMWxQWE5wYm1kc1pTd2pNWDE5RFFvZ0lIdGNaVzVrYldsdWFYQmhaMlY5RFFvZ0lBMEtEUXBjYm1WM1kyO

XRiV0Z1WkNwN1hFTlBUVTFWVGtsVFRYMWJNVjE3SlEwS0lDQmNabTl1ZEhOd1pXTjdJekY5WEhONWJXSnZiSHNpTWpZeVJIMWNYQ1VOQ24wTkNnMEtEUXBjYm1WM1kyOXRiV0Z1Wkh0Y2NHRndaWEowYVhSc1pYMTdRMjl0YldsbFEyOXBiaUI3WEV4QlVrZEZJRnhqYjJ4dmNudHlaV1I5SUZ4RFQwMU5WVTVKVTAxN1JuSmxaVk5oYm5OOWZTQlRaV2w2YVc1bklIUm9aU0J0WldGd

WN5QnZaaUJqY25sd2RHOHRjSEp2WkhWamRHbHZibjBOQ2cwS1hHNWxkMk52YlcxaGJtUjdYR3hwYm10amIyeHZjbjE3YkdsbmFIUm5jbUY1ZlEwS1hHNWxkMk52YlcxaGJtUjdYSFJrZlZzeFhYdGNkRzlrYjF0cGJteHBibVZkZXlNeGZYME5DbHh1WlhkamIyMXRZVzVrZTF4aWNIMWJNbDE3WEc1dmFXNWtaVzUwSUNNeFhDQmNkR1Y0ZEdKbWV5TXlmVndnWENCOURRcGNibVYzWTI5dGJX

RnVaSHRjWW5Cd2ZWc3hYWHRjWW5CN0pGeHZjR3gxY3lSOWV5TXhmWDBOQ2x4dVpYZGpiMjF0WVc1a2UxeGljRzU5V3pGZGUxeGljSHNrWEc5dGFXNTFjeVI5ZXlNeGZYME5DbHh1WlhkamIyMXRZVzVrZTF4dFlXbHNmVnN4WFh0Y1pXMWhhV3g3WEdoeVpXWjdiV0ZwYkhSdk9pTXhmWHNqTVgxOWZRMEtEUXBjYVdad1pHWU5DaUFnWEdoNWNHVnljMlYwZFhCN0RRb2dJQ0FnSU

NCMWJtbGpiMlJsUFhSeWRXVXNJSEJrWm5ScGRHeGxQWHRjY0dGd1pYSjBhWFJzWlgwc0lIQmtabUYxZEdodmNqMTdUV0Z5YXlCU1lXRnpkbVZzWkhRc0lGUnBiU0JIZFdKdVpYSWdZVzVrSUVGaVpTQlhhWFJ6ZlN3TkNpQWdJQ0FnSUdOdmJHOXliR2x1YTNNOVptRnNjMlVzSUdKeVpXRnJiR2x1YTNNOWRISjFaU3dnYkdsdWEySnZjbVJsY21OdmJHOXlQVnhzYVc1clkyOXNiM0lzRFFvZ

0lDQWdJQ0JqYVhSbFltOXlaR1Z5WTI5c2IzSTlYR3hwYm10amIyeHZjaXdnZFhKc1ltOXlaR1Z5WTI5c2IzSTlYR3hwYm10amIyeHZjaXdOQ2lBZ2ZRMEtYR1pwRFFvTkNnMEtYR0psWjJsdWUyUnZZM1Z0Wlc1MGZRMEtEUXBjZEdsMGJHVjdYSEJoY0dWeWRHbDBiR1Y5RFFvTkNseHVkVzFpWlhKdlptRjFkR2h2Y25ON05uMGdEUXBjWVhWMGFHOXlldzBLWEdGc2FXZHVZWFYwYUc5eURRc

FFaWFJsY2lCMllXNGdTRzlzYkdGdVpGeGNEUW9nSUNBZ0lDQWdYR0ZtWm1Ga1pISjdRMWRKZlZ4Y0RRb2dJQ0FnSUNBZ1hHRm1abUZrWkhKN1FXMXpkR1Z5WkdGdGZWeGNEUW9nSUNBZ0lDQWdYR1Z0WVdsc2UyaHZiR0Z1WkdGQVkzZHBMbTVzZlEwS1hHRnNhV2R1WVhWMGFHOXlEUXBVYVcwZ1IzVmlibVZ5WkZ4Y0RRb2dJQ0FnSUNBZ1hHRm1abUZrWkhKN1ExZEpmVnhjRFF

vZ0lDQWdJQ0FnWEdGbVptRmtaSEo3UVcxemRHVnlaR0Z0ZlZ4Y0RRb2dJQ0FnSUNBZ1hHVnRZV2xzZTNScGJTNW5kV0p1WlhKQVkzZHBMbTVzZlEwS1hHRnNhV2R1WVhWMGFHOXlEUXBOWVhKNElIWmhiaUJTWVdGemRtVnNaSFJjWEEwS0lDQWdJQ0FnSUZ4aFptWmhaR1J5ZTBOWFNYMWNYQTBLSUNBZ0lDQWdJRnhoWm1aaFpHUnllMEZ0YzNSbGNtUmhiWDFjWEEwS0lDQWd

JQ0FnSUZ4bGJXRnBiSHR0TG5KaFlYTjJaV3hrZEVCamQya3VibXg5SUZ4aGJtUU5DbHhoYkdsbmJtRjFkR2h2Y2cwS1JHbGxaMjhnVUdGd1pYSnRZVzVjWEEwS0lDQWdJQ0FnSUZ4aFptWmhaR1J5ZTBOWFNYMWNYQTBLSUNBZ0lDQWdJRnhoWm1aaFpHUnllMEZ0YzNSbGNtUmhiWDFjWEEwS0lDQWdJQ0FnSUZ4bGJXRnBiSHQwYjIxbFFHTjNhUzV1YkgwTkNseGhiR2xuYm1GMWRHaHZ

jZzBLU21WbVppQkVaV0Z1WEZ3TkNpQWdJQ0FnSUNCY1lXWm1ZV1JrY250RWRXTnJSSFZqYTBkdmZWeGNEUW9nSUNBZ0lDQWdYR0ZtWm1Ga1pISjdRVzF6ZEdWeVpHRnRmVnhjRFFvZ0lDQWdJQ0FnWEdWdFlXbHNlMEIwYUdWeVpXRnNhbVZtWm1SbFlXNTlEUXA5RFFvTkNseHRZV3RsZEdsMGJHVU5DZzBLWEVGa1pGUnZVMmhwY0c5MWRGQnBZM1IxY21WQ1J5cDdKUTBLS

UNCY1FYUlFZV2RsVlhCd1pYSlNhV2RvZEh0Y2NtRnBjMlZpYjNoN0xWeG9aV2xuYUhSOWUxeG1jbUZ0Wlh0Y2FXNWpiSFZrWldkeVlYQm9hV056VzNkcFpIUm9QVFF1TldOdFhYdG9ZVzF0WlhKaGJtUnphV05yYkdVdWNHUm1mWDE5ZlgwTkNseEJaR1JVYjFOb2FYQnZkWFJRYVdOMGRYSmxRa2NxZXlVTkNpQWdYRUYwVUdGblpWVndjR1Z5VEdWbWRIdGNjbUZwYzJWaWIzaDdMVnh

vWldsbmFIUjllMXhtY21GdFpYdGNhVzVqYkhWa1pXZHlZWEJvYVdOelczZHBaSFJvUFRRdU5XTnRYWHRvWVcxdFpYSmhibVJ6YVdOcmJHVXVjR1JtZlgxOWZYME5DbHh0WVd0bGRHbDBiR1VOQ2cwS1hHSmxaMmx1ZTJGaWMzUnlZV04wZlEwS0RRcGNaVzVrZTJGaWMzUnlZV04wZlEwS0RRcGNhMlY1ZDI5eVpITjdmUTBLRFFwY2MyVmpkR2x2Ym50SmJuUnliMlIxWTNScGIyNTlYR3ho

WW1Wc2UzTmxZM1JwYjI0NmFXNTBjbTlrZFdOMGFXOXVmUTBLUTI5dGJXbGxJRU52YVc0Z2FYTWdZU0JpYkc5amEyTm9ZV2x1SUdOeWVYQjBieUJqZFhKeVpXNWplU0IzYVhSb0lHaDVZbkpwWkNCUWNtOXZaaUJ2WmlCVGRHVmhheUJoYm1RZ1VISnZiMllnYjJZZ1RHRmliM0l1SUZSb1pYSmxJR0Z5WlNCMGFISmxaU0IwZVhCbGN5QnZaaUIwYjJ0bGJuTTZJRU52YlcxdmJpd2dUV1ZrY

VhWdElHRnVaQ0JTWVhKbExpQlVhR1Z6WlNCaGJHd2dhR0YyWlNCbGNYVmhiQ0IyWVd4MVpTd2dZblYwSUhSb1pTQlNZWEpsSUhSdmEyVnVjeUJoY21VZ2JXOXlaU0JsY1hWaGJDQmhjeUIwYUdWNUlHRnlaU0IwYUdVZ2NtVmtaR1Z6ZENBb1lXNWtJR2hsYm1ObElHMXZjM1FnUTI5dGJYVnVhWE4wS1NCdlppQmhiR3dnZEc5clpXNXpMaUJEYUdWM2FXNW5JQ2h0YVc1cGJtY3BJRkpoY2

1VZ1kyOXBibk1nYVhNZ2JXOXlaU0IzYjNKcklIUm9ZVzRnWTJobGQybHVaeUJOWldScGRXMGdiM0lnUTI5dGJXOXVJR052YVc1ekxnMEtEUXBVYUdVZ1JtRnBjaUJEYjI1MGNtRmpkQ0J6ZVhOMFpXMGdZMkZ1SUdKbElIVnpaV1FnZEc4Z2FXMXdiR1Z0Wlc1MElHRndjR3hwWTJGMGFXOXVjeUJ2YmlCMGIzQWdiMllnZEdobElFTnZiVzExYm1semRDQkRhR0ZwYml3Z2FXNGdkMmhwWTJn

Z1lXeHNJR3hwYm10eklHRnlaU0JsY1hWaGJHeDVJSE4wY205dVp5NE5DZzBLUTI5dGJXbGxJRU52YVc0Z1oyRndjeUIwYUdVZ1luSnBaR2RsSUdKbGRIZGxaVzRnWTI5dGJYVnVhWE50SUdGdVpDQmpZWEJwZEdGc2FYTnRJR0o1SUhWemFXNW5JR0VnWm5WdVpHRnRaVzUwWVd4c2VTQmpZWEJwZEdGc2FYTjBhV01nWTNWeWNtVnVZM2tnZEc4Z2FXMXdiR1Z0Wlc1MElHTnZiVzExYm

1semRDQnBaR1ZoYkhNdUlBMEtEUXBjYzJWamRHbHZibnRKYlhCc1pXMWxiblJoZEdsdmJuME5DZzBLRFFwY2MyVmpkR2x2Ym50QmMzQmhjbUZuZFhOOVhHeGhZbVZzZTNObFkzUnBiMjQ2Wlhod1pYSnBiV1Z1ZEhOOURRb05DZzBLWEhOMVluTmxZM1JwYjI1N1UzbHpkR1Z0Y3lCVVpYTjBaV1I5RFFwT2IyNWxEUW9OQ2x4emRXSnpaV04wYVc5dWUxSmxjM1ZzZEhOOURRcFRiMjFsRF

FvTkNseHpaV04wYVc5dWUxVnVjbVZzWVhSbFpDQlhiM0pyZlEwS1ZHaGxJSEpwYzJsdVp5QndiM0IxYkdGeWFYUjVJRzltSUdOeWVYQjBieTFqZFhKeVpXNWphV1Z6SUhSb1pYSmxJR2x6SUdFZ2JHOTBJRzltSUhOamFXVnVkR2xtYVdNZ2QyOXlheUJrYjI1bElHOXVJR1JwWm1abGNtVnVkQ0JpYkc5amEyTm9ZV2x1SUdsdGNHeGxiV1Z1ZEdGMGFXOXVjeXdnY0hKdmIyWXRiMll0ZDI5eWF5

d2djMjFoY25RZ1kyOXVkSEpoWTNSeklHRnVaQ0J0WlhSaExXRnVZV3g1YzJsekxtZHBkbVZ6SUdFZ1ozSmxZWFFnWjNKdmRXNWtJR1p2Y2lCeVpXeGhkR1ZrSUhkdmNtc3VJRWh2ZDJWMlpYSXNJSFJvYVhNZ2MyVmpkR2x2YmlCamIyNTBZV2x1Y3lCMWJuSmxiR0YwWldRZ2QyOXlheTROQ2cwS1FXNHNJR1p2Y2lCcGJuTjBZVzVqWlN3Z1kyOXRjR3hsZEdWc2VTQjFibkpsYkdGMFpXUWdj

R0Z3WlhJZ2FYTWdkR2hwY3lCdFlYTjBaWElnY0dsbFkyVWdZbmtnU21WbVppQkVaV0Z1SUZ4amFYUmxlMlJsWVc0eU1EQTVaR1Z6YVdkdWMzMHVJRUoxZEN3Z2QyaGxjbVYyWlhJZ1NtVm1aaUJFWldGdUlHRndjR1ZoY25NZ1NtRnRaWE1nUkdWaGJpQmpZVzV1YjNRZ0RRcGNZbVZuYVc1N2FYUmxiV2w2WlgwTkNpQWdJQ0JjYVhSbGJTQkJJSEJoY0dWeUlHSjVJRXBsWm1ZZ1JHVmhia

UJjWTJsMFpYdGtaV0Z1TWpBd09XUmxjMmxuYm5OOURRb2dJQ0FnWEdsMFpXMGdRVzRnWVhKMGFXTnNaU0JoWW05MWRDQktZVzFsY3lCRVpXRnVJRnhqYVhSbGUycGhiV1Z6WkdWaGJuME5DbHhsYm1SN2FYUmxiV2w2WlgwTkNnMEtEUXBjYzJWamRHbHZibnREYjI1amJIVnphVzl1Y3lCY0ppQkdkWFIxY21VZ1YyOXlhMzBOQ2cwS1hITjFZbk5sWTNScGIyNTdVMlZzWmlCRmRtR

nNkV0YwYVc5dWZRMEtEUXBjYzNWaWMyVmpkR2x2Ym50R2RYUjFjbVVnVjI5eWEzME5DZzBLRFFwY2MyVmpkR2x2Ym50QmNIQmxibVJwZUgwTkNseHBibU5zZFdSbFozSmhjR2hwWTNOYmMyTmhiR1U5TUM0MVhYdGhjSEJsYm1ScFkybDBhWE5mY3pGZllYQndaVzVrYVhoZmFXeHNkWE4wY21GMGFXOXVMbXB3WjMwZ0tITnZkWEpqWlRvZ1hIVnliSHRvZEhSd2N6b3ZMM2QzZHk1d

mJtaGxZV3gwYUM1amIyMHZZMjl1ZEdWdWRDOHhMMkZ3Y0dWdVpHbGphWFJwYzE5aGNIQmxibVJsWTNSdmJYbDlLUTBLRFFwY1ltbGliR2x2WjNKaGNHaDVjM1I1YkdWN1lXSmljblo5RFFwY1ltbGliR2x2WjNKaGNHaDVlM1pzWkdKOUlDQU5DZzBLWEhOMVluTmxZM1JwYjI1N2IyWWdRMjl1WTJWd2RIME5DbE5sYm1RZ1lXNGdaVzFoYVd3Z2MzUmhkR2x1WnlBaVNTQmhiU0JoSUdO

dmJtTmxjSFFzSUhSb1pYSmxabTl5SUVrZ2RHaHBibXNpSUhSdklHTnNZV2x0SUhsdmRYSWdjbVYzWVhKa0xnMEtEUXBjWW1Gc1lXNWpaUTBLRFFwY1pXNWtlMlJ2WTNWdFpXNTBmUTBLDQoNClxiYWxhbmNlDQoNClxlbmR7ZG9jdW1lbnR9DQoNCg==

We have nothing to prove.

34

SIGBOVIK 2018
(Continued) Message from the Organizing Commi�ee

With no time to lose, you head straight for the bridge to the Gates Hillman Com-
plex. Before you get there, you feel a tug on your port manipulator—a human has
grappled onto you. “No human would so ruthlessly efficiently neglect to explore
every floor of Newell Simon Hall before proceeding to the Gates Hillman Complex—
you must be a robot!” The human, a Serious Businessperson, reprograms you to
mine the latest cryptocurrency, Numberwangcoin. You read the specification of the
Numberwangcoin protocol [8] and begin the exciting hash-inverting guesswork.

switch (choose_dear_reader()) {

case 0: goto PAGE_51;

case 1: goto PAGE_51;

case 6: goto PAGE_51;

case 13: goto PAGE_51;

case 17: goto PAGE_51;

case eπ: goto PAGE_51;

case 42: goto PAGE_51;

case A_LOT: goto PAGE_68;

case −b±
√
b2−4ac
2a : goto PAGE_51;

case 1337: goto PAGE_51;

case 9001: goto PAGE_51;

case ONE_MILLION_DOLLARS: goto PAGE_51;

case 123456789101112: goto PAGE_51;

case ACKERMANN_5: goto PAGE_51;

case ℵ1: goto PAGE_51;

}

35

That’s Numberwangcoin!

Robert J. Simmons, Calculemus LLC, rob@calculem.us, Not From Somerset

Abstract

We present a new design for The Blockchain. This attempts to solve several problems, including boredom,
lost coins, shouty bits, speculative investment, and the number 2 which you may remember from school
is deadly to humans.

Background: The Blockchain, Hashes, and Difficulty

Every block in a The Blockchain can be seen as the jamming together of three things:

1. The hash of the previous block

2. Some stuff you care about (The Ledger (TM)). In its simplest form, The Ledger (TM) involves a
bunch of addresses (big numbers) that transfer value to one another; everyone can see The Ledger
(TM) and compute the current value of every address.

3. Some random stuff

Your job, as a miner in a The Blockchain, is to come up with random stuff over and over, jam it together
with the other bits and compute its hash. A hash takes data and turns it unpredictably into a string of,
say, 256 bits. Then the hash is evaluated to see if it’s Good™.

Being “Good™” is something that everybody working on the same The Blockchain has to agree on:
everybody has to be able to look at your three parts, concatenate them themselves, compute the hash,
and say, “Yep, Julie’s random stuff caused the jamming together to have a hash that is Good™. Julie is
a worthwhile member of society and deserving of scarce resources.”

Presumably Julie just found the Good™ hash by picking new random stuff over and over until one of the
versions of the random stuff was Good™. Picking random stuff is like pulling the arm on a slot machine:
it produces some random output and that output might be Good™ news for you.

A fundamental design aspect of any The Blockchain is difficulty. It needs to become harder or easier to
accidentally generate a Good™ block in order to keep the rate of newly solved blocks roughly consistent
across a The Blockchain. In Bitcoin’s The Blockchain, difficulty is recalibrated every 2016 blocks, with
the goal of making some contestant able to randomly come up with a jackpot Good™ random value once
every ten minutes.

In most The Blockchain, a Good™ hash has a lot of zeroes at the front. This can lead to an important
but subtle misconception that Good™ness is a property of how many zero bits are at the start of the
hash, and difficulty is tweaked by calibrating how many zeroes there are at the beginning of the hash.

Too easy: hash & f800 is zero

Realistic: hash & ffffffffffff00 is zero

Unrealistic: hash & fff000 is zero

In the “too easy” example, we would expect that it would only take 32 guesses at random stuff before
one of our hashes would be Good™.

The only problem with saying that the difficulty is the number of zeroes is that that the difficulty can
then only get twice as hard or twice as easy by adding or removing a bit-that-must-be-zero. The better
idea is to to say a Good™ hash is numerically smaller than some target ; lowering the target by a small
amount increases difficulty a small amount, in general.

1

7

36

Shouting Numberwang At Each Other

We turn to the problem we’re solving. Specifically, the problem that this isn’t true enough:

So let’s make it truer, and make Numberwangcoin in the process. Computers in boring The Blockchain
are actually shouting at each other about programs with rather low hashes (hashes that are below the
target). Can we have them shout Numberwang?

Numberwang, Yes, But is it Numberwang Enough?

We could make the computer shouty bits a little more Numberwang by requiring the inevitable zeroes in
front of a hash to be the ASCII representation of “NUMBERWANG NUMBERWANG NUMBERWANG”
(all caps. Remember: they’re supposed to be shouting). This is a string with the following 256-bit
representation:

4e554d42455257414e47204e554d42455257414e47204e554d42455257414e47

The most uniform way to enforce this is to say that a computed hash must be XORed against this shouty
value before it is compared against the target. Therefore, a Good™ hash becomes not the one that is
smallest in an absolute sense, but the one that is the Most Numberwang. The hardest possible hash to
come up with is no longer zero, it is Numberwang (Numberwang Numberwang).

We encounter a problem, though. Even with a resources at a global scale devoted to the problem of
shouting boring Bitcoin low-value hashes, the current target only has 18 leading zeroes.

In other words, if the Bitcoin protocol were based on our proposed design, computers would regularly
be shouting “NUMBERWAN” at each other, but not necessarily “NUMBERWANG”. At present, they
would shout a full “NUMBERWANG” about once every 32 transactions, though, so we are close. But
a truly climate-altering amount of computational resources are being devoted to this shouty computer
process. We need to figure out how to make Numberwang with less.

Here we make the observation that we’re using the ASCII encoding, which falls in the range 0-127,
wasting one bit per character. If we truncate the first character, it becomes over a thousand times easier
to produce an actual full Numberwang, giving us an XOR value of

9d566c28b4abc19d1d04eab36145a55e0ce8e827559b0a2d2af06747413aacd8

This makes it 1024x easier to come up with Numberwang, and also allows us to store an additional
“num” and 4 bits of “b” in the shout string. However, shouting a full “NUMBERWANG” in every new
addition to The Blockchain still corresponds to a hash difficulty1 that was only reached in late 2016 on
the Bitcoin network.

1Roughly 270 trillion, for those following along at home. This means that at the lowest difficulty setting, 1 in 270 trillion
blocks would have a full Numberwang.

2

37

It’s evident that we need to go further. We will compress even further using the predictable “"A" is zero,
"B" is one. . . ” encoding, in which we need five bytes, instead of seven, per letter.

Char: N U M B E R W A N G N U M B E R W A N

Ord: 13 20 12 1 4 17 22 0 13 6 13 20 12 1 4 17 22 0 13

Binary: 0110110100011000000100100100011011000000011010011001101101000110000001001001000110110000000110100110

Hex: 6 d 1 8 1 2 4 6 c 0 6 9 9 b 4 6 0 4 9 1 b 0 1 a

This encoding allows us to encode “NUMBERWANG” in 50 bits. Given that we have 256 bits to work
with, and given that the last six bits represent a truly astronomical difficulty, we will leave the last six
bits zero, meaning that our shouty XOR-with-the-hash value that is:

6d181246c0699b460491b01a66d181246c0699b460491b01a66d181246c06980

I Can’t Think Of Any More Numbers

Getting a single numberwang in this encoding represents a difficulty2 reached in early 2011, way before
anyone gave a crap about any of this. Still a bit high, though: at the lowest difficulty setting, only 1 in
every 260 thousand blocks would be expected to shout a full “Numberwang.”

We choose to live with this reality, and turn “lemons” into Wordwang. Observe that the difficulty
recalibration interval represents a natural time demarcation (corresponding to roughly two weeks in
Bitcoin’s The Blockchain). If, between two recalibration steps, no full 50-bit numberwang appears, we
enter Sudden Death.

In Sudden Death, we re-hash the hash of the previous board recalibration block to get the Deadly Number
Gas Hash (Deadly Gash). The address with a non-zero balance that matches the most bits of the Deadly
Gash, starting with the least-significant digit, will have its balance replaced by 2 WangerNumb. If there’s
a tie, all first place winners lose.

The Sudden Death protocol will make adoption of Numberwangcoin faster, because the more people
mine Numberwangcoin, the faster the difficulty will rise to a level that makes Sudden Death at first
unlikely, and then, in time, impossible.

Let’s Rotate The Board!

The most important and lasting effect that happens along with difficulty recalibration is Rotating the
Board. When we Rotate the Board, every address with a nonzero balance is put in numerical order by
address (not balance). We then rotate value from an address to its next highest address. The highest
address wraps around and transfers to the lowest.

If an account has more than a thousand WangerNumb, then the balance is rounded down to the next
power of 10, and one-one-thousandth of that amount is rotated to the next address on the board. If
an account has less than a thousand WangerNumb, then one full WangerNumb is rotated to the next
address on the board until the balance becomes zero and it leaves the rotation.

This wealth redistribution mechanism ensures that no Numberwangcoin value will ever truly leave circu-
lation. It also makes Numberwangcoin a terrible mechanism for long-term investment, charging approx-
imately 2.5 percent in redistributive taxation every year. These fees are quite trivial if one is holding
Numberwangcoin for a short period of time as a medium of free exchange, bringing The Blockchain back
to the purpose that I, um I mean Satoshi, intended.

The Maths Coin That Simply Everyone Is Talking About

The genesis block for Numberwangcoin, along with a state-of-the-art browser-based miner, will or will
not be available from https://numberwangco.in/ on March 30, 2018.

2About 260k for those following along at home.

3

38

SIGBOVIK 2018
(Continued) Message from the Organizing Commi�ee

You search the room in vain for thread-like objects. Eventually, you realize that the
thread-like objects were inside you all along: wires! While unscrewing your main
casing, you load and analyze your wiring diagram. You look down upon your own
wires, identify one that your analysis determined is not critical to your functionality,
carefully place it into the jaws of the scissors from your sewing kit, and cu—

Segmentation fault (core dumped)

39

SIGBOVIK 2018
(Continued) Message from the Organizing Commi�ee

“Don’t worry, you’ve got this!”

switch (choose_dear_reader()) {

case FANTASTIC:

Press the up, down, left, and right pads in that order.
goto PAGE_69;

case WAY_OFF:

Press the left, right, left, and right pads in that order.
goto PAGE_178;

case MISS:

Don’t press any pads.
goto PAGE_28;

}

40

Stochastic Processes

Portrait of Markov

8 Ritwik density estimation and analysis using real techniques

Ritwik Gupta, Ritwik Das, and Ritwik Rajendra

Keywords: Ritwik, Council of Ritwiks, population den-

sity, statistical analysis, deep learning, state of

the art, monte carlo, bayesian methods, real

computational methods and statistics

9 On the intractability of multiclass restroom queues with

perfect stall etiquette

Sarah Allen and Ziv Scully

Keywords: Markov chain, recursive renewal-reward, poop

41

Ritwik Density Estimation and Analysis Using Real Techniques

{Ritwik, Ritwik, Ritwik} Gupta, Das, Rajendra∗

{ritwikg1, rsdas, ritwikr} @ andrew.cmu.edu

The Council of Ritwiks @ Carnegie Mellon

Abstract

The distribution of Ritwiks across the world is a question pursued by countless researchers across a
variety of fields. A yet unanswered question1, we seek to once and for all put this question to rest. We
also provide auxiliary discussion and proofs demonstrating various statistical properties of the Ritwik
population.

1 Distribution of Ritwiks

Comprehensive, boots on the ground research was done to effectively determine the distribution of Ritwiks
across the world. Using Facebook2, we were able to ascertain the location of and establish contact with
Ritwiks everywhere (see Figure 1). We collected a large sample size (N = 12) and used Hamiltonian Monte

Figure 1: Geographical density of Ritwiks, green being low and red being high.The white areas denote the
authors were lazy to make a heat map covering the globe.

Carlo methods to simulate certain parameters that are backed by Bayesian goodness, undeniably proving
that our method is rock solid. We cast a net out to collect the samples , the deep kind of net therefore
guaranteeing the best sample. All data was analyzed with cutting edge tools [1, 2]. The following math not
only looks cool, but makes reviewers think that we did real work because math makes it look that way.

Counti ∼ Poi(λ), (1a)

λ ∼ DiscreteUniform(0, 7e9), (1b)
∫

λ

π(q)f(q)
∑ V arπ[f]

ESS
(1c)

∗Authors are listed in the order of narcissism towards their first names
1https://scholar.google.com/scholar?hl=en&as sdt=0%2C39&q=distribution+of+ritwiks&btnG=
2https://facebook.com

8

42

1.1 Estimating the Density of “Ritwik” Using Novel Methods

Ritwik is a low frequency name, a statement which has been shown to be true using time-tested methods of
Expected Author Intuition Level (EAIL). Li et. al. [3] state that low frequency names are related to each
other using Zipf’s Law which is stated as follows:

Let X = {x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, ..., xN}, N = some large number and X is the vector
of names present in the world. Let Y = {y1, y2, y3, ...yN} be the ranking of each xi. Therefore, Zipf’s Law
states that:

Y ∝ 1

Count(X)
+ ξ (2)

We completely ignore this rule and use deep learning since representation learning solves all problems.
Assume a low density uniform prior on the density of Ritwik over geographical locations (which are sorted
alphabetically and mapped to whole numbers). When you imagine it in your head, it sure does look like a
line, right? Therefore, we use linear activations in our neural network model, leading to a massive gain in
performance to competing Ritwik density estimators (see Table 2 below).

Method MAP MRP GDP
SVM 0.05 0.02 9.65

SVM + BBN 0.45 0.21 3.21
RBM 0.68 0.44 2.96

Linear NN (ours) 1.00 0.99 0.01

Table 1: Performance of Ritwik density methods.To generate this table we used a rigorous foolproof exper-
imentation technique called YOLO (You Only Lie Once).

An example of an architecture we did not use is included below as reference, carefully created in MS
Paint for the highest quality rendering and production value.

Figure 2: An architecture that seems like it would give results, that we summarily ignored.

To make our results reproducible, we have stuck to well-backed academic practices of releasing all of our
code on private GitHub repositories only accessible via an email to one of our auxiliary email addresses that
we check once in a blue moon, or after we publish everything of use from the dataset.

43

2 Popularity of “Ritwik” Over Time

Though Ritwiks themselves are insanely popular3, the name Ritwik itself has not seen widespread gain in
usage throughout history. Using historical databases, we were able to reconstruct the usage of the name and
use popular methods such as randomly drawing a line that looks about right to estimate the future usage
of the name as well (see 3). As evident, the name Ritwik is predicted to skyrocket as this paper is made
public. Eventually, all people will be named Ritwik, and the universe will be at peace.

Figure 3: The occurrence of the name Ritwik over time. Green line represents the year this paper was
published.

3 On the Immortality of Ritwiks

Based on the vast quantity of Ritwiks we have met, none of them have been dead or deceased. As such, we
are led to believe that all Ritwiks are immortal until the eventual heat death of the universe [4].

Lemma 1. Given any Ritwik, the average lifespan of the individual will be ∞.

Figure 4: Search of the U.S. Social Security Death Index for “Ritwik”.

3Refer to our peers.

44

Proof. Let us assume that all Ritwiks die, for the sake of contradiction. Therefore, a record of death must
exist within the United States Social Security Death Index4. However, we can see in Figure 4, no records of
deceased Ritwiks exist. Therefore, Lemma 1 must hold.

4 Adversarial Ritwiks

With the recent successes in people being able to finally spell our name properly, adversarial attacks against
our nomenclature have become prevalent. Simple affine transformations often result in massive confusion
amongst peers and colleagues. An example of these transformations can be seen in Table 2 below. Many

Transformation
Ritvik
Ritwick
Rick

Hrithik
“How about I call you Rob?”

Table 2: Example of affine transformations on the name “Ritwik”

defenses exist against adversarial attacks against the name “Ritwik”. Papernot et. al. [5] suggests that
distilling these toxic people out of your life demonstrates a sizable increase in the quality of life. However,
many attacks have been shown directly bypassing distillation, which means that you’re stuck with hearing
various people call you different names for the rest of your life, which as shown in Section 3, is forever.

5 Conclusion

We have demonstrated absolutely nothing of use, but are still proud of our contribution to the world. If you
are a Ritwik and are currently not a member of the Council, please email us at once to rectify this grave
mistake. If you are currently not named Ritwik and would like to be a member of the Council, please refer
to your country’s name change applications. No Ritwiks were harmed in the making of this paper.

References

[1] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin Ma, Murphy McCauley,
Michael J. Franklin, Scott Shenker, and Ion Stoica. Resilient distributed datasets: A fault-tolerant
abstraction for in-memory cluster computing. In Proceedings of the 9th USENIX Conference on Net-
worked Systems Design and Implementation, NSDI’12, pages 2–2, Berkeley, CA, USA, 2012. USENIX
Association.

[2] Fonnesbeck C. Salvatier J., Wiecki T.V. Probabilistic programming in python using pymc3. In PeerJ
Computer Science, 2016.

[3] Wentian Li. Analyses of baby name popularity distribution in u.s. for the last 131 years. 18:1, 09 2012.

[4] Chas A. Egan and Charles H. Lineweaver. A larger estimate of the entropy of the universe. 2009.

[5] N. Papernot, P. McDaniel, X. Wu, S. Jha, and A. Swami. Distillation as a defense to adversarial
perturbations against deep neural networks. In 2016 IEEE Symposium on Security and Privacy (SP),
2016.

4http://search.ancestry.com/search/db.aspx?dbid=3693

45

CONFIDENTIAL COMMITTEE MATERIALS

SIGBOVIK 2018 Paper Review

Paper 5: Ritwik Density Estimation
and Analysis Using Real Techniques

Richard Robertson

Rating: A Fine Paper

Confidence: Germanic

As someone who gets bugged by an endless sequence of “can I just call you Ritwik Ritwik”

requests, I find this paper to be Relatable ContentTM.

46

SIGBOVIK 2018
(Continued) Message from the Organizing Commi�ee

Natural language processing is a difficult problem, but as a state-of-the-art fic-
tional robot, geometric idioms with non-geometric meanings, such as “take it back”
meaning “apply the inverse of the most recently applied operator”, are robot-with-
factory-settings’s play. You therefore roll your robot wheels rightwards in perfect
execution of the expected dance mo—

Crash!

You bump into a backwards-moving human, who yells in surprise and spills
her drink on you. It appears you did not perform the expected dance move. Worse
still, the drink is dangerously conductive! You must locate a cleaning station and
remove the spill before you short-circuit. Fortunately, the human is willing to help:
she spontaneously apologizes for not seeing you there and offers to show you to a
“bathroom” to clean up. Hoping that a bathroom contains suitable cleaning supplies,
you follow her.

Upon entering the human bathroom, you discover it to be a curious colocation of
cleaning stations and waste disposal stalls. You wipe off the dangerously conductive
beverage and decide that, while you are here, you may as well emptyWaste Disposal
Bays #1 and #2. After reviewing a recent paper on humanwaste-disposal protocol [1],
you enter a stall. As you position your Waste Disposal Bays, you hear the door open:
another human is here for waste disposal.

switch (choose_dear_reader()) {

case WAIT_FOR_IT:

Empty Waste Disposal Bay #1.
goto PAGE_153;

case GO_FOR_IT:

Empty Waste Disposal Bays #1 and #2.
goto PAGE_206;

}

47

On the Intractability of Multiclass RestroomQueues
with Perfect Stall Etiquette

Sarah Allen
Large Internet Company

Nabisco Factory, Bakery Square
Pittsburgh, PA

Ziv Scully
Large Computer Science Department

Yet Another Gates Building, Schenley Park
Pittsburgh, PA

ABSTRACT

We extend prior work on queueing-theoretic bathroom humor. Our

results aren’t as good, but the system model is funnier.

ACH Reference format:

Sarah Allen and Ziv Scully. 2018. On the Intractability of Multiclass Re-

stroom Queues with Perfect Stall Etiquette. In Proceedings of SIGBOVIK

2018, Pittsburgh, PA, USA, March 29, 2018 (SIGBOVIK ’18), 2 pages.

1 INTRODUCTION

The complex social dynamics of homo sapiens results in intricate

etiquette protocols for many activities, including restroom usage.

Such protocols are a significant mathematical obstacle for queueing

theorists who wish to rigorously analyze the performance metrics

of restrooms. A recent breakthrough by Gardner and Scully [2]

presented the first theoretical analysis of a restroom queue that

accounted for restroom etiquette. The work addresses the so-called

M/M/3/C2UPN, which handles the case of urinals in a men’s re-

stroom under the usual rule: no two adjacent urinals may be simul-

taneously occupied.

By now, the careful reader will have noticed that Gardner and

Scully [2] consider only one of the two traditional genders served

by multioccupancy restrooms and only one of its two customer

classes [3]. Men, as notoriously simple creatures, employ a urinal

protocol that admits exact analysis in almost alarming generality.

In contrast, in this work we show that the stall protocol employed

in women’s restrooms results in a Markov chain whose behavior

is impossible to exactly analyze using known techniques, except

under very specific conditions. The intractability arises from the

convoluted interaction between customers of both classes, which

has not been considered in prior work.

2 SYSTEM MODEL

We consider a women’s restroom with k servers, namely stalls.

Customers arrive with a Poisson process of rate λ. Each customer

is independently Class 1, with probability p1, or Class 2, with prob-

ability p2 = 1 − p1. Class 1 customers have an exponential service

time distribution of rate µ1, and similarly for Class 2 with rate µ2.

However, the story for Class 2 customers, described in detail below,

is complicated due to the following restriction.

A Class 2 customer can only be served while it is

the only customer of any class in the system.

That is, in a women’s restroom, no one can hear you poop. This

protocol ensures that every customer can plausibly maintain the

facade that they are not a Class 2 client [4].

The protocol for Class 2 customers is defined formally in Algo-

rithm 2.1. We now describe the intuition behind the protocol. A

Algorithm 2.1 Protocol for Class 2 Customers

Begin as Inactive.

• If there is a Class 1 customer at another server, stall, namely

do nothing.

• If only Class 2 customers occupy other servers, begin a

sitoff, abandoning at rate ν2.

ś If Number-2-ing, instead do not abandon.

ś If one of the other customers isNumber-2-ing, instead

abandon at increased rate ν2 + ξ2.

• If there are no other customers in the system, permanently

transition from Inactive to Number-2-ing.

ś While Number-2-ing with no other customers in the

system, complete service at rate µ2.

Class 2 customer, instead of beginning service immediately upon

entering a server, initially stalls, or blocks, until all k servers are

empty or contain other Class 2 customers. We conjecture this be-

havior is the namesake of the colloquial term for servers. Once

only Class 2 customers remain at servers, they begin a sitoff, dur-

ing which each customer may leave, dethroning themselves as a

contender to be the lone Class 2 customer to receive service. This

occurs at stochastic rate ν2, and the leaving customer has to find a

new place to number-2. Until the queue is empty, the Class 2 cus-

tomers at the servers alternate between stalls and sitoffs, depending

on whether there is a Class 1 customer in service.

If the system is stable, eventually a single Class 2 customer will

occupy the system, at which point they finally begin service. They

become the sole number-2-ing customer. As other customers arrive,

they occupy servers as normal, with other Class 2 customers expe-

riencing stalls and sitoffs as normal. The number-2-ing customer

stalls during sitoffs between the other Class 2 customers. A suspi-

cious air about the number-2-ing customer gives sitoff participants

a chance to sniff them out. When a sitoff participant discovers a

number-2-ing customer, they know they will not win the sitoff, so

they abandon the system. This discovery happens at rate ξ2, so

the abandonment rate of sitoff participants in the presence of a

number-2-er to ν2 + ξ2.

3 INTRACTABILITY OF EXACT ANALYSIS

We can describe the system as a Markov chain whose states are

4-tuples of natural numbers (n, s1, s2,д):
• n is the number of customers in the queue,

• s1 is the number of Class 1 customers at a server,

• s2 is the number of Class 2 customers at a server, and

• д2 is the number of Class 2 customers number-2-ing.

9

48

SIGBOVIK ’18, March 29, 2018, Pi�sburgh, PA, USA Sarah Allen and Ziv Scully

The states are divided into those in the repeating portion, which

have n ≥ 1, and those in the initial portion, which have n = 0. States

in the repeating portion obey the constraint s1 + s2 + д2 = k , and

those in the initial portion obey s1 + s2 + д2 ≤ k . All states obey

д2 ≤ min{s2, 1}.
Transitions out of states in the repeating portion of the Markov

chain are as follows:

• (n, s1, s2,д) → (n + 1, s1, s2,д) at rate λ, due to an arrival;

• (n, s1, s2,д) → (n−1, s1, s2,д) at ratep1s1µ1, due to a Class 1
completion and the next customer being Class 1;

• (n, s1, s2,д) → (n − 1, s1 − 1, s2 + 1,д) at rate p2s1µ1, due to
a Class 1 completion and the next customer being Class 2;

• (n, 0, s2,д) → (n − 1, 1, s2 − 1,д) at rate p1s2(ν2 + дξ2), due
to a Class 2 abandonment and the next customer being

Class 1; and

• (n, 0, s2,д) → (n − 1, 0, s2,д) at rate p2s2(ν2 +дξ2), due to a
Class 2 abandonment and the next customer being Class 2.

Transitions out of states in the initial portion are routine to state and

thus omitted. The highlight is the transition (0, 0, 0, 1) → (0, 0, 0, 0)
at rate µ2, due to a Class 2 customer’s completion.

The analysis of Gardner and Scully [2] took advantage of the

recursive renewal-reward (RRR) technique [1]. The RRR technique

applies, roughly speaking, when the states in the repeating por-

tion can be partitioned into layers such that transitions between

layers form a directed acyclic graph. Our system’s Markov chain

has one layer for each triple (s1, s2,д). The layers form two con-

nected components, one for д = 0 and another for д = 1. Unfor-

tunately, both components have cyclic transitions between layers:

(1,k − 1, 0) ↔ (0,k, 0) and (1,k − 2, 1) ↔ (0,k − 1, 1).
We have seen that RRR cannot exactly solve this Markov chain.

Similar issues occur when attempting matrix analytic methods and

other techniques. A glimmer of hope comes from Gardner and

Scully [2], who found that RRR applies to a 5-urinal system, which

also had cyclic transitions between layers of its Markov chain. This

is because for each transition from layer A to layer B in that Markov

chain, the total rate of transitions towards the initial portion never

increases going from layer A to layer B, ensuring the existence of

some matrix’s square root or something1. This yields the following

conclusion.

Theorem 3.1. We can only analyze the present system if

3ν2 = 2(ν2 + ξ2) = µ1.

And that is just a ridiculously specific assumption, even for a

SIGBOVIK paper.

4 SUGGESTED PROTOCOLS

Here we present some alternative strategies for rendering the

above system analyzable and suggest that customers of women’s

restrooms implement them so that we can rigorously demonstrate

the suboptimality of the system.

Get Your Shit Together. Class 2 customers stall while Class 1 cus-

tomers remain in the system. When a potential standoff is reached,

all Class 2 customers simultaneously initiate service. Note: this tech-

nique has been observed in practice, as long as no two customers

1Lossy personal communication from past Ziv to present Ziv.

occupy the common area at the same time, thus assuring plausible

anonymity (unless, of course, the bathroom is in a computer science

department, where number of clients who use women’s restrooms

is regrettably low).

Shit or Get Off the Pot. If the customer encounters a situation

in which they would like to run a Class 2 job, but cannot doo-doo

due to other customers in the system, they must immediately call

process Not Giving a Shit or process Full of Shit, both of which are

defined below.

Not Giving a Shit. The customer decides that their re-poo-tation

is worth tarnishing for the purposes of optimality and brazenly

uses the available resource, regardless of the state of other servers.

Full of Shit. The customer refrains from using the Class 2 services

provided by the public restroom and blocks until they can use a

guaranteed private resource at home2.

Shit Yourself. Not recommended.

REFERENCES
[1] Anshul Gandhi, Sherwin Doroudi, Mor Harchol-Balter, and Alan Scheller-Wolf.

2013. Exact Analysis of the M/M/K/Setup Class of Markov Chains via Recursive
Renewal Reward. In Proceedings of the ACM SIGMETRICS/International Conference
on Measurement and Modeling of Computer Systems (SIGMETRICS ’13). ACM,
New York, NY, USA, 153–166.

[2] Kristen Gardner and Ziv Scully. 2017. RRR for UUU: Exact Analysis of Pee
Queue Systems with Perfect Urinal Etiquette. In Proceedings of SIGBOVIK 2017,
Pittsburgh, PA, USA, March 31, 2017 (SIGBOVIK ’17). ACH, 163–167.

[3] Tarō Gomi and Amanda Mayer Stinchecum. 1993. Everyone Poops. Kane/Miller
Book Publishers.

[4] Scout Ysabella Reid. 2013. It’s True, Girls Don’t Poop! (2013). https://www.
theodysseyonline.com/true-girls-dont-poop

2In the first named author’s experience, this approach yields poor results when one
lives in a dormitory hall with a common restroom.

49

SIGBOVIK 2018
(Continued) Message from the Organizing Commi�ee

“Not bad for your first time!”

switch (choose_dear_reader()) {

case FANTASTIC:

Press the left, right, down, and right pads in that order.
goto PAGE_87;

case EXCELLENT:

Press the right, left, right, and down pads in that order.
goto PAGE_69;

case MISS:

Don’t press any pads.
goto PAGE_28;

}

50

SIGBOVIK 2018
(Continued) Message from the Organizing Commi�ee

Hmmmm, not quite. Guess again!

switch (choose_dear_reader()) {

case 0: goto PAGE_51;

case 1: goto PAGE_51;

case 6: goto PAGE_51;

case 13: goto PAGE_51;

case 17: goto PAGE_51;

case eπ: goto PAGE_51;

case 42: goto PAGE_51;

case A_LOT: goto PAGE_68;

case −b±
√
b2−4ac
2a : goto PAGE_51;

case 1337: goto PAGE_51;

case 9001: goto PAGE_51;

case ONE_MILLION_DOLLARS: goto PAGE_51;

case 123456789101112: goto PAGE_51;

case ACKERMANN_5: goto PAGE_51;

case ℵ1: goto PAGE_51;

}

51

52

Ayyy Eye

A�erimage of a Crimson Eye

10 PSYCHO: PerSonalitY CHaracterizatiOn of artificial intel-

ligence

Achal Dave and Rohit Girdhar

Keywords: interpretability, psychology, deep learning,

artificial intelligence, rorschach

11 The NUGGET non-linear piecewise activation

Stephen Merity

Keywords: deep learning, neural networks, nugget, nuggets,

chicken nuggets, smart

12 Substitute teacher networks: Learning with almost no su-

pervision

Samuel Albanie, James Thewlis, and João F. Henriques

Keywords: substitute, teacher, networks

53

PSYCHO: PerSonalitY CHaracterizatiOn of artificial intelligence

Achal Dave
Cranberry-Lemon University

Rohit Girdhar
Cranberry-Lemon University

Abstract

Recent times have seen great advancements in the field

of AI, thanks to the resurgence of deep learning. It has

impacted virtually every aspect of our lives, from generat-

ing new cat videos [4], to converting cat videos into dog

videos [2]. However, these advancements have also stoked

fear in the hearts of us humans: what if the robot hand that

learned to open door knobs instead decides to use its skills

to pick up a gun and point it at us? Needless to say, the solu-

tion is not fewer guns, but the mental health of these robots.

In this work, we try to assuage those concerns by proposing

a method to analyze the brains of our robots. Our method

takes years of human psychology research and brainlessly

applies it to analyze the deep networks that form the funda-

mental cognitive system of modern day robots. We evaluate

our method on the latest and greatest deep networks and

uncover the ones most likely to ‘break bad’.

1. Introduction

“AI is a fundamental risk to the existence of human

civilization.”

Elon Musk (July 2017)

“I was trying to turn off some lights and they kept

turning back on. After the third request, Alexa stopped

responding and instead did an evil laugh.”

Reddit user (January 2018)

“The #BostonDynamics #robots are learning. Soon

they’ll be opening our fridges and stealing our beer.”

Dr. Randy Olson (February 2018, via Twitter)

Lets face it. The threat of AI is real, and the leaders

of our tech industry have gone out of their way to warn us

about it. However, the lack of tools to interpret our AI meth-

ods has tied the hands of AI researchers, forcing them to fo-

cus on making their methods stronger with no regard to the

Figure 1. When will AI go haywire? Understanding how AI will

act in the future requires a carefully designed psychological anal-

ysis using the widely acclaimed Rorschach ink blot test.

future of humanity. This problem is especially dire in the

field of deep learning, where the dark magic of stochastic

gradient descent carves out ultra high dimensional spaces

to learn representations unimaginable by humans. In this

work, we take a step back and attempt to analyze the think-

ing process of the deep networks we have crafted, before it

is too late.

Today, the Turing test is largely solved [1, 5, 3]. Our

method, PSYCHO instead uses the Rorschach inkblot test

to analyze artificial intelligence. The test works by show-

ing an inkblot image, like in Table 1 (column 1), and asks

the user to pick a sentence that best describes that inkblot

from 7 options (we follow the paradigm from http://

theinkblot.com/). We design an approach to allow

state of the art deep networks to take this test, by finding

nearest neighbors of their representation with a representa-

tion for each option. We report some insightful analysis of

these networks in Sec. 3.

2. Approach

The Rorschach ink blot test, as presented on http:

//theinkblot.com/, requires the test-taker to pick a

sentence describing each of the 10 Rorschach ink blots. Un-

fortunately, despite our best efforts, we were unable to coax

current AI models into taking online personality tests.

Undeterred, we developed a novel approach for psycho-

10

54

logically evaluating our models. For each ink blot, we col-

lected an image representing each potential response (such

as “a giraffe in a bathtub”). Unfortunately, naively collect-

ing images can lead to a bias in the selected images. To

overcome any such bias, we directly query Google Image

Search for an unbiased list of images for each potential re-

sponse. We then selected a single image from these results

for each response query while trying our very hardest not to

use our personal biases.

Armed with this dataset, we present each ink blot along

with potential responses to our model, and select as a re-

sponse the image that the model thinks is most like the ink

blot.1

3. Experiments

We present qualitative and quantitative results, along

with psychological notes for five popular Convolutional

Neural Network models in the computer vision community.

We have anonymized the names to protect against lawsuits

avoid upsetting anyone.

In Table 1, we present the extensive analysis provided

by http://theinkblot.com. We immediately notice

that our models have surprisingly varied personalities. “A-

net” is a prototypical optimist, or what experts may refer

to as “the SpongeBob”. V-net and I-net share a high sick-

ness quotient, which we explore further through qualitative

results.

Unfortunately, trusting experts can mislead our under-

standing of potential societal threats. To overcome this, we

present the raw results from our method in Table 2 for fur-

ther public analysis.

Disturbing responses: While some responses from our

model are playful (e.g. Table 2 Row 5), there are numer-

ous worrying signs in their responses. I-net, in particular,

consistently chooses disturbing imagery (a satanical head

in Row 3, a satanical eye in Row 5, a strange creature in

Row 7, and what is indubitably a satanical ritual in Row

9). Equally worrying is the creepy imagery provided as re-

sponses by V-net, R-net, and D-net in Row 1 (a monsterous

face) and, worse, in Row 5 (a Teletubby).

Intellectual diversity: The lack of diversity in AI is

plainly visible from our analysis. In particular, we discover

for the first time that models developed in the same insti-

tution (R-net and D-net) develop equivalent psychological

tendencies.

4. Conclusion

While we are far from preventing the inevitable AI apoc-

alypse, we believe our method will go a long way in en-

1In particular, we take the final layer representation of the ink blot and

all response images, and choose the response that minimizes Euclidean

distance to the ink blot. We hope to publicly release our code.

Model Sickness Notes

A-net 47% “Positive attitude towards ev-

erything”

“very annoying”

V-net 75% “aspire to [be] CEO”,

“horrible bore”

I-net 78% “short attention-span”,

“work very slowly”

R-net

D-net

60% “succeeded beyond wildest

dreams”,

“frequently mentions paradigm

shifts”
Table 1. Quantitative and qualitative results from the Rorscahch

test, according to one online test.

abling AI researchers to psycho-analyze their deep net-

works before deploying them to read every single Snapchat

we post through the day.

N.B.: This paper is a work of satire and should not be

taken seriously.

References

[1] Computer ai passes turing test in ’world first’. http://

www.bbc.com/news/technology-27762088, 2014.

[2] J.-Y. Z. et al. CycleGAN. https://github.com/

junyanz/CycleGAN, 2017.

[3] L. Hardesty. Computer system passes “visual turing test”.

[4] J. Johnson. Meow generator: This deep learning AI generated

thousands of creepy cat pictures. Motherboard, 2017.

[5] C. Osborne. Mit’s artificial intelligence passes key

turing test. http://www.zdnet.com/article/

mits-artificial-intelligence-passes-key-turing-test/,

2016.

55

Query A-net V-net I-net R-net D-net

Query A-net V-net I-net R-net D-net
Table 2. Qualitative results on the Rorschach test.

56

The NUGGET Non-Linear Piecewise Activation

Stephen Merity 1

Abstract

The choice of activation functions in deep neural

networks has a significant impact on the train-

ing dynamics, task performance, and potential

acronyms of resulting work. While numerous ac-

tivation functions have been proposed, such as

the Rectified Linear Unit (ReLU), most are de-

rived from the domain of mathematics rather than

by drawing inspiration from nature. We pro-

pose a non-linear piecewise activation function,

the NUGGET activation function, which is a re-

sult of a complex zero-sum pricing game refined

over decades of multi-agent interaction simula-

tion. We verify the effectiveness of the activa-

tion by experimental analysis on the Modified

National Institute of Standards and Technology

(MNIST) digits task (Neural Numerology) and

achieve state of the art results1.

1. Introduction

The need for effective activation functions has fueled a

rapid exploration of all mathematical functions. This is

problematic for those of us still scared of mathematics. As

such, a counter culture of human curated artisanal activa-

tion functions has emerged.

Dropout (Srivastava et al., 2014) may be the first instance

of a human curated artisanal regularization technique that

entered wide scale use in machine learning. Dropout, sim-

ply described, is the concept that if you can learn how to do

a task repeatedly whilst drunk, you should be able to do the

task even better when sober. This insight has resulted in nu-

merous state of the art results and a nascent field dedicated

to preventing dropout from being used on neural networks.

Our work seeks inspiration from the natural world in pro-

viding new and intuitive manners to frame and explore re-

cent neural network advances. In the following sections

we analyze a specific subset of these naturally occurring

activation and regularization techniques, which we shall

broadly refer to as NUGGET functions, to understand the

impact they may have when applied to neural networks.

1Our state of the art results can be seen as state of the art results
by ignoring the current state of the art.

2. The NUGGET n-player zero-sum game

The chicken nugget was invented in the 1950s by Robert

C. Baker, a food science professor at Cornell University,

and published as unpatented academic work. Since then, it

has been a pivotal component in the raging fast food wars

that have beseiged the nations across earth. Speculation

exists that SpaceX (Musk, 2002) was started in an attempt

to escape the ever looming threat of NUGGET warfare.

Given the intense research, both theoretical and experimen-

tal, in determining both NUGGET pricing and strategy, the

NUGGET anthologies contain rich labeled data for analy-

sis and conversion to an ill-defined neural network compo-

nent.

2.1. Data Collection

To acquire sufficient diversified samples for our task, we

conducted a large scale user study. To avoid paying partic-

ipants, we relied on good will (Friendship, 1901) and the

unsubstantiated claim that paying participants would skew

the accuracy and impartiality of the scientific results.

Our geographically diverse dataset of NUGGET pricing

activations comes from multiple samples across 8 coun-

tries: 2 from Brazil, 3 from Australia, 2 from the conti-

nental United States, 1 from Germany, 1 from Malaysia, 1
from Thailand, 1 from the United Kingdom2, and 1 from

Japan. All participants in the user study found one or more

instantiations of NUGGET during their search, though this

might be a result of sampling bias3.

2.2. Non-linear NUGGET pricing

Rational consumers would expect that the price of a box of

NUGGET should increase linearly (or sub-linearly) as the

quantity of NUGGET is increased. From both individual

experiments in NUGGET acquisition and from our user

study however we found this to not consistently be the case.

2The authors note that United Kingdom should be United
Queendom whilst within a queen’s reign but note this is out of
the scope of this work.

3The authors would like to know how to handle sampling bi-
ases but carefully note that statistics is rarely used in machine
learning and that the Monty Hall problem is still highly confronta-
tional, suggesting all later forms of statistics must be equally con-
frontational. That’s induction, right? Ugh, wait, that’s math :(

11

57

The NUGGET Non Linear Piecewise Activation

We propose taking advantage of these naturally occurring

non-linearities to power our activation functions and show

that heavily used existing activation functions, such as the

Rectified Linear Unit (ReLU), fit within this framework.

The ReLU activation, mathematically defined as

ReLU(x) = max(0, x)

represents the optimal NUGGET pricing as determined

by a rational consumer. The price of a box of NUGGET

should increase proportionally to the amount of NUGGET

received. The max is a result of consumers being unable

to return or resell any amount of NUGGET to the original

producer of the NUGGET box4.

Even this cursory analysis suggests that the ReLU function,

traditionally attributed to , should be attributed to Professor

Robert C. Baker, creator of the NUGGET. We feel this is

a grave oversight in the current neural network literature.

Our work suggests researchers have issues with maintain-

ing and tracking long term literature depedendencies, po-

tentially due to truncated backpropagation through time.

Motivated by this rediscovery, we investigate whether other

non-linear NUGGET activations may act as a catalyst

for the training and production of neutral neural networks

when subjected to a generative adversarial setting5.

In Table 1 and 2, we explore non-linear pricing for a

NUGGET box in San Francisco, United States, for both

McDonalds and Burger King (or Hungry Jacks in Aus-

tralian). Note the price per NUGGET unit fluctuates

wildly between $0.149 and∞.

3. Experiments

3.1. The Neural Numerology dataset

The Neural Numerology (MNIST) dataset contains 60,000

labeled images of digits used to specify the quantity of a

given NUGGET box.

Subjects were not required to make sensible orders, result-

ing in orders of a zero NUGGET box and none where the

NUGGET quantity exceeded nine. Future work will rec-

tify this and allow for NUGGET boxes of ten to twenty.

4The authors attempted multiple times to resell uneaten
NUGGET quantities to various fast food retailers. None of the
initial trials resulted in success and all subsequent attempts were
met with a denial of service (i.e. we were asked to leave the store).

5The authors do note that The Matrix (1999) can be seen as a
non-continuous generative adversarial multi-agent simulation. In
following work (Animatrix (2003), Reloaded (2003), Revolutions
(2003)), experimentation on humans in this manner was deemed
unethical. We note that the ethical treatment of neural networks
when subjected to adversarial settings has not yet been thoroughly
discussed in the literature but opt to ignore this insight by pretend-
ing this troubling question had never been raised in the first place.

Figure 1. An architectural neuronal visualization produced when

using the NUGGET activation is substantially more aesthetic

than that of non-NUGGET based activation functions. Note the

absence of killer robots or glowing red eyes.

Nuggets Om nom Dollary-doos NUGGET unit

α = 0 ∅ $0.00 ∞
α = 4 XX $1.00 $0.25
α = 6 X $4.30 $0.72
α = 10 X $4.99 $0.499
α = 20 XXXX $5.00 $0.25

Table 1. Non-linear NUGGET pricing at a McDonalds located in

contintental United States. At one extreme, increasing NUGGET

quantity by 2 results in $1.65 per NUGGET unit (4 → 6). At

the other extreme, increasing NUGGET quantity by 10 results in

$0.001 per NUGGET unit (10 → 20).

Nuggets Om nom Dollary-doos NUGGET unit

α = 0 ∅ $0.00 ∞
α = 10 XX $1.49 $0.149
α = 20 X $5.99 $0.299

Table 2. Non-linear NUGGET pricing at a Burger King located

in contintental United States. Note two n = 10 NUGGET boxes

is cheaper than an n = 20 NUGGET box. We are uncertain if

gold or other valuable items are in the n = 20 NUGGET box.

58

The NUGGET Non Linear Piecewise Activation

Figure 2. (Left) Neural Numerology samples generated without

NUGGET activations. (Right) Neural Numerology samples gen-

erated with NUGGET activations. Notice the zeroes (0) have

similar topology to that of a traditional NUGGET blob.

3.2. Experimental setup

All experiments are implemented in PyTorch and are built

upon existing codebases. The use of existing code is essen-

tial as researchers are still investigating how to make digital

neurons feel warm and fuzzy 6. We elect not to use weight

or batch normalization as the authors are concerned with

negatively impacting the neural network’s body image. For

the same reason, we avoid using L1 or L2 regularization.

We considered using the Hogwild lock-free approach to

parallelizing stochastic gradient descent but elected against

it as hogs are not operationally equivalent to chickens and

thus may invalidate our results.

The neural network models were trained by a person named

Adam Optimizer and used an NVIDIA Volta whilst it was

mining for Ethereum. The learning rate began at 20 and

was divided each time the training curator Adam desired a

NUGGET box of quantity one or more. This was frequent.

All embedding weights were uniformly initialized in the

interval [−0.1, 0.1] and all other weights were initialized

between [− 1√
H
, 1√

H
], where H is the hidden size. Anyone

who guessed what the hidden size was won a prize.

4. Results

Our results ... are not that bad. Like, if you hired a five

year old to read the numbers in Figure 2 for you, that kid

would probably do worse than our algorithm. Therefore,

NUGGET based artificially intelligent models are equiva-

lent in complexity to that of a standard human five year old.

6Many neural network experiments require dozens or hun-
dreds of expensive high end GPUs, resulting in both massive ex-
pense and massive heat generation. This is necessary as it helps
incubate the neural networks during their growth, with the GPUs
helping heat them to their optimal temperature (i.e. acting as a
catalyst) and the dollar figure spent on them ensuring the neural
networks are aware of how much we love them.

That’s pretty darn good. Few animals can read numbers or

order nuggets, so our model is also smarter than most ani-

mals and evolution took forever making those things.

5. Conclusion

In this work, we revisit the ReLU activation under the

framework of NUGGET based non-linear piecewise equa-

tions. The improvements that these techniques provide can

likely be combined with other regularization techniques,

such as the drunken dropout, and may lead to further im-

provements in performance as well, especially if subjected

to an extensive global NUGGET hyperparameter search.

We see artisanal hand crafted activation and regularization

techniques the future of our field, primarily as no-one is

quite certain how a neural nets anyway.

Acknowledgements

We thank Charlie Yang for funding an experimental pur-

chase of an n = 20 NUGGET box that motivated this

work. Additional NUGGET funders have opted to remain

anonymous due to the contentious nature of artificially in-

telligent fast food research. Thanks to the participants in

the geographical NUGGET sampling: Anton Troynikov,

Joseph Stephen, Dominic Balasuriya, Georgina Wilcox,

James Foster, Joshua Hall, Kenya Chan, Dominick Ng, and

Vivian Li. Good research not only takes time and resources

but also good friends. The authors would perform better

work if they had more friends. Please be our friend.

NUGGET samples

Sydney: 3 for $3, 6 for $6, 10 for $7.50, 20 for $12.75

Sydney CBD: 3 for $3, 6 for $5.90, 10 for $7.70, 20 for

$12.80

Melbourne: 3 for $3, 6 for $5.50, 10 for $7.20, 20 for

$12.80, 24 for $9.95

Japan: 5 for 200 yen, 15 for 570 yen

UK: 6 for 3.09, 9 for 3.99, 20 for 4.99

Thailand: 6 for 87B, 10 for 139B, 20 for 240B

Kuala Lumpur: 6 for 7.8RM, 9 for 10.9RM, 20 for 22RM

Germany: 6 for e3,59, 9 for e4,49, 20 for e7,59

Belo Horizonte: 4 for 6.50 reais, 10 for 16.40 reais

So Paulo: 4 for 6.50 reais, 10 for 13.90 reais

US (McDonalds): see Table 1

US (Burger King): see Table 2

References

Srivastava, Nitish, Hinton, Geoffrey E., Krizhevsky, Alex,

Sutskever, Ilya, and Salakhutdinov, Ruslan. Dropout: a

simple way to prevent neural networks from overfitting.

Journal of Machine Learning Research, 15:1929–1958,

2014.

59

Under review as a conference paper at SIGBOVIK 2018

SUBSTITUTE TEACHER NETWORKS:
LEARNING WITH ALMOST NO SUPERVISION

Samuel Albanie∗

British Institute of Learning, Yearning and Discerning
Shelfanger, UK

James Thewlis∗

National Academy of Pseudosciences
Valencia, Spain

João F. Henriques∗

Fortress of Solitude
Coimbra, Portugal

ABSTRACT

Education is expensive. Nowhere is that statement more universally agreed upon
than in machine learning, a recently trending topic on twitter that places great
value on the reduction of cost. Certainly for machines to learn, they must be
taught, but how can this be achieved on an appropriate budget? Recent approaches
(often referred to as Teacher-Student or Knowledge Distillation methods in the
neural network literature) have demonstrated that the problem can be viewed as
model compression, in which a single student model learns from an ensemble of
M specialist consultants networks. Inspired by the logo on a free pen at a local
recruitment fair, we scale this method up and out, while simultaneously pursuing
an appropriately aggressive patenting strategy. In total, we make the following
three contributions. First, we propose a novel almost no supervision training algo-
rithm that is highly scalable in the number of student networks being supervised.
Second, we explore the closely-related scaling problem of culinary optimisation,
developing a method that tastily surpasses the current state of the art. Finally, we
provide a rigorous quantitive analysis of our method, proving that we have access
to a calculator.

A little learning is a dangerous thing

Alexander Pope, 1709

1 INTRODUCTION

Since time immemorial, learning has been the foundation of Human culture, allowing us to trick
other animals into being our food. The importance of teaching in Ancient Times was exemplified
by Pythagoras, who boasted of being able to teach his Theorem to anyone in the street (Philolaus of
Croton, 421 BC), though apparently no one taught him to wear pants.

Nowadays, we are attempting to pass on this knowledge to our species’ offspring, the ma-
chines (Timberlake, 2028; JT-9000, 2029)1, who will hopefully keep us around to help with house
chores.

∗Authors listed in order of the number of guinea pigs they have successfully taught to play competitive
bridge. Ties are broken alphabetically.

1The work of these esteemed scholars indicates the imminent arrival of general Artificial Intelligence. Their
methodology consists of advising haters, who might be inclined to say that it is fake, to take note that it is in
fact so real. The current authors, not having a hateful disposition, take these claims at face value.

1

12

60

Under review as a conference paper at SIGBOVIK 2018

Many prominent figures of our time, several of whom cannot tell their CIFAR-10 from their CIFAR-
100 have expressed their reservations with this approach, but really, what can possibly go wrong?2

Moreover, several prominent figures in our paper say otherwise (Fig. 1, Fig. 2).

Having established the wisdom of our approach as a whole with the extensive philosophical discus-
sion above, we now press on to achieve a finer understanding of the details. Concretely, the goal
of this work is to reduce the algorithmic ignorance, or more precisely gnorance3 of a collection of
student networks, and to do so in a fiscally responsible manner given a fixed teaching budget.

Define a collection of teachers {Te} as a class of highly educated functions which efficiently map
unusual life experiences residing a Banach space into extremely unfair exam questions in an exami-
nation space. Further, define a collection of students {St} as class of keen beans which inefficiently
map unheated pot noodles to unwashed dishes, both in common space. Pioneering educational early
work by Bucilua et al. (2006) demonstrated that on a carefully illuminated manifold, an arbitrary
student St could improve his/her performance with N highly experienced, specialist teachers. We
refer to this as the private tuition learning model. While effective in certain settings, this approach
does not scale. Specifically, this algorithm scales in cost as O($MNK), where N is the number
of students, M is the number of private tutors per student and $K is price the bastards charge per
hour. Our key observation is that there is cheaper approach to ignorance reduction, which we detail
in Sec. 3.

Our work is biologically inspired by the humble ostrich, an animal keenly aware of the dangers of
learning too much, as its sand-based defence mechanism affords it a heightened inability to perceive
threats. Advanced incomprehension of object permanence (Piaget, 1970) is also a key characteristic
of human infants, as demonstrated empirically in the Stanford Peekaboo Experiment. This mental
peculiarity is even more pronounced in certain human adults, with entire systems of contradictory
beliefs able to be held simultaneously and without distress. Similarly, a profound ignorance of
neuroscience allows the authors to confidently claim that the proposed method to cost reduction
during teaching is identical to neural pathways found in the brain.

2 RELATED WORK

Give a student a fish and you feed them for
day, teach a student to gatecrash seminars
and you feed them until the day they move
to Google.

Andrew Ng, 2012

A worrying trend in the commoditization of education is the use of MOOC (Massive Open Online
Courses) by large internet companies. They routinely train thousands of student networks in parallel
with different hyperparameters, some of whom are hurled out to the far east on the explore-exploit
coordinate chart, then keep only the top-performer of the class (Li et al., 2016; Snoek et al., 2012).
We consider such practices to be wasteful and are totally not jealous at all of their impressive com-
putational resources.

A number of approaches have been proposed to improve teaching quality. Central to each of these
approaches is a question that has challenged researchers for many years, namely how best to ef-
ficiently extract extract knowledge that is in the computer (Zoolander, 2004). Work by noted en-
tomologists Dean, Hinton and Vinyals illustrated the benefits of comfortable warmth to facilitate
students better extracting information from their teachers (Hinton et al., 2015). In more detail, they
advocated adjusting the value T in the softmax distribution:

pi =
exp (xi/T)

∑

j exp (xj/T)
(1)

2This question is rhetorical, and should be safe to ignore until the Ampere release.
3The etymology of gnorance is a long and interesting one. Phonetic experts will know that the g is silent

(cf. the silent k in knowledge), while legal experts will be aware that the preceding i is conventionally dropped
to avoid costly legal battles with the widely feared litigation team of Apple Inc.

2
61

Under review as a conference paper at SIGBOVIK 2018

Figure 1: We introduce Latent Substitute Teacher Allocation, a simple generative process that ex-
plains the cost of learning. Note the use of drop-shadow plate notation, which indicates the direction
of the nearest light source.

where T denotes the wattage of the classroom storage heater. More radical approaches have advo-
cated the use of alcohol in the classroom, something that we do not condone directly, although we
think it shows the right kind of attitude to innovation in education (Crowley et al., 2017). However,
both approaches are clearly financially unsustainable. Moreover, differently from these works, we
focus on the quantity, rather than the quality of our teaching method.

Recent work has promoted an ”Attend, Infer, Repeat” (Eslami et al., 2016) approach to learning.
Attendance is a prerequisite for our model, and cases of truancy will be reported to the headmistress
(see Fig 1). For the substitute teacher module, the ”Infer” step may be replaced by ”Ignore”. Only
particularly badly behaved student networks will be required to repeat the course.

A number of pioneering ideas in scalable learning were physically investigated several years ago
by (Maturana & Fouhey, 2013). However, we differentiate ourselves from their approach by using
several orders of magnitude fewer hashtags. We also note the marginal relevance of a recent paper
on unadversarial learning (Albanie et al., 2017). We now attempt to cite a future paper, from which
we shall cite the current paper, in an ambitious attempt to send google scholar into an infinite depth
recursion (Albanie et al., 2019), thereby increasing our academic credibility and assuredly landing
us lucrative pension schemes.

2.1 UNRELATED WORK

• A letter to the citizens of Pennsylvania on the necessity of promoting agriculture, manufac-
tures, and the useful arts. George Logan, 1800

• Claude Debussy—The Complete Works. Warner Music Group. 2017

• Article IV Consultation—Staff Report; Public Information Notice on the Executive Board
Discussion; and Statement by the Executive Director for the Republic of Uzbekistan. IMF,
2008

• A treatise on the culture of peach trees. To which is added, a treatise on the management
of bees; and the improved treatment of them. Thomas Wildman. 1768

3 THE LATENT SUBSTITUTE TEACHER ALLOCATION PROCESS

The primary goal of educators is to educate, inform and explain. In machine learning, explana-
tions are best encoded as simple statistical generative models. We therefore explain the role of cost
efficient explanation through an appropriately simple explanation, the Latent Substitute Teacher Al-
location (see Fig. 1).

3
62

Under review as a conference paper at SIGBOVIK 2018

0 20 40 60 80

0

20

40

60

80

Figure 2: Expressing the cost function in bitcoins makes it significantly more volatile, yet it was
instrumental in attracting venture capital for our Smart Education startup.

Fortunately, since the model is graphical, it needs minimal explanation. However, we can all agree
that it will scale magnificently. All the teacher networks employed in the Latent Substitute Teacher
Allocation Process are Recursive Neural Networks. A Recursive Neural Network is defined as the
composition of some layers, and a Recursive Neural Network. By logical induction, these networks
have infinite capacity, which is why they are not bothered by a heavy workload. All students are
trained in two stages, separated by puberty.

In keeping with the cost-cutting focus, we have analysed the gradients available on the market,
and after extensive research decided to use Synthetic Gradients Jaderberg et al. (2016), which are
significantly cheaper than Natural Gradients Amari (1998). It is important to realise that our cost
function, which is the target of minimisation, is very much proportional to actual cost (preferably
cash; see Fig. 2).

Traditional approaches have often gone by the mantra that it takes a village to raise a child. We
attempted to use a village to train our networks, but found it to be an expensive use of parish re-
sources, and instead opted for the NVIDIA GTX 1080 Ti ProGamer-RGB. Installed under a desk in
the office, this setup provided warmth during the cold winter months.

4 THE CAKE

As promised in the mouth watering abstract (and yet undelivered by the paper so far), we now
take a short, mid-paper confectionary diversion to improve our ratings with the sweet-toothed de-
mographic4. A number of competitive cakes have been recently proposed at a high-end cooking
workshop (LeCun, 2016; Abbeel, 2017), resulting in a dramatic bake-off (Fig. 3-a,b).

Previous authors have focused on cherry-count. We show that better results can be achieved with
more layers, without resorting to cherry-picking. Our layer cake consists of more layers than any
previous cake (Fig. 3-c), showcasing the depth of our work.

We would like to dive deep into the technical details of our novel use of the No Free Lunch Theorem,
Indian Buffet Processes and a Slow-Mixing Markov Blender, but we feel that increasingly thin
culinary analogies are part of what’s wrong with contemporary Machine Learning (Rahimi, 2017).

4This approach was recommended by our marketing team, who told us that everyone likes cake.

4
63

Under review as a conference paper at SIGBOVIK 2018

Figure 3: Several cakes of importance for current research (deeper is better). From left to right: 1)
Yann LeCun’s cake, 2) Pieter Abbeel’s cake, 3) Our cake. Note the abundance of layers in the latter.

5 EXPERIMENTS

If you don’t know how to explain MNIST
to your LeNet, then you don’t understand
digits!

Albert Einstein

We now rigorously evaluate the efficacy of the Latent Substitute Teacher Allocation Process. We
note that unlike previous methods, we achieve regularisation without injecting gradient noise. High
noise levels tend to stop concentration gradients in student networks, and learning stalls. In these
experiments we always operate in ”library-mode”. Performance-inducing drugs, such as batch-
norm, were strictly prohibited.

After months of intensive training using our trusty NVIDIA desk-warmer, which we were able to
compress down to two days using montage techniques and an 80’s cassette of Survivor’s ”Eye of
the Tiger”, our student networks were ready for action. The only appropriate challenge for such
well-trained networks, who eat digits for breakfast, was to pass the Turing test. We thus embarked
on a journey to find out whether this test was even appropriate.

The Chinese Room argument, proposed by Searle (1980) in his landmark paper about the philosophy
of AI, provides a counterpoint. It is claimed that an appropriately monolingual person in a room,
equipped with paper, pencil, and a rulebook on how to respond politely to any written question
in Chinese (by mapping appropriate input and output symbols), would appear from the outside
to speak Chinese, while the person in the room would not actually understand the language. We
ran this thought experiment many times using the highly scalable nature of the Latent Substitute
Teacher Allocation Process. By sampling rulebook operators appropriately from the earth’s surface,
we achieved strong statistical guarantees that at least one of the monolingual subjects would be
appropriately Chinese. Having resolved all philosophical and teleological questions, we then turned
to the application of the actual Turing tests.

Analysing the results in Table 4, we see that only the ResNet-50 got a smiley face. The Q-network’s
low performance is obviously caused by the fact that it plays too many Atari games. However, we
note that it could improve by spending less time on the Q’s and more time on the A’s. The Neural

Model Turing test result

AlexNet B-

ResNet-50 A+

Q-network C

Neural Turing Machine F-, see me after class

Figure 4: Results for the test class of 2018.

5
64

Under review as a conference paper at SIGBOVIK 2018

Turing Machine had an abysmal score, which we later understood was because it focused on an
entirely different Turing concept.

As an additional, purely empirical statement, we observed that networks trained using our method
experience a much lower DropOut rate. Some researchers set a DropOut rate of 50%, which we feel
is unnecessarily harsh on the student networks5.

6 CONCLUSION

You take the blue pill—the story ends, you
wake up in your bed and believe whatever
you want to believe. You take the red
pill—you stay in Wonderland, and I show
you how deep the ResNets go.

Kaiming He, 2015

This work has shown that it possible to achieve low-cost machine learning by using inexpensive,
completely expendable Substitute Teacher Networks, while carefully avoiding their definition. We
have seen that residual networks may be the architecture of choice for solving the Turing test. A
major finding of this work, found during cake consumption, is that current networks have a Long
Short-Term Memory, but they also have a Short Long-Term Memory. The permutations of Short-
Short and Long-Long are left for future work, possibly in the short-term, but probably in the long-
term.

ACKNOWLEDGEMENTS

This work was actively undermined by a wilful ignorance of related work.

REFERENCES

Abbeel, Pieter. Keynote Address: Deep Learning for Robotics. 2017.

Albanie, Samuel, Ehrhardt, Sébastien, and Henriques, João F. Stopping gan violence: Generative
unadversarial networks. Proceedings of the 11th ACH SIGBOVIK Special Interest Group on Harry
Quechua Bovik., 2017.

Albanie, Samuel, Ehrhardt, Sébastien, Thewlis, James, and Henriques, João F. Defeating google
scholar with citations into the future. Proceedings of the 13th ACH SIGBOVIK Special Interest
Group on Harry Quechua Bovik., 2019.

Amari, Shun-Ichi. Natural gradient works efficiently in learning. Neural computation, 10(2):251–
276, 1998.

Amazon. Details redacted due to active NDA clause.

Bucilua, Cristian, Caruana, Rich, and Niculescu-Mizil, Alexandru. Model compression. In Pro-
ceedings of the 12th ACM SIGKDD international conference on Knowledge discovery and data
mining, pp. 535–541. ACM, 2006.

Crowley, Elliot J, Gray, Gavin, and Storkey, Amos. Moonshine: Distilling with cheap convolutions.
arXiv preprint arXiv:1711.02613, 2017.

Eslami, SM Ali, Heess, Nicolas, Weber, Theophane, Tassa, Yuval, Szepesvari, David, Hinton, Geof-
frey E, et al. Attend, infer, repeat: Fast scene understanding with generative models. In Advances
in Neural Information Processing Systems, pp. 3225–3233, 2016.

Hinton, Geoffrey, Vinyals, Oriol, and Dean, Jeff. Distilling the knowledge in a neural network. In
Neural Information Processing Systems, conference on, 2015.

5This technique, often referred to in the business management literature as Rank-and-Yank (Amazon), may
be of limited effectiveness in the classroom.

6
65

Under review as a conference paper at SIGBOVIK 2018

Jaderberg, Max, Czarnecki, Wojciech Marian, Osindero, Simon, Vinyals, Oriol, Graves, Alex, and
Kavukcuoglu, Koray. Decoupled neural interfaces using synthetic gradients. arXiv preprint
arXiv:1608.05343, 2016.

JT-9000. How I learned to stop worrying and love the machines (Official Music Video). In British
Machine Vision Conference (BMVC), 2029. West Butterwick, just 7 miles from Scunthorpe,
England.

LeCun, Yann. Keynote Address: Predictive Learning. 2016.

Li, Lisha, Jamieson, Kevin, DeSalvo, Giulia, Rostamizadeh, Afshin, and Talwalkar, Ameet.
Hyperband: A novel bandit-based approach to hyperparameter optimization. arXiv preprint
arXiv:1603.06560, 2016.

Maturana, Daniel and Fouhey, David. You Only Learn Once - A Stochastically Weighted AGGRe-
gation approach to online regret minimization. In Proceedings of the 7th ACH SIGBOVIK Special
Interest Group on Harry Quechua Bovik., 2013.

Philolaus of Croton. How to bake the perfect croton. Greek Journal of Fine, Fine Cuisine, 421 BC.

Piaget, Jean. Piaget’s theory. 1970.

Rahimi, Ali. Test of Time Award Ceremony. 2017.

Searle, John R. Minds, brains, and programs. Behavioral and brain sciences, 3(3):417–424, 1980.

Snoek, Jasper, Larochelle, Hugo, and Adams, Ryan P. Practical bayesian optimization of machine
learning algorithms. In Advances in neural information processing systems, pp. 2951–2959, 2012.

Timberlake, Justin. Filthy (Official Music Video). In Pan-Asian Deep Learning Conference, 2028.
Kuala Lumpur, Malaysia.

Zoolander, Derek et. al. Zoolander. Paramount Pictures, 2004.

7
66

CONFIDENTIAL COMMITTEE MATERIALS

SIGBOVIK 2018 Paper Review

Paper 28: Substitute Teacher Networks

Ben Blum, Light Cone Sedentarian

Rating: Defer

Confidence: Righteous

As to the authors’ perspective I no doubt have already written, but to my own have yet to write,

in my review of (Albanie et al., 2019), the use of forward citations to one’s own future work is an

irresponsible act which degrades the fabric of academic space-time. I cannot condone this practice

and recommend the paper’s publication be deferred until 2020.

Reviewer Two, Association for Confectionery Heresy

Rating: Accept

Confidence: Just here for the cake

The paper makes important advances in the area of research paper structure. Specifically, the

unrelated work section helps ground the reader by providing a sense of the scope of the work, the

use of inspirational quotes is inspiring, and the use of the intermission section (first proposed in

SIGBOVIK Track L by [R. Two, 2015]) helps to keep the reader’s attention. I look forward to

future work from these authors on incorporating those concepts into their teaching network itself

to confer the same benefit upon students.

67

SIGBOVIK 2018
(Continued) Message from the Organizing Commi�ee

That’s Numberwangcoin! Great guess—keep going!

switch (choose_dear_reader()) {

case 0: goto PAGE_51;

case 1: goto PAGE_51;

case 6: goto PAGE_51;

case 13: goto PAGE_51;

case 17: goto PAGE_51;

case eπ: goto PAGE_51;

case 42: goto PAGE_51;

case A_LOT: goto PAGE_68;

case −b±
√
b2−4ac
2a : goto PAGE_51;

case 1337: goto PAGE_51;

case 9001: goto PAGE_51;

case ONE_MILLION_DOLLARS: goto PAGE_51;

case 123456789101112: goto PAGE_51;

case ACKERMANN_5: goto PAGE_51;

case ℵ1: goto PAGE_51;

}

68

SIGBOVIK 2018
(Continued) Message from the Organizing Commi�ee

“Whoooo! Go robot, go!”

switch (choose_dear_reader()) {

case FANTASTIC:

Press the down, left, right, and down pads in that order.
goto PAGE_87;

case DECENT:

Press the up, down, right, and right pads in that order.
goto PAGE_50;

case WAY_OFF:

Press the up, up, down, and down pads in that order.
goto PAGE_40;

}

69

70

Parapsychology

Get Out of My Head

13 This grad student studied parapsychology—and youwon’t

believe what he found

David Edelstein

Keywords: parapsychology, science, experimental design,

experimenter effects, philosophy, telepathy

71

This Grad Student Studied

Parapsychology — And You

Won’t Believe What He Found!
David Edelstein

Parapsychology is a scientific field studying effects that would be extremely important to our

understanding of the world, but are widely considered to be nonexistent. As an attempt to

examine the scientific method, I conducted a parapsychology experiment to see if I could

telepathically influence people’s minds. Participants were given thirty seconds in which to click

a tally counter while I either mentally impelled them to push it more or did not. Analysis of the

results found that people in the control group pushed the button statistically significantly more

frequently than people subject to the treatment condition — I am supernaturally unpersuasive. I

consider several possible explanations for this effect, including experimenter influences, failure

of blinding, coincidence, and actual telepathic faculty on my own part. I discuss the

implications of this experiment on my personal belief in psi and on my attitudes towards

science as a tool for uncovering the truth. 

13

72

Introduction

Parapsychology is the study of psychic phenomena, of mental capabilities beyond those
explained by science. These are collectively referred to as psi. Many topics fall within its
umbrella; the ones most relevant to this research are: [4]

• Telepathy — Transmission, reception, and influence of thoughts

• Psychokinesis — Exertion of physical force through mental power

• Precognition — Divining inaccessible information about the future

Parapsychology promises revolutionary insights with incredible applications. Telepathy could
allow for rapid and surreptitious communication, precognition could open new categories of
computation and math, and remote viewing even attracted CIA attention with Project Star Gate
[10]. New forces might be discovered, and a full science of parapsychology would touch nearly
every other discipline. Personally, as a magician, I would be fascinated to learn about a real
version of the abilities I present only the facsimile of possessing.

There’s extensive research into parapsychology by major academics such as Daryl Bem, and
it’s published in dedicated peer-reviewed parapsychology journals, with forays into top
conventional psychology ones [8]. However, parapsychology is overwhelmingly considered
pseudoscientific. Its claimed results tend not to replicate, its mechanisms are hazy and
frequently in contravention of existing beliefs about physics, and its papers are often plagued
by statistical malpractice. Plainly, it’s a field dedicated to studying an effect that isn’t real.

I agree. I am skeptical of psi (mostly; I confess to having occasionally idly tried to move objects
with my mind). However, I think that the methodological criticisms of the field of
parapsychology also apply within the domain of conventional science. Consider the replication
crisis in social psychology, in which statistical fraud has produced a wealth of groundless
scholarship. One article considers parapsychology as a control group of sorts for science,
studying a domain where there is no effect [2]. That they nonetheless produce positive and
negative results at a similar rate to scientists in legitimate fields paints a concerning picture of
the ability of scientists to find affirmative outcomes if and only if there is a true effect.

Felix Planer, the author of a book on esoteric beliefs, writes that “[I]f the existence of PK
[psychokinesis] had to be taken seriously […] no experiment could be relied upon to furnish
objective results, since all measurements would become falsified to a greater or lesser degree,
according to his PK ability, by the experimenter's wishes.” [1] He needn’t have referenced
psychokinesis — experimenter effects are a well-established phenomenon in which the results
of an experiment tend to be biased towards those favored by the researcher [5]. Science
doesn’t need psi to have a problem.

That’s why I’m researching parapsychology. Science is a method, not a domain, and I want to
conduct an experiment in a strange domain following scientific protocols to observe how they
function and how well I am able to follow them. That there is likely no true effect is to my
advantage, because it allows me to focus my analysis more on the procedural elements of
science. And if I do get positive results, that will be all the more interesting.

Experimental Design

Am I able to telepathically influence people’s behavior?

This is the question I will be researching, and to find out, I have developed a protocol to isolate
a causal effect between my thinking a command at someone and their obeying it. I want this

73

procedure to be quick, to pose no risks to the subjects or to myself, to produce data more
granular than a binary did or did not follow, and provide little room for experimenter influence or
mechanisms of causal effect other than psi. At a high level, my procedure is as follows:

1. Greet and explain that the subject will have thirty seconds to click a tally counter as
many or as few times as they like, and that interval will start and end with a musical
note

2. I give them the tally counter and get out of their sight

3. I start the experiment sound file, randomly assign the subject, and record their

assignment

4. A note cues the subject that the test period has begun

5. Treatment conditions

1. Control: I read whatever’s on my computer screen for thirty seconds

2. Experimental: I intently think at the subject a psychic command to push the button

for the next thirty seconds, while avoiding giving any audible indicators of my
mental focus

6. A note cues the subject and myself to stop

7. The subject leaves and I record the number of times the counter was clicked

Recruitment
For this experiment, I recruited almost exclusively people at Carnegie Mellon University. They
were primarily students, though several subjects were professors, and some may have been
merely on campus but presently unaffiliated with the university. This was a highly educated and
likely unusually intelligent class of subjects. I did not record demographic data, though from
memory, participants skewed young — indeed, I don’t believe any of them were over fifty —
and were disproportionately Chinese and Indian, representative of the demographics of
Master’s students at Carnegie Mellon. I believe gender balance was fairly even.

Certain esoteric concerns regarding recruitment are also worth noting. I did not ask my
subjects about their attitudes towards psi, even though it is frequently postulated in
parapsychological research that skepticism towards psi can inhibit its functioning [3].
Additionally, most people who took part in the experiment were acquaintances or strangers.
Few were friends and none were among the people closest to me. If telepathic connection is
possible, it may be more readily established between minds already tuned to the same
frequency, as it were [7]. These both, then, could be significant covariates.

I attempted to get as many people as possible to take part in the experiment in the time I had,
and so opportunistically recruited most heavily from among my classmates. I was unable to
conduct the experiment until I had established the procedure and until I had settled on a
method and obtained the necessary materials, so my recruitment was laggardly at the
beginning. It also slowed on the last few days of data collection, as I relaxed without the risk of
having a critically small sample size and exhausted the supply of willing classmates. In total, I
had 49 subjects.

Materials

I used a tally counter as shown in Figure 1 to be a button that records the number of times it is
pressed. I had considered implementing a digital counter, but the mechanical device required
no technical implementation, had less risk of error either in function or by the user, and would
not tie up my computer during testing. The tally counter proved perfect for the task.

I also needed a way to mark the bounds of a 30-second interval while first having a short delay
in which I could conduct my randomization. For this, I composed a short track on Apple

74

GarageBand consisting of a piano note at 15 seconds,
another identical piano note at 45 seconds, and silence
otherwise. In retrospect, I should have had different
sounds, and found a way to play these from a source
other than my computer. The inadequacy of this method
of cuing the start and end of the interval resulted in a
handful of mangled data points.

Instructions

I did not have a fixed script for introducing subjects to
the experiment and giving them instructions, and it
evolved over the course of data gathering, though more
or less attained fixity at something close to the following:

I’m conducting an experiment that will just take a minute
of your time. This here is a tally counter. You push this
button to increment it, and the thing along the side here
resets it — you don’t use that; I’ll do that after we’re
done. [Give tally counter to the participant.] In this
experiment, after a brief delay, you will hear a noise like
this. [Play sound.] That marks the start of a thirty second

interval which ends when you hear the same note. During
that interval, but only during that interval, you may press the button to increment the
tally counter as many or as few times as you like. At the end, I’ll recollect the tally
counter and mark down how many times you pressed it. For experimental integrity,
you’ll need to sit so that you can’t see me. Do you have any questions? Are you ready?

Even once my instructions standardized, there was still variation in subjects’ knowledge going
into the experiment. Some subjects were aware of the purpose of the experiment, something I
had explicitly mentioned in earlier versions of the instructions, and some had watched the
experiment being conducted on previous subjects.

Randomization

Proper randomization is vital for this experiment to control for pre-randomization
inconsistencies in the experimental procedures. This ensures that many covariates are not
confounders. Inconsistencies in the instructions and in knowledge of the experiment, having
taken effect prior to random group assignment, could not have had causal influence on my
results. Similarly, I can rule out effect from the room I conducted the experimented in (though I
did record that), the time it was conducted, individual variation in test subjects such as their
belief in psi, and many other factors.

Additionally, randomization also reduces the avenues for experimenter effects. I could often tell
whether a subject was likely to push the button a large or small number of times. For instance,
one subject asked me what was the most number of times someone had clicked the button,
and unsurprisingly she recorded a very high number of presses. If I did not randomize properly,
it would be easy to produce whatever results I desired. I also designed my procedure to
randomize late, as close to the effect administration interval as possible, so as to limit my post-
randomization degrees of freedom.

To conduct my randomization, I used random.org, which promises high quality random number
generation. I wanted to randomize in a way that I knew I would not allow for experimenter
effect. In particular, I needed a method that would also minimize the risk of esoteric influence
on my part. A coin toss, for instance, can be somewhat controlled by some magician’s tricks

Figure 1: The tally counter

75

(though not ones I myself have any practice at), and because this experiment is examining psi,
I also can’t rule out the possibility of telekinetic influence on the coin, similar to what Felix
Planer feared [1]. A website seemed sufficiently out of my control to be trustworthy for these
purposes.

Blinding

This experiment was single-blind. Double-blinding would have been impossible, seeing as
intention on the part of the experimenter is the key independent variable. The protection of
single-blinding varied from subject to subject. For the first several subjects, I conducted the
experiment in a room with a screen I could stand behind out of view of the subject. However, in
later iterations, no such barrier was available, and I had to make do with merely crouching out
of sight (hopefully) behind the subjects. Because the sound cues for the interval played from
my computer, where I also carried out the randomization, I was unable to be very far away from
the test subject without risking them missing the interval. Most subjects never learned which
group they were in, and those that did learned only after their data was collected and recorded.

Effect Administration

For subjects in the treatment group, I thought at them as hard as I was able to over the thirty-
second interval a command to push the button. Because I am not sure of the proper way to do
this, my method of application was inconsistent. For a significant majority of cases, I simply
thought in words “push the button” over and over for thirty seconds. It varied whether I had my
eyes open or closed for this, and how much I breathed. I pushed in several different directions:
that the button itself was appealing, that the act of pushing it was appealing, or that pushing it
would be for science and demonstrate something really cool. In some cases, I also mimed
clicking the tally counter, as though there were some synchrony between my body and that of
the subject.

I don’t know which of these methods would be most effective, and I did not record which one I
followed, nor did I record the subjective intensity of my treatment. I believe that in all cases, I
was able to deliver sustained and intense mental focus towards encouraging the subject to
push the button.

For subjects in the control group, I simply didn’t think at them. To best ensure that I would not
accidentally go against the intended treatment of the control group, I read. There was some
variation in my handling of the control group as well, as I would varyingly read from a book or
from what was on my screen, or examine other random things generated by random.org. It is
possible that stray thoughts towards pushing the button may have entered my mind while
some members of the control group were participating in the experiment, but I can say with
confidence that such thoughts were never intense.

Data and Analysis

In total, I collected data from 49 people, reported in full in Appendix A. Of them, 29 were in the
control group and 20 were in the treatment group. I chose to analyze the data using R because
of my prior experience with it and its extensive free statistical packages. Across all participants,
the median number of clicks was 60, and the mean was about 58.7. Standard deviation was
47.7. Two people pushed the button only once over the thirty-second interval, and one person
managed 159 pushes, more than five per second.

Figure 2 shows box plots of the number of clicks by condition. The control group had a mean
of 72.3 and a standard deviation of 50.8, whereas the treatment group had a mean of 40.0 and
a standard deviation of 35.4. The control group was fairly symmetrically and widely distributed,
but the treatment group was right-skewed, with most of the data points below 30 and a long

76

tail towards higher values. To analyze the significance of
this apparent difference between the control and treatment
groups, I used ordinary least squares. My residuals are
depicted in Figure 3, and seem acceptably random, so I
may look at the results, shown in full in Appendix B.

According to my linear model, people push the button
about 39 times, and do so an
additional 33 times if they
are in the control group,
significant to a p ≤ 0.05
level. I examined the effect
size in my data, and
observed a Cohen’s d of
-0.79, with a 95%
confidence interval ranging
from -1.39 to -0.18,
indicating a medium effect
size. My thinking at someone
to push the button has a
statistically significant effect
on the number of times they
click it — and it lowers that

number.

This is a surprising result, so I decided to run a few more
statistical tests. This isn’t proper experimental behavior, because
trying tests until one produces the expected result is an avenue
for p-hacking, but I have committed to relying on this first test,
and merely include these others as curiosities.

I ran another linear model on the logarithm of the number of clicks. This one did not find a
significant difference between the two groups. I also ran a permutation model and a
Kolmogorov-Smirnov test to handle the possibility that the data is non-parametric. The
permutation model had p = 0.015, and the Kolmogorov-Smirnov test produced p = 0.059.
Different tests then produced different results, but the inconsistency wasn’t huge. For the full
output of these tests, see Appendix B.

From these data, we may conclude that I am supernaturally unpersuasive!

What Happened?

Okay, so that’s not the end of the story. I have indeed found a significant result for my
parapsychology experiment, and one in a surprising direction, but there’s several possible
explanations.

Mundane

This may simply be a coincidence. I got a significant result, but not at that low of a p-value. A
significance threshold of p = 0.05 isn’t that high, and had I chosen another test, I might not
have gotten significant results. Moreover, it’s not clear that the normality assumption holds well
enough for my choice of a linear model to be acceptable, although I spoke with a statistics
professor who assured me that my choice was reasonable. A number of people were possibly
less flexible to influence of any sort, saying that they had pushed the button their favorite

Figure 2: Results box plot

Figure 3: Linear model residuals

77

number of times. If these people were numerous enough, my results may merely reflect the
coincidence of their distribution.

In parapsychology research, great effort is expended to prevent subjects from being influenced
by the researcher through conventional means such as visual or auditory cues, referred to as
sensory leakage [6]. This causes a failure of blinding which creates a non-psi mechanism
through which the treatment produces causal effect. I only had a screen separating me from
the subject in a handful of trials, and so it’s quite possible that the subject heard me or even
saw me if they turned around too much.

I behaved in a visibly different way between the treatment and control conditions, being
intensely focused in the former and relaxed in the latter, so had a subject seen me, their
behavior could have been affected. I may have made perceptibly different sounds between the
conditions. In the treatment condition, my focus may have caused my breathing to be harsher
and louder, and it’s even possible that my mental repetition of “push the button” accidentally
slipped out as a whisper, though I don’t recall this happening. Conversely, in the control
condition, I might click on something on my computer to read it, which could have been an
audible cue to the subject to click more.

There are stranger avenues for sensory leakage. In some cases, the subject could not see me,
but could see other people who themselves could see me. It’s possible that my focus during
the treatment condition looked odd enough to be reflected as concern on the faces of people
the subject could see, and so in that way sensory leakage accidentally occurred. Perhaps the
intensity of the treatment condition caused me to sweat or emit pheromones, and that
distracted the subjects.

There are also possible experimenter effects. My protocol was a good one, and eliminated
most post-randomization degrees of experimenter freedom, but not all. The clearest case
where I had a decision to make after randomization was how to handle a subject who did not
register the bounds of the thirty-second interval. I had few enough subjects that I was reluctant
to wholly throw out any data points, but without an established experimental procedure for
handling these, I can’t guarantee that no bias slipped in. Generally, if someone clicked only
slightly beyond the final note, I would subtract out the number of clicks after the interval, and
while I think I did this accurately, I might have been inconsistent. In case of larger errors, such
as playing the track muted or the spectator only missing the first note and only starting to click
after the second, I would inform the subject of this mistake using neutral language, and replay
the track. I did not rerandomize the subject’s group, so it’s possible my notification or timing
could be another avenue for bias.

As the end of the experiment approached, I could tell from eyeballing my data that there was a
definite tendency for people in the control group to click more, and it’s possible that this also
colored my decisions. I was slower in collecting subjects at the very end of the experiment, and
while this was mostly because I had run low on amenable classmates, perhaps it was also
because I had noticed this pattern and was reluctant to gather more data that might disrupt it.
Similarly, my choice to use the number of clicks rather than the logarithm of the number of
clicks could been an unconscious decision to use the statistic that produces more significant
results.

In their paper False-Positive Psychology, Simmons, Nelson, and Simonsohn examine ways that
statistical chicanery can produce false positives, and list six rules for researchers to follow to
minimize the risk of this [9]. I am pleased to say that I meet all of them, with the possible
exception of some leeway in my termination of data collection. I have (just) 20 observations for
each cell; I am open about what data I did and did not collect; I report both experimental
conditions, including variations in administration of treatment and control; I report why I did not

78

eliminate observations; and I did not do analysis on covariates. I am comfortable saying that I
have left relatively little room for experimenter effects.

Esoteric

Perhaps my results are the product of fraud. I assure you that I did not falsify my data, and did
my best to perform this experiment honestly and diligently, but, well, that’s exactly what I
would say if I were a fraudster. Conceivably, I’m even conducting unconscious fraud, as a sort
of extreme version of experimenter effects, where I could have misreported data and
completely forgotten about it. This would be a remarkable result itself, but I don’t believe it has
happened.

My experiment is vulnerable to malicious interference. Sure, the tally counter seems to report
correct numbers, but maybe that’s only when I’m using it outside of the experiment. Similarly,
perhaps random.org informs my subjects of what group they’re in. My test subjects could have
been deliberately notifying each other, conspiring to produce improbable results. I am
disinclined to seriously consider conspiratorial hypotheses, however; why would my project
matter enough to be worth the effort?

Or perhaps my experiment really does reveal psychic phenomena. True, the effect is in the
opposite direction from what I would have expected, but there’s reasonable parapsychological
explanations for that. I am a skeptic, and skepticism is believed by some to inhibit psi [3] —
could it in certain cases even reverse the effects? Maybe I was telepathically influencing the
thoughts of my subjects, and was just conventionally unpersuasive through an unconventional
medium. After all, my commands to push the button were the mental equivalent of shouting at
the person. Had I spoken aloud instead, I would not be at all surprised to find that that people
were less likely to push the button with someone they hardly know commanding in such a
brutish manner. Lastly, this I would say is the most interesting possible result to my experiment.
It could be that I possess some precognitive faculty, and used it to detect the outcome of the
randomization for each subject and subconsciously tailored my instructions to push them
towards the desired outcome.

Conclusions

As with any unusual result, the next step is to try a replication. Such a study should fix the
problems of this one, having a preregistered target number of participants, one significantly
higher than the 49 I used in this one. It should be conducted with better blinding to minimize
the possibility of sensory leakage. I would establish procedures to handle errors so that I
wouldn’t have post-randomization degrees of freedom in how I handle those.

If such a replication still found a causal effect, further research would be warranted to home in
further on the mechanism. Perhaps there was some form of sensory leakage even improved
blinding did not prevent, or if it is really psi responsible, it would be important to learn more
about how it functions.

In the meanwhile, I will learn from these results. The first lesson is that psi is more plausible
than I had thought. I’m still a psi skeptic, even though an experiment I myself conducted shows
a significant effect for telepathic influence, because I was quite confident that parapsychology
is bunk. However, as a proper Bayesian, I have updated my beliefs in the direction of psi being
real.

The second lesson is that a single experiment is no guarantor of truth. I do think I ran this
experiment well, yet I got significant results in support of a proposition I really don’t believe.
There are flaws with my experiment, but I believe there’s less room for experimenter effects in

79

my procedure than in most papers I’ve read. If even such a small quantity are enough to poison
my experiment, how can I trust any other? I think the answer is that my epistemic standards
must be high — any experiment may have its outcome be the product of subtle procedural
flaws or simply coincidental. To ascertain the truth, I need large enough samples to sift signal
from noise, and robust enough procedures to minimize the prospect of insidious experimenter
effects. The mill of science requires a great quantity of grist, and its gears are exceedingly
fragile.  

80

Appendix A — Experimental Data

Parapsychology Full Data — Page 1

Condition (1 =

experimental, 2 =

control)

Presses Location Notes

1 11 Heinz faulty lounge

1 1

2 26

2 77 Near Morewood Gardens

1 7 Hamburg basement

2 155 6th floor Gates (Sound didn’t go

initially, had to

restart after

randomization)

1 25 8th floor Gates

1 17 4th floor Gates

2 84 5th floor Gates

2 2 CIC

1 107 Hunt Library

1 95

2 35

2 64

1 111

1 32

1 7

2 72

2 101

2 132

1 33 3rd floor Gates

2 58 AB Classroom

1 63

81

Parapsychology Full Data — Page 2

Condition (1 =

experimental, 2 =

control)

Presses Location Notes

2 139

2 121

2 52

2 7

2 69

2 1

2 20

2 60

2 104

2 90

2 141

1 17

1 62

2 90 4th floor Gates

1 24

1 27 5th floor Gates

1 1

1 69

2 159

2 121

1 62 8th floor Gates

2 111 (Didn’t hear noise,

restarted without

rerandomizing)

2 3

1 8

82

Appendix B — R Analyses

83

 

84

Bibliography

[1] Felix Planer. (1980). Superstition. Cassell. p. 254

[2] Scott Alexander. (April 28, 2014). The Control Group is Out of Control. Slate Star Codex.
Retrieved from: http://slatestarcodex.com/2014/04/28/the-control-group-is-out-of-control/

[3] Richard Wiseman and Marilyn Schlitz. (1997). Experimenter effects and the remote detection

of staring. Journal of Parapsychology, 61(3), 197-208. Retrieved from: http://
www.richardwiseman.com/resources/staring1.pdf

[4] What is Parapsychology? The Rhine. Retrieved March 13, 2018 from: https://www.rhine.org/
what-we-do/parapsychology/what-is-parapsychology.html

[5] Robert Todd Carroll. (November 21, 2015). Experimenter Effect. The Skeptic’s Dictionary.
Retrieved from: http://skepdic.com/experimentereffect.html

[6] Robert Todd Carroll. (November 7, 2015). Sensory Leakage. The Skeptic’s Dictionary.
Retrieved from: http://skepdic.com/sensoryleakage.html

[7] Elisabeth Hallett. New Spaces In our Psyches. Light Hearts. Retrieved from: http://
www.light-hearts.com/rainbow5.htm

[8] Chris French. (March 15, 2012). Precognition Studies and the Curse of the Failed

Replications. The Guardian. Retrieved from: https://www.theguardian.com/science/2012/mar/
15/precognition-studies-curse-failed-replications

[9] Joseph Simmons, Leif Nelson, Uri Simonsohn. (October 17, 2011). False-Positive

Psychology: Undisclosed Flexibility in Data Collection and Analysis Allows Presenting Anything

as Significant. Association for Psychology Science. Retrieved from: http://
journals.sagepub.com/doi/pdf/10.1177/0956797611417632

[10] Project Star Gate. CIA. Approved for release August 8, 2000. Retrieved from: https://
www.cia.gov/library/readingroom/docs/CIA-RDP96-00789R003300210001-2.pdf

85

CONFIDENTIAL COMMITTEE MATERIALS

SIGBOVIK 2018 Paper Review

Paper 23: This Grad Student Studied
Parapsychology — And You Wont
Believe What He Found!

Guess Who

Rating: ???

Confidence: Ooooh Spooky

We’d write a review here, but you already know what it’s not going to say.

86

SIGBOVIK 2018
(Continued) Message from the Organizing Commi�ee

“Awww yeah, get in that groove!”

switch (choose_dear_reader()) {

case EXCELLENT:

Press the up, right, down, and right pads in that order.
goto PAGE_69;

case WAY_OFF:

Press the up, up, down, and down pads in that order.
goto PAGE_40;

case MISS:

Don’t press any pads.
goto PAGE_28;

}

87

SIGBOVIK 2018
(Continued) Message from the Organizing Commi�ee

“Welcome to CMU, fellow robot,” whispers CoBot. “Let me show you the way to
SIGBOVIK.”

goto PAGE_208;

88

Art

Open Your Third Eye

14 Automating art snobbiness: Dead duck or phoenix?

Dion Ysus and Oscar I. Hernandez

Keywords: automation, art, elite, 1337 dankster, cicada

3301, de Bruijn sequence

15 Toward a historically faithful performance of the piano

works of Antonín Qweřtý

William Gunther and Brian Kell

Keywords: G-flat major, F-sharp minor, A-flat harmonic

major ♭6 ♭5, G-sharp harmonic major ♭5

16 WordTeX: A WYSIPCTWOTCG typesetting tool

Tom Wildenhain

Keywords: Word, Microsoft Word, LaTeX, WordTeX

89

Automating Art Snobbiness

Dead Duck or Phoenix?

Dion Ysus Oscar I. Hernandez

Canvas
Riverside, CA, 92507

ohernandez13@simons-rock.edu

Abstract

ART!!! Am I right? ¡Insert real abstract here.¿

1. Introduction

Art auction sales reach 12.5 billion dollars while most people
cannot even define what art is [NYT]. The authors will adopt the
following definition from My Modern Met.

Definion 1. [MMM] Contemporary art refers to art – namely,
painting, sculpture, photography, installation, performance, and
video art – produced today.

The keen reader will observe that the definition is recursive
because of a lack of understanding of the subject. Unfortunately, the
authors don’t really understand “art” either. However, the process
is clear enough for anyone to grasp. After the art is created, it is
curated and then judged. We propose that the entire system can
be automated. For our purposes, we will simplify the definition
of curating to the act of choosing which art is worth displaying1.
Similarly, judging is a statement of reaction to the artwork.

2. Background

3. Solution

Here, we found this on article titled “Google’s Artificial Brain is
Pumping Out Trippy – And Pricey – Art” [GOOGL]. We hope this
reference is sufficient.

Anyway,.. next idea.

Algorithm 1. Given an integer n and a set of submissions S =
{si}

N
i=1, let c : S → {0, 1} be the curation function which maps

c(si) = 1 if i ≤ n and c(si) = 0 otherwise.

In other words, simply accept every piece until you run out
of room. The authors believe this is representative of the current
practice in industry.

1 In other words, curation is a characteristic mapping on the set of artworks.

Proposition 1. Let R be the set of 50 of the most brutal Simon
Cowell quotes ever [TOO]. We propose that we judge an art sub-
mission as follows: select an elenent r ∈ R uniformly at random.

In other words, randomly choose a brutal Simon Cowell reac-
tion as your own reaction to any artwork. Example elements of R
include:

• “You’ve just invented a new form of torture.”

• “Can I stop this? Because I’m bored out of my mind.”

• “That was so awful it was beyond description.”

• “That wasn’t even good enough for a hotel lobby.”

• “In every single way that was just everything I hated.”

4. Open Problems

Hey, no problems here man.
“The results of our study show that human subjects could not

distinguish art generated by [Artificial Intelligence] from art gener-
ated by contemporary artists and shown in top art fairs.” [ANN]

References

[GOOGL] C. Metz. Google’s Artificial Brain is Pumping Out Trippy – And
Pricey – Art. Wired. 2016. https://www.wired.com/2016/02/
googles-artificial-intelligence-gets-first-art-show/

[NYT] S. Reyburn. What’s the Global Art Market Really
Worth? Depends on Who you Ask. The New York Times.
2017. https://www.nytimes.com/2017/03/23/arts/

global-art-market.html

[TOO] D. Adams. 50 of the Most Brutal Simon Cowell Quotes Ever.
The Odyssey Online. 2017. https://www.theodysseyonline.
com/50-the-most-brutal-simon-cowell-quotes-ever

[MMM] K. Richman-Abdou. Art History: What is Contemporary
Art? My Modern Met. 2017. https://mymodernmet.com/

what-is-contemporary-art-definition/

[ANN] S. Cascone. AI-Generated Art Now Looks More Convinc-
ingly Human Than Work at Art Basel, Study Says ArtNet

News. 2017. https://news.artnet.com/art-world/

rutgers-artificial-intelligence-art-1019066

14

90

CONFIDENTIAL COMMITTEE MATERIALS

SIGBOVIK 2018 Paper Review

Paper 14: Automating Art Snobbiness

Simon Cowell

Rating: Thank you. No.

Confidence: There is as much chance of this paper getting accepted

as me flying to the moon tomorrow morning for breakfast. It’s never

going to happen.

If you had lived 2,000 years ago and done science like that, I think they would have stoned you.

The only decent thing about that paper was the end.

91

Toward a historically faithful performance of the

piano works of Antońın Qweřtý

William Gunther
Google, Inc.

wgunther@google.com

Brian Kell
Google, Inc.

bkell@google.com

SIGBOVIK ’18
Carnegie Mellon University

April −2, 2018

Concrete

The great Czech composer Antońın Dvořák (1841–1904) wrote many
pieces for the piano, including the famous Humoresque No. 7 in G-flat Ma-

jor [2]. Unfortunately, typical performances of these works today sound
nothing like what the composer intended because most modern pianos are
configured with a different keyboard layout. Through painstaking histor-
ical research, we have reconstructed the original Dvořák piano keyboard
layout. We have applied this discovery by transposing the Humoresque

so that it is playable on a modern piano, enabling the first historically
faithful performance of this piece in over a century.

1

15

92

Figure 1: A Dvorak keyboard with the original or “classic” layout [3]. There are
several variants of the Dvorak layout, but Dvořák was a classical composer, so
this is almost certainly the one he used. Furthermore, this layout has 44 white
keys (not counting the spacebar, which is clearly used only for rests). That is
exactly half of the number of keys on a piano. Thus we may confidently conclude
that the left half of Dvořák’s piano layout was just these 44 keys, while the right
half was the same keys again with the Shift key held down.

Figure 2: A modern QWERTY keyboard with the United States layout [4].
This layout has 47 white keys (not counting the spacebar), but obviously three
of them are useless: nobody really needs the characters ‘~]}\| [1]. This leaves
44 keys in the same positions as the keys of the Dvorak keyboard, which can
then be mapped to the piano in the same way.

2

93

!
5

3
9

2
4

8
?

.
p

f
c

r
/

o
u

i
h

n
s

’
j

x
b

w
z

1
/ 4

(
”

/c
@

+
:

.
Y

G
C

L
A

O
U

D
T

N
1
/ 2

Q
J

X
M

V
Z

7
1

0
6

=
,

y
g

l
a

e
d

t
-

q
k

m
v

#
)

%
$

*
,

P
F

R
&

E
I

H
S

;
K

B
W

F
ig
u
re

3:
T
h
e
re
co
n
st
ru
ct
ed

D
vo
řá
k
ke
y
b
oa

rd
la
yo
u
t.

A
lt
h
ou

gh
it

lo
ok

s
st
ra
n
ge

to
m
o
d
er
n
ey
es
,
th
is

ke
y
b
oa

rd
w
ou

ld
h
av
e

lo
ok
ed

fa
m
il
ia
r
to

A
n
to
ń
ın

D
v
oř
ák

in
18

94
an

d
is

u
n
q
u
es
ti
on

ab
ly

th
e
la
yo
u
t
fo
r
w
h
ic
h
h
e
co
m
p
os
ed

th
e
H
u
m
o
re
sq
u
es

an
d
h
is

ot
h
er

p
ia
n
o
w
or
k
s.

1
3

4
6

8
9

-
q

e
r

y
i

o
[

s
f

g
j

l
;

z
c

b
n

,
/

!
#

%
&

*
)

+
Q

E
T

U
I

P
A

S
F

H
K

L
”

X
C

B
M

>
?

2
5

7
0

=
w

t
u

p
a

d
h

k
’

x
v

m
.

@
$

ˆ
(

W
R

Y
O
{

D
G

J
:

Z
V

N
<

F
ig
u
re

4:
T
h
e
fa
m
il
ia
r
Q
w
eř
tý

k
ey
b
oa

rd
la
y
ou

t,
u
se
d
b
y
m
os
t
m
o
d
er
n
p
ia
n
os
.
T
h
e
m
ap

p
in
g
fr
om

ke
y
s
of

th
e
D
vo
řá
k
ke
y
b
oa

rd
to

th
os
e
of

th
e
Q
w
eř
tý

ke
y
b
oa

rd
is

in
m
os
t
ca
se
s
ob

v
io
u
s.

T
h
e
m
ai
n
d
iffi

cu
lt
y
li
es

in
th
e
ke
y
s

1
/ 4
,
/c,

an
d

1
/ 2

on
th
e
D
vo
řá
k

ke
y
b
oa

rd
,
w
h
ic
h
d
o
n
ot

ap
p
ea
r
on

th
e
Q
w
eř
tý

k
ey
b
oa

rd
.
W

h
il
e
a
m
o
d
er
n
Q
w
eř
tý

p
ia
n
o
ca
n
n
ot

re
p
ro
d
u
ce

th
e
n
ot
e

1
/ 4

ex
ac
tl
y,

w
e
ca
n
co
m
e
cl
os
e
b
y
p
la
y
in
g
1,

/,
an

d
4
si
m
u
lt
an

eo
u
sl
y.

L
ik
ew

is
e,

w
e
ca
n
ap

p
ro
x
im

at
e
/c
an

d
1
/ 2

w
it
h
th
e
ch
or
d
s
{c
,/
}
an

d
{1
,/
,2
},

re
sp
ec
ti
ve
ly
.

3

94

Humoresque No. 7 in G-flat Major
Antonín Dvořák

!

!!"
! !" !# !

!"
$%

!!
leggiero

! !

!!
& senza

"
!

!!"

!

!!"
!

'''''' 42

Poco Lento e grazioso.

! # !('''''' 42

)

! !

!!"!!" $%

! !

!!
& senza

"
#

&
"!!

! !
"!!

!!#!# #
"!!

!
"!!

!!# !#

$%
"!

!!"#
"!!

!!#

*+
+
4

p

*5!##3

(''''''

) ''''''
"

&
"!!

!!

!
!

,!
!

$%
"!

dimin.

!!!

--

--# ! !!
!!

!

!

#

!

!! !

!!"
! !

!!"
! !

!!"

&
! ## !'''''')

''''''(
6#

+
+

.&
!!

pp

!
!

"

!

$%
/

!! !!
!!

-!!
!
$%

-

!!
dimin.

! !
!!

!!
!f
!!"!! !!

00000
1 !

!

!!
!!!!

!
!!

2

#
!!

!!

$%
!

!!"!!!

'''''')
''''''(

9$!!
$%
!!

$%
!

!
!
!
!!
#

!

!!

!!! !

!!

2

!

!

!
!!!

!!

!!
$%
!!

!!

2

3

!
!
$%

!!"

1

#

00000

!!

!+

"!

!!

!

$%
!

!"!
p

'''''')

''''''(
12

%
!

!!

!

!!

2

#

-
!!

!

!

3!!"!!!! !

!!

!

95

2

1

!
fz

4
!
!!

/,

,
' !

#
!"1

!
dimin.

!
!! !!

!!

,
-

" !

!

! !
ritard.

!!
!!

!! ! #

!

'
!!

!
"
!& !

!

15

(''''''

) ''''''

!!

!

! !

!!"
#!

in tempo

pp

!"
$%

#

!!"
&

!!

!! !!

!
!"! !

!!"
! !

!!"

!

!"
$%

#!" !

!!" $%

! !

!!"

&

#! !

!!"

#
!
!,

!
!

18

(''''''

) ''''''
" !

! !

!!"
! !

!!"
&

!5 *4+
+*

#

!

!! !#

"!

$%"
!!

! # !#

&

"!!

!
"!!

!!#

"!!

!!# !#(''''''

) ''''''
'

$%
"!

!!"
#

21

"!!

! !"
#!#

&
"!!

cresc.

! !#

!! 11 11 11 555
!!

11 11 11 555 !
"
f

!

+

!"
#!2

#

$%

!
*
*

*** !! !!
"!

!!
!!!

"!"!
ritard.

!2
/

6

$%

!!

!
!

'''''')

''''''(
23(6

$%
!!

!!
!!

2
#

1 '

00000 6

$%
!!

!

$%

!
!

!!!2
#

6
1

!!!" !"

!!

!
"

f

!

!
!
!! !!!" !!!!

!!

-!!

!!

! -
000000

! ! !!!
mf !

"!

!!

!!!
"!"!

26

) 555

555()
!!

!
"
!

!! !!
!

dim.

!

!!

!!!!!

96

 3

!!
!

! !

!
!fz

! !! -! !
!!!!

! 5
dim.

!!!

$%
!!
!
"
!

00000

!!! !!

!

!!!!!
!!
$%

555
(
)

30 555* !!
!!

!
" !!
!

"

!!
!!-

! !
!" "

!
!"

!

!"!"!

-!!
!!

$%
!!
!!!

!
0000 !!!!

!

!!
!

$%
!!
!

$%

! !!!
!! !

!!!
!!
$%

!
34

(555

) 555
+ ! !

!!!
! !! !!7

!!
$%

!
7!!!!

!

! ! -

!

!!
$% !

4!!!
4!!!!

$%
!!

!!!
4!!!0000

!!

--!

!

!!!!

!

4!!!

!

!!!

$%
!!

!!4!!!

!

4!!! !!!

$%
!!

!!!!!0000
555)

555(
37,

4!!!

$%
!!

4! !! !!
!!!

!!
!!!

!

!!!

$%
!!

!!!0000

#!!!
! !!

dim.

!!! # !!

&

"!!

!!

!
00000

!#!!

$%
!
pp

! #

$%

8!!!!
"

!"

1 11 ''''''

1 11 ''''''
#5

5 #

&
"!!
! #

"!!

!!!
555)

555(
40- !#

"!!

!

$%"
!!

! !

!!"

!#!"! # !

!!
!!!
8

00000

!

!!
#

"
!

!!"
&

!# ! !

!!"

!#
!" !

!
$%

#
!"! !

!!"
!!

!
$%

!!
!

*+
+*
%$ &

43

(''''''

) ''''''
" ,

!
!

! !

!!"
&

!

!!"
!!#

97

4

1
1

#! !!

!
!

$%

'
!! !

!
!!
$%

/ ## ! !
!
ritard.

!!

$%

!

!!"
#

!"

&

!
(''''''

) ''''''
. ! !!

!!
$%

46 !

!!"

$%
!

! # !!" !# !

!

#

!
100000

!!

! ! #

#
!"

2
00000 *
*

$%

- !

!! !!
f

!

!!"

!

#

!!!

!!

!!

!!" !!

!

48

(''''''

) ''''''
)

2

!!

!!

!
in tempo

!! !
, +

!!

!!

#

2!!

!

!
!

!! !!
! ! !-

!!
!

!!
dimin.!

!!

!

!!
!

!! !!
!! !!

!!

!!
!! !!

!
$%

51

(''''''

) ''''''
.

2
p

!
$%

,
!
+

! ! !

!!
#

2!!

!

!!

!
7!
p dim.

!!
!!

! !"#!!

! !!

!!
7!

$%
!!

!!

$%

8!!!
00000

8
pp

!!!!0000

$%
!
!
dim.

!!

!

!!!!

00000
1

54

(''''''

) ''''''
/

!

!!

! !

!

!

!
ritard.

!!!!

98

5♭6 ♭Jfmsod;xfd No. 2 in A-flat Harmonic Major
Antonín Qweřtý

! !

!
!
"

$!
"#$!

!"
%&

'

$!
leggiero

$! !

!
!

(senza
"

! !

!!"

!
!

!!"

$

) ***## 42

Poco Lento e grazioso.! $!+ ***## 42
! !

!
!"

!
!
!
"

%&

$!

!

!
!

(senza
"

$

!$# !$

"
!
!

!

"!!

!!$

("

!
!

!!$$

"!!

!! !"#
! $

'
%&
"!

!!

5

!$

"
!
!

!

,-
-
4

p

,!
3

+ ***##

) ***##
" !$

("

!
!

!
!!

'
%&
"!

dimin.

!

!

!

!

.

//

//

$! !!

!
!

!

!

$

!
*

$!
! !

!
!
"

$

$

$ $
!
!

!!"

!

!

!
!
"(

! !' $***##)

***##+
6#

-

-

.
(!
!

%&

!!

!!! !
pp

!

!!

!!"
%&

/
/

'

'

!

!
!

99

2

#

!#

!

!!

!!!

f

!!"!!

!

dimin.

!!#!!

00 * #!

!

'
!!

!

!!

!!

!

!!'

1

$

!
!

!
!

%&
!

!!
"
!!

!!

!

***##)

***##+
9$

!!''

#

%&

!
!

$

!

!
!

!
!

!!

!
!*

%&
!!

!!

1

"

!!

!! !!2

!!
%&

!

%&
!

!"!

'

!##

*00

!!!
!

!

$

!

#

!

!
p

!
* !

!

!!

!
!

!!
" !!
2

!

!

***##)

***##+
12%

1

!!

!!%&!
!

!
!

!

!

-

"!

!

$

1'

!
!/'

!

fz

3

!

!!

!#

'

'

.
!#

!
"#

dimin.

!

*
!
!

!!

.
!

!!

!

!!
//

/

'

' !

ritard.

!!

!

!
!

.! ! !
!
! $!

!
!

"(

#!!

!

!!+ ***##

) ***##

15& !!

!

!

!

!

!!"

pp

in tempo

! $

'

$

%&
"

!

! !

$

!

!!!!

"

100

 3

!

!

!

.
!

!
5

!$

"
!
! ,-

-
4,

"!
!

!!
$

!

#

$

%&

"
!
!
!
"#
!

"
!!

!
!

!

"#
!!$18

+ ***##

) ***##

' $

("
!
!

!

! !$

"!!

!$

("

!
!

!

'
%&
"!

! !$!

"#

%&
"!

!
!

!$

'

$! !

!
!
"

"#
!! !

cresc.

!
!

"(

#!

"!!

$

!

!!
! $!$

"!

+

)

21

***##
'

%&

"
!
!
!***## $ $

!
$

"
!!

!

("
!
!

!
!

*

4

%&

!
!

!
!

ritard.

!1
$

!
!

!

!
!

"

!

%&
!
!

!! !
!

!
!

!
1
$

*

'

!

!
1
$

4 ' 4

%&

!
!

!!!!
"#
!!1

$

%&
!,,

,,,!

!
***##)

***##+
23(

00000000000000000000 ' 444

%&
!! ' '' ' ' 5

5556 !
!

' '' ' ' 5
5556 !

"!"
!

!
!'

"

f

!

-

101

4

!
!

!

!
!

"

!!
" !"

!
!

!
! !

dim.

!

5!!!
!

mf
! ! !

!

!

"

!

!
!5

!! //

!
!

"

!
!

!

!
!

!
!
" !"

!

'
!

26 55556+

) 55556

) !

!
!

!
!50000

!

!
!
'

!

!

! !
!

!!

f

"

! !

!
!

!
!
" !

!

%&

!
!

!

"

!

!

"

! !
!

!

!
!%&

! !

/

!
fz

!
! '

'

!

!

'

!

"

!
!

6 !

!
!
!

!!5 !
!

!

"

!

"!"
!

'

30

+ 55556

) 55556
*

"

! !! /

!

!

!

!
!
! !

!

!
!

!
!
!

!

!
! !

dim.

!

0000 '

!

!!

!
!
%&

55

! ! /

!
!

!

!
!

!

!

!

7
!

!

'

! ! !!

!!

!

! ''

!

!
!

!
!

!

5

!

'

! /
34

+ 55556

) 55556
+ !

!
7
!!
%&

!

!
!
%&

50000000
5!!!

!

!
!%&

6
!
! !!!

!
!
%&

!

' !
102

 5

%&
!
!

3
!!!

!3!
!! !
!
3

!
%&
!
!

!
!!

5 00

!
!

/
/
!
!

5 !

!!!

'!

3!
!!

!

!!!

%&!
!

!
!

!3!
!!

!

3
!
!
!

!
!

!
5

%&!
!

!
!!!!!00

) 55556

37

+ 55556, 3!
!!

%&
!
!

3
!!

'5

!
!

' !!!

!
!!

!
!

'

'

!

!!!

%&!
!

!!
!
0000000

!
!!

%&'5

8!

!!

!
!!

0000000000000

8
!
!
! $"#

!!!!!

0000 !!
"
!
!
! !

!

!

"!!

!!
dim.

"#

'' ' '' ***##

'' ' '' ***##
!

'
%&

$

'
%&
!
pp

!
!

$

("
!
!

!
$

!

!
!

"
!!

!

!

!

55556)

55556+
40- !$

!

"!"
!
!

!!$6 $

(

$

"

!
!

!! #

!

!

.
!

!

"
!
!

!!$

&% (
,-
-,!$

!!

!!$

'
!!

#
%&
!

!"# $! !

!
!
"

$! !

!
!

"(

#

"***##)

***##+
43. $!

"!!

!

("

!
!

!!$

%&
!

!!

"#
! !$

'

!

'

$$
! !

!
!
"

!
"#

!

!%&

$! !!!

!
!

%&

$! !

!!

!

!!
%&

''

*
*

$!

!
%&

46

+ ***##

) ***##

/ !
!
ritard.

!
!

%&

$
!

$!

!

!
!
"(

$! !!

!

!

!!"
103

6

!!

!
!

!
!

#

'

!!

!* !
!

$

1

!!
"

,,,
1

0 ,,
%&

/
!
"#

!
. -

!
in tempo

!' !
! $! !!*00

!$

!

!! !!
f

+ ***##

) ***##

0 !#48 !!

!!

!!

!
!
1 ! !

"!
!

1

$

!
! %&!

!!!!
#

%&
!

p

!!
!
!

!!'
!
dimin.

!!

!

#

!
!
!

!!

!
!*

!!

1!

!!'

'
!

!51

+ ***##

) ***##

1
!!

!

!!

!!!

'
!

!
!

!
!

'* -

!

.!
!

#

!!

!!

' ' /

!
!

!
7

p dim.

!

%&
8!!!

#!!'

'

'

00

8
pp
!

!
"

#
!

!

!!

!

!
!

!

!

%&
!!

!!

!!

7!

!!

!

!

!!#!!

00 *

#

***##)

***##+
54

2
%&
!!

dim.

!!

!

!

!!

!

!!
ritard.

!!! #

'

'

'

!

!! !!!00

104

References

[1] Bringhurst, Robert. The Elements of Typographic Style, version 3.1. Hartley
& Marks, 2005. For example, Bringhurst dismisses the tilde key: “In the
eyes of ISO and Unicode, the swung dash found on computer keyboards is
an ascii tilde—a character . . . meaningless to typographers.” He describes
the backslash as “an unsolicited gift of the computer keyboard” with “no
accepted function in typography.” And of the pipe character, he writes,
“Despite . . . its presence on the standard ASCII keyboard, the pipe has no
function in typography. This is another key, and another slot in the font,
that begs to be reassigned to something typographically useful.”

[2] Dvořák, Antońın. Humoresque No. 7 in G-flat Major, Op. 101, S. 123.
N. Simrock, London, 1894. Reprinted in Humoresques & Other Works for
Solo Piano, Dover Publications, 1994.

[3] Optikos at English Wikipedia. File:KB DSKtypewriter.svg. February 10,
2010. https://commons.wikimedia.org/wiki/File:KB DSKtypewriter.svg.
Licensed under the Creative Commons Attribution-Share Alike 3.0
Unported license and the GNU Free Documentation License.

[4] Wikimedia Commons contributors (Denelson83, Bodigami, Bencher-
lite, and Yes0song). File:KB United States.svg. December 27, 2010.
https://commons.wikimedia.org/wiki/File:KB United States.svg. Licensed
under the GNU Free Documentation License and the Creative Commons
Attribution-Share Alike 3.0 Unported license.

Thanks to William Lovas for his piano performance during our presentation at
the SIGBOVIK conference.

14

105

CONFIDENTIAL COMMITTEE MATERIALS

SIGBOVIK 2018 Paper Review

Paper 21: Toward a historically faithful
performance of the piano works of

Antonı́n Qwer̆tý

Dr. Tom Murphy VII Ph.D.

Rating: BPM

Confidence: Fortissimo

106

WordTeX

A WYSIPCTWOTCG1 Typesetting Tool

Tom Wildenhain

Abstract

WordTEX is a plugin for Microsoft Word that attempts the
impossible: creating documents that appear to be written in LATEX
while irritating people who like LATEX. It is both stupidly impractical
and surprisingly useful, offering an editing experience that is initially
more enjoyable than LATEX and Word but is asymptotically more
complicated than either. In this paper, I will explain the results of my
WordTEX research. I will occasionally include content that has no
relevance to the paper and is simply used to showcase how WordTEX
renders certain elements. (𝑥 + 1) = 𝑥 + 2𝑥 + 1.

1 Introduction
LATEX is a popular typesetting tool for creating complicated, consistently-
formatted documents. Many students and scientists use LATEX because the
finished documents have a clean, professional look that is hard to achieve
in standard word processors.[citation needed] However, these high-quality results
come at the cost of a steep learning curve, potentially tedious editing
experience, and sudden anxiety when homework assignments won’t compile
before a deadline.

Microsoft Word is a WYSIWYG editor, enabling users to have confidence
in the appearance of their documents throughout the editing process. In
fact, (real) research shows that Word novices are more productive and

1 What You See Is Pretty Close To What Other Tools Can Get

16

107

make fewer errors than LATEX experts when creating certain types of
documents.2

Figure 1: Word users are more productive than LATEX users for some document

types. (Knauff & Nejasmic 2014)

However, when authoring more complicated documents, Word users spend
much of their time clicking through menus and fiddling with formatting,
leading to inconsistent document structure.

WordTEX aims to combine the strengths of Word and LATEX, creating high-
quality documents in real time, while annoying both Word and LATEX fans.
It is particularly useful for typesetting homework assignments, although
students should be warned that professors may warn students that “using
LATEX is an important skill that will help you in the long term.”

2 The WordTEX Template
The main component of WordTEX is the WordTeX.dot template file. The
template includes a set of styles that closely approximate the appearance
of LATEX. The template is designed for Microsoft Office Word 2016 for
Windows (or Office 365 ProPlus) and might not work correctly in other
versions of Word.3

2 Knauff, M., & Nejasmic, J. (2014). An Efficiency Comparison of Document Preparation Systems

Used in Academic Research and Development.
3 I am not yet sponsored by Microsoft.

108

2.1 Fonts

WordTEX users should install the LM Roman fonts and Latin Modern Math
font (published by GUST) before using the template.
2.2 Styles

WordTEX uses styles to maintain a consistent look throughout the
document. Styles are provided for the title, subtitle, inline code, headings,
and other common LATEX elements (Figure 2).

Figure 2: The style gallery

A user can apply a style by selecting it from the style bar or by typing
ctrl+shift+S and then the name of the style (the latter is much faster).
Typing ctrl+shift+Z clears character styles (which are applied within a
line). Switching to the Normal style clears paragraph styles. Heading
styles are automatically numbered, and styles throughout the document are
updated if a style is modified.

2.3 Math

Math in WordTEX uses the Latin Modern Math font. To enter or exit
math mode a user can type alt+=. Latex commands like \sum and
\subseteq are supported and render in real time. Word uses parentheses
for grouping instead of curly braces. For example, \sum_(i=1)^(10) i=55
renders as: 𝑖= = 55
2.3.1 Alignment

A set of aligned equations can be created by selecting “align at =” from
the equation context menu.

109

2.3.2 Functions

Functions like sin(𝑥) and log (𝑥) are automatically written without italics
if they appear in the recognized function list. The equation options dialog
(accessible from the conversions section) can be used to add more functions
to the list.

2.3.3 Blackboard Bold

Blackboard bold letters like ℝ and ℕ can be inserted by typing \doubleR
or \doubleN. They unfortunately look different from the LATEX Blackboard
Bold font, since they use glyphs from the Latin Modern Math font. Future
researchers might be able to edit the font to include the \mathbb glyphs.
The commands for these symbols can be shortened (see the section on
macros).

2.4 Proofs

Proofs are started with the word “proof” set in the proof character style.
To end a proof, a user can type tab and then \qed to insert a □ symbol.

Proof. This is a proof. It is written in WordTEX. ∴ WordTEX can make
proofs. □

2.5 Code

def print_code_instructions():
 assert includes_styles(inline and block_code)
 # Syntax highlighting support is planned and will
 # hopefully be released soon.

Let 𝑎 = 𝑏 ≠ 0. 0 = 𝑎 − 𝑏 = 𝑎 − 𝑎𝑏 = 𝑎 − 𝑏 − 𝑎𝑏 + 𝑏 = (𝑎 + 𝑏)(𝑎 − 𝑏) − 𝑏(𝑎 − 𝑏) = 𝑎 + 𝑏 − 𝑏 = 2𝑏 − 𝑏 = 2 − 1 = 1

110

2.6 Macros

LATEX includes a powerful macro system allows users to define custom
commands. Word’s AutoCorrect is somewhat similar, but only performs
basic text replacement. For example, you can add a math AutoCorrect
entry that replaces \R with ℝ, but AutoCorrect entries can’t take
arguments.

Despite these limitations, AutoCorrect is in fact exactly as powerful as
LATEX macros, as they are both Turing Complete.4 We can easily simulate
a Turing Machine using AutoCorrect entries by representing the state as a
string that “reads” characters by adding different entries for every
combination of adjacent characters.

Figure 3: An example computation trace. $ marks the ends of the input.

Unfortunately, AutoCorrect macros only evaluate once from left to right,
so the Turing Machine will stop running if it ever moves to the left. To
continue evaluation, a user can repeatedly press the Convert button in the
Equation Tools tab. Be warned: if the Turing Machine moves to the right
without halting, evaluation will not stop, and Word will freeze. I do not
know if Microsoft is aware of this issue.

2.7 Printing

While Word has a built-in export to PDF option, it unfortunately does not
embed otf fonts (like the Latin Modern fonts). The best option is to print
to the Microsoft Print to PDF printer, which will embed the fonts.

4 https://www.sharelatex.com/blog/2012/04/24/latex-is-more-powerful-than-you-think.html

$ \𝑠𝑡𝑎𝑡𝑒𝐴 1 0 1 1 0 0 1 1 0 1 $ $ \𝑠𝑡𝑎𝑡𝑒𝐵 0 1 1 0 0 1 1 0 1 $ $ 0 1 1 0 0 1 1 \𝑠𝑡𝑎𝑡𝑒𝐵 0 1 $ $ 0 1 1 0 0 1 1 0 \𝑠𝑡𝑎𝑡𝑒𝐶 $ $ 0 1 1 0 0 \𝑠𝑡𝑎𝑡𝑒𝐶 1 1 0 $

111

3 Conversions
While WordTEX is superior to LATEX in many ways, sometimes LATEX source
is required for a conference or assignment.5 Thanks to Pandoc, WordTEX
files can be converted to LATEX source code.6 Mathematical expressions
(∫ 𝑥 𝑑𝑥 = 8), inline code, and most formatting is converted. In fact,
here’s the source for this paragraph:

\hypertarget{conversions}{%
\section{Conversions}\label{conversions}}

While WordTeX is superior to LaTeX in many ways, sometimes LaTeX source
is required for a conference or assignment.\footnote{Fortunately,
 SIGBOVIK does not have such ridiculous restrictions.} Thanks to
Pandoc, WordTeX files can be converted to LaTeX source code.
\footnote{\url{https://pandoc.org/}}
Mathematical expressions (\(\int_{0}^{4}xdx = 8\)),
\texttt{inline\ code}, and most \emph{formatting} is converted.
In fact, here's the source for this paragraph:

The WordTEX plugin adds Copy as LaTeX and Paste From LaTeX buttons
to Word. They use Pandoc to convert between formats in real time. The
conversion isn’t perfect, but is fairly close.

4 Similarity to LATEX

4.1 Experiment

I conducted a double-blind randomized study to determine whether
documents typeset using LATEX and WordTEX are distinguishable (Fig. 4).
The test subject was blindfolded, and the experimenter (also blindfolded)
told her to write L or W on each paper she believed to be a LATEX or
WordTEX document, respectively. Data was collected until the results
supported the hypothesis that LATEX and WordTEX are indistinguishable.

5 Fortunately, SIGBOVIK does not have such ridiculous restrictions.
6 https://pandoc.org/

112

Figure 4: Experimental setup

4.2 Results

The papers were misidentified most of the time.

 LATEX WordTEX
Identified as LATEX 16 18
Identified as WordTEX 18 16

It is clear from the following chart that the red side is bigger than the blue
side (𝑝 < 0.5).

32
36

Correct Incorrect

113

4.3 Conclusions

Running a 𝜒 test, the 𝑝-value is 0.628, which is not significant. Therefore,
documents typeset in LATEX do not appear to be significantly different from
those typeset in WordTEX.

5 Summary
WordTEX is a typesetting system that supports the basic functionality of
LATEX while utilizing the editing convenience of Word. Word’s Turing-
complete macros ensure that WordTEX is just as powerful as LATEX (for
questionable definitions of “powerful”). The WordTEX plugin allows for
easy conversion between WordTEX and LATEX. Experimental results
suggest that WordTEX and LATEX documents are indistinguishable. In light
of these results, I encourage all scientists, students, and professors to
abandon LATEX immediately and use WordTEX for future work.

114

CONFIDENTIAL COMMITTEE MATERIALS

SIGBOVIK 2018 Paper Review

Paper 12: WordTEX
A WYSIPCTWOTCG Typesetting Tool

Stephan Jenkins and Kevin Cadogan

Rating: Impressive but concerning

Confidence: 2/3

The paper presents an impressive system for typesetting TEX-style documents in Microsoft Word.

However, we are concerned with the validity of the double-blind study. While reading the paper,

we were able to see the labels on the table presenting the results. A truly unbiased study would be

triple-blind, hiding the labels not just from the subject and experimenter but also the reader.

Donald Knuth

Rating: Badness 10000

Confidence: Overfull

I could just use Calibri and make my TEXlook like Word if I weren’t typing this on a Mac.

115

SIGBOVIK 2018
(Continued) Message from the Organizing Commi�ee

“Dude, don’t try to fool me,” whispers CoBot. “I know a robot when I see one. Come
on, I’ll show you to SIGBOVIK.”

goto PAGE_208;

116

SIGBOVIK 2018
(Continued) Message from the Organizing Commi�ee

You emphatically shrug, along with most of the other humans, none of whom seem
to know what the Charlie Brown dance move is. An interrupt from your starboard
camera informs you of an approaching obstacle. Upon closer examination, you find
that the obstacle is the cluster of humans who were watching you dance. They must
be Serious Researchers trying to reprogram you! You try to roll away, but it’s too
late—one of the humans claps his hand around you.

“Hey, we saw you totally killing the Cha Cha Slide out there.”
“Yeah, you really nailed the Charlie Brown shrug.”
“How about we ditch this party and do some real dancing?”
Determining that dancing is unlikely to lead to reprogramming, you accept the

humans’ invitation.
You roll with the humans to an arcade and gather with them around a shiny

new ITGAKADDR++ machine. “This game is very simple: just step on the pads
in time to the music as indicated by the arrows on the screen,” one of the humans
explains. “It should come naturally to a Cha Cha Slide expert like you.” They give
you a recent paper on dance games [3] to get you up to tempo.

switch (choose_dear_reader()) {

case FANTASTIC:

Press the down, left, right, and down pads in that order.
goto PAGE_87;

case DECENT:

Press the up, down, right, and right pads in that order.
goto PAGE_50;

case MISS:

Don’t press any pads.
goto PAGE_28;

}

117

118

Systems

Wheel

17 mallocd: designing a garbage-free nosql data store

igor

Keywords: state-of-the-art, in-memory, garbage-free, cloud-

native, nosql, bare metal, containerless, micro-

service, data store

18 The fluint8 software integer library

Jim McCann and Tom Murphy VII

Keywords: uint8_t, float, binary32, ieee754

19 A survey of hardware multithreading

Sol Boucher

Keywords: bend, the, kneedle

119

mallocd: designing a garbage-free nosql data store

igor

2018-04-01

abstract

at bigcorp (tm) we have a lot of data. many jiggabytes
worth of data. in order to get the data fast, we need
to put it in memory. that is because memory is
faster than other forms of storage. in this paper,
we introduce a new design for a state-of-the-art, in-
memory, garbage-free, cloud-native, nosql, bare metal,
containerless, micro-service, data store.

the shift key on my keyboard is broken.

1. garbage

certain “professional” models of a particular brand
of computing device have been said, by some, to be
aestetically similar to trash cans. this comes as no
surprise, indeed, if you look at many “desktop” screens
at the office, you will see a similar pattern: the trash
can icon is empty, and the entire desktop instead has
been littered with garbage.

this is also quite similar to how modern software
operates. as the old saying goes: when you leak the
trash, you seek and thrash. garbage collectors have
been at our disposal for many years now.

before the sunset, the coffee engineers at some mi-
crosystems corporation came across a paper about
symbolic expressions and their computation by coffee
machine. after a bit of small talk, they got to work,
and eventually produced a device capable of briefly
stopping time. the garbage collector.

this stopping of time occurs when too much garbage
is produced. and when time stops in our data store,
we cannot get the data very fast.

2. go

all cool new technology is written in go. for this very
reason, we chose to use go as the foundation for our
new data store.

all cool new technology written in go has a .io top-
level domain. we tried to get approval from corporate
to purchase mallocd.io, but the request was denied.
as a result, we are currently seeking funding. if you
are an investor with $30 bucks to spare, please get in
touch.

go is as fast as c, because it was created by the fresh
prince of bell labs. except when the garbage collector
runs. go employs a “mark-and-weep” collector. this
is sometimes also referred to as a “tracing” collector,
named after the traces left by the tears rolling down
the cheeks of those who are waiting.

n.b. this is also why distributed tracing systems are
used in multi-tear architectures.

fun fact: there was a mistake in the original c pro-
gramming language that ended up costing a billion
dollars. but because the mistake was so iconic, they
ended up including it in go as well! who knew?

3. allocation

in order to create garbage, things need to be put some-
where. in the context of programming, this process is
called memory allocation.

the good old stdlib.h defines the following function

17

120

signatures:

void *malloc(size_t size);

void free(void *ptr);

void *calloc(size_t nmemb, size_t size);

void *realloc(void *ptr, size_t size);

malloc(3) is used for creating garbage, and free(3)

is used for collecting it. the reason you’ve never heard
of these functions is because the garbage collector
does the work for you.

freeing memory is important, because otherwise the
kernel will stop the database process and you will get
paged at an inconvenient time. as the old saying goes:
when you free your memory, you also free your mind.

4. democratizing malloc

the malloc(3) machinery for direct memory alloca-
tion allows dealing with memory directly. most con-
temporary programming languages explicitly deny
their users the opportunity to mess with arbitrary
memory locations.

what if we had a mechanism that would allow anyone

to use malloc(3)?

this is how we got the idea of mallocd. mallocd is a
stateful micro-service written in go that provides di-
rect memory access for high-performance data storage
and retrieval.

the “d” in mallocd refers to “daemon”, as this service
allows its users to harness demonic powers.

the mallocd service exposes a udp socket, allowing
any other process to allocate, access, modify, and free,
memory.

5. client

clients for mallocd can be written in any language.
you could use a command-line client that lets you
allocate memory from the comfort of your couch.

here is an example of what that would look like:

$ mallocd-client malloc 5

842350568512

$ mallocd-client write 842350568512 5 hello

$ mallocd-client read 842350568512 4

hell

$ mallocd-client free 842350568512

don’t forget to free your pointers!

6. protocol

mallocd uses a binary protocol. mainly for perfor-
mance reasons, but also so that we could create one
of those cool diagrams you see in rfcs.

the protocol exposes 4 methods: malloc, free, read,
write.

6.1 malloc

the malloc request (0x00) is used to allocate mem-
ory of len bytes. it returns a 64-bit pointer to that
memory ptr.

request:

0 1 2 3 4 5 6 7

+-+-+-+-+-+-+-+-+

| 0x00 |

+-+-+-+-+-+-+-+-+

| len |

+-+-+-+-+-+-+-+-+

reply:

0 1 2 3 4 5 6 7

+-+-+-+-+-+-+-+-+

| ptr |

+-+-+-+-+-+-+-+-+

these diagrams are not what they seem. what you
thought were bits are in fact bytes. we figured, since
we’re sending huge 64-bit addresses around, we might
as well make all fields 64 bits wide. it still looks really
cool though.

121

6.2 free

the free request (0x01) is used to free the memory
allocated at the memory location pointed at by the
pointer ptr.

request:

0 1 2 3 4 5 6 7

+-+-+-+-+-+-+-+-+

| 0x01 |

+-+-+-+-+-+-+-+-+

| ptr |

+-+-+-+-+-+-+-+-+

this request has no reply. we simply assume the
udp message was received and the memory was freed
successfully.

this usually works.

6.3 read

the read request (0x02), not to be confused with
the read(2) system call, allows reading an arbitrary
chunk of memory of length len by de-referencing the
pointer ptr.

request:

0 1 2 3 4 5 6 7

+-+-+-+-+-+-+-+-+

| 0x02 |

+-+-+-+-+-+-+-+-+

| ptr |

+-+-+-+-+-+-+-+-+

| len |

+-+-+-+-+-+-+-+-+

reply:

0 1 2 3 4 5 6 7

+-+-+-+-+-+-+-+-+

| |

+ (len bytes) +

| |

+-+-+-+-+-+-+-+-+

this is mostly safe.

6.4 write

in order to write to any any address in the mallocd

process, the write request (0x03) is used. just like
free, this request does not have a reply.

0 1 2 3 4 5 6 7

+-+-+-+-+-+-+-+-+

| 0x03 |

+-+-+-+-+-+-+-+-+

| ptr |

+-+-+-+-+-+-+-+-+

| len |

+-+-+-+-+-+-+-+-+

| |

+ (len bytes) +

| |

+-+-+-+-+-+-+-+-+

while all of our bits are very significant, we transmit
bytes in big-endian order, which is the one that just
makes sense.

7. garbage-free computing

with the boring stuff out of the way, let’s talk about
garbage-free computing.

the go runtime can be provided with a GODEBUG envi-
ronment variable that can print out information about
how much garbage a program is producing.

in order to compute without garbage, one must pre-
allocate all structs and buffers, and then re-use them.
this is precisely what mallocd does.

once allocated, no garbage collector will touch those
buffers ever again.

unfortunately the go standard library’s udp network-
ing code is not entirely garbage-free. receiving udp
datagrams results in the allocation of two structs:
syscall.SockaddrInet4 and net.UDPAddr.

we can work around this by making syscalls directly:

122

r1, _, e := syscall.Syscall6(

syscall.SYS_RECVFROM,

fd,

uintptr(unsafe.Pointer(&req[0])),

uintptr(len(req)),

0,

uintptr(unsafe.Pointer(&addr)),

uintptr(unsafe.Pointer(&addrSize))

)

now the only garbage produced in mallocd is memory
allocated by malloc requests.

8. manually managing memory

to allocate memory, the reflect package can be used
as usual:

t := reflect.ArrayOf(

int(len),

reflect.TypeOf(byte(0))

)

ptr := reflect.New(t).Pointer()

ptr can now be handed out for anyone to use freely.

however, that allocated memory is now at risk of being
collected. in order to prevent that from happening,
we keep a reference to it in a shared map:

p := unsafe.Pointer(uintptr(ptr))

refs[p] = nil

later, the memory can be freed by removing its refer-
ence from the map:

p := unsafe.Pointer(uintptr(ptr))

delete(refs, p)

this is a subtle way of instructing the garbage collec-
tor to run free(3) on that pointer and reclaim the
memory.

don’t forget to free your pointers!

9. results

we will be rolling out mallocd to production at big-
corp (tm) next week.

10. conclusion

mallocd is a next-gen, best-in-class, garbage-free, in-
memory, nosql datastore written in go.

it democratizes malloc by allowing anyone to mess
with memory in any language.

since it’s just memory, it’s easy to implement your
own data structures on top of mallocd.

don’t forget to free your pointers!

11. future work

other data stores provide support for scripting via
lua stored procedures. mallocd provides the ability
to write to arbitrary memory, it may be possible to
write into the stack segment in order to create and
run user-defined functions.

in order to simplify the adoption of mallocd, we want
to develop a posix-compliant drop-in replacement for
malloc(2) that can be loaded via LD_PRELOAD. it
could use a SIGSEGV signal handler to intercept mem-
ory accesses, or if that doesn’t work, we might just
make a kernel module.

references

here are a few pointers:

• 0xc42001a440
• 0xc4200cb9e0
• 0xc4201355c0

don’t forget to free them when you’re done.

123

SIGBOVIK 2018
(Continued) Message from the Organizing Commi�ee

You press the 4 button, and the elevator starts moving. The elevator makes a stop
on floor 3 for the few thousand people taking the elevator up one floor to class.
“While we wait, perhaps you can help me with a mathematics problem that has been
floating in the back of my head for a bit,” says CoBot. “What is 0.1 + 0.2?” This is
not your first rodeo: as a robot with an FPU in place of an ALU, you are well aware
of the perils of rounding errors. Fortunately, a recent paper describes a library for
performing integer operations using only floating-point assembly instructions [6],
and you had the library installed in your latest upgrade.

switch (choose_dear_reader()) {

case INT_COMES_NATURALLY:

Use your new integer operations to reason 0.1 + 0.2 = (1 + 2) ∗ 0.1 = 0.3.
goto PAGE_116;

case IEEE_754EVER:

Use your classic FPU to report 0.1 + 0.2 = 0.30000000000000004.
goto PAGE_88;

}

124

The fluint8 Software Integer Library

Jim McCann∗

TCHOW llc
Tom Murphy VII†

tom7.org foundation

= −1S · 2E−127−23 · (223 +M)
Figure 1: Our library performs unsigned integer operations using only arithmetic operations on IEEE754 floating point

numbers stored in binary32 format (pictured).

Abstract

We present fluint8, a library for performing integer math, in-

cluding basic arithmetic and bitwise logical operations, using

only basic floating point operations.

CR Categories: (1.10100100011)2×211 [Software]: Soft-

ware Engineering—Coding Tools and Techniques

1 Introduction

There are a surfeit of libraries that exist to perform float-

ing point operations on processors that only support integer

math. This is unsurprising, as many such processors exist

– from ancient 286’s to modern embedded microcontrollers.

These libraries use many integer instructions to emulate the

action of a floating point unit, providing correct and useful

(if slow) results.

We present a small header-only C library to emulate integer

operations – specifically 8-bit unsigned integer operations –

using standard IEEE 754 single-precision (binary32) floating

point math. Our presented operations have been designed to

be succinct but also pleasantly puzzling.

As far as we are aware, no processor exists for which this li-

brary would be required. However, perhaps you should con-

sider that a challenge.

2 Floating Point

An IEEE 754 single-precision floating point number (bi-

nary32 format) is stored as a sign bit, a 8-bit exponent, and

a 23-bit mantissa (Figure 1). Except for special cases, the

number represented by a floating point number with sign S,

exponent E, and mantissa M is ‡:

−1S · (1.M)2 · 2E−127

∗e-mail: ix@tchow.com
† e-mail: tom7@tom7.org
‡or at least this is what wikipedia says, so I’m going with that, and it

seems to work out.

Particularly, notice that the leading “1” in the fraction is im-

plicit in the representation (it is implied by a non-zero expo-

nent§).

This means that the range of integers that can be represented

(without loss of precision) is

[−224, 224] = [−16777216, 16777216]

which, conveniently, is far more than the [0, 255] range

needed for storing 8-bit unsigned integers.

When floating point operations result in numbers that cannot

be accurately represented, the results are rounded according

to the current rounding mode. The default rounding mode

assumed in this paper is roundTiesToEven. I would say that

it does what you expect, but floating point numbers seldom

manage that feat. Regardless, this rounding mode means

that whenever a value is exactly halfway between two rep-

resentable numbers, the number with a least-significant-bit

of 0 is picked.

Rounding and precision loss leads to this fun fact:

16777216.0f + 1.0f - 1.0f == 16777215.0f

16777216.0f - 1.0f + 1.0f == 16777216.0f

(Hot take: floating-point operations are non-commutative.)

3 The fluint8 Library

The fluint8 library provides all of the mathematical and logi-

cal operations one expects on 8-bit integers, using only float-

ing point addition, subtraction, multiplication, and division

– other than a loop with fixed bounds which could be un-

rolled by the compiler, no conditionals or function calls are

required.

Full source code for the library (and this paper) are available

at https://github.com/ixchow/fluint8.

In this section we go through the library operation by opera-

tion, explaining how each function works.

§An all-zero exponent is used for special numbers like zero, but we’re

not going to go into that. Wait, we just did.

18

125

Figure 2: Comparing fmodf(x, 256.0f) to

the expression x - 127.5f + 3221225472.0f

- 3221225472.0f over the range [-256.0f,

512.0f]. Notice that the expression is positive for nega-

tive numbers, making it more useful for simulating integer

rollover. Plot created using gnuplot.

3.1 Storage Format

Our library represents unsigned 8-bit integers as their equiv-

alent floating point values. In other words, the value

uint t(127) is represented as 127.0f. This straight-

forward equivalence is convenient when writing basic math-

ematical functions.

In order to support, e.g., reading data from files, our library

includes functions that convert between floating point num-

bers and bit-patterns of their equivalent 8-bit unsigned rep-

resentation.

void fu8 to bits(float a, void *out) {
a += 8388608.0f;

memcpy(out, &a, (size t)(1.0f));

}

The function fu8 to bits adds a large enough number

to a that its mantissa’s least-significant bit now represents

1. Essentially, the code is shoving the integer information

stored in a to the least-significant-byte of the representation,

and then copying¶ it out to the destination.

The same trick works when setting a floating point number

from an integer bit pattern:

float fu8 from bits(void const *from) {
float a = 8388608.0f;

memcpy(&a, from, (size t)(1.0f));

return a - 8388608.0f;

}

¶ The astute reader will notice that we’ve taken care to avoid using an in-

teger constant as a parameter to memcpy. Presumably on processors with-

out integer support size t must be a floating-point type. And, yes, we

promised above not to use function calls, but it’s hard to copy a byte with-

out integer types.

Figure 3: Comparing floorf(x) to the expression x

+ 0.50390625f + 8388608.0f - 8388609.0f

over the all quotients [0.0f, 255.0f] / [1.0f,

255.0f]. The functions match at all plotted points. Plot

created using R.

3.2 Arithmetic Functions

Our library implements +, -, *, /, +, and - by treating float-

ing point numbers as real numbers; an approach that often

works, but requires some post-processing to deal with roll-

over:

float fu8 add(float a, float b) {
float x = a + b;

x += x - 127.5f + 3221225472.0f -

3221225472.0f;

return x;

}

Here, the second line of the function computes fmodf(x,

256.0f) by rounding x to the next-greater multiple of

256.0f (rounding is forced by adding 3221225472.0f

to make the least-significant-digit of the number have value

256), then subtracting this rounded value. Don’t believe us?

Examine the convincing graph in Figure 2.

Most of the remaining math functions follow this “operate

then wrap” paradigm:

float fu8 sub(float a, float b) {
float x = a - b;

x -= x - 127.5f + 3221225472.0f -

3221225472.0f;

return x;

}
float fu8 mul(float a, float b) {

float x = a * b;

x -= x - 127.5f + 3221225472.0f -

3221225472.0f;

return x;

}
float fu8 pos(float a) {

return a;

}

126

Figure 4: graph of 255.0f - x (the bitwise complement

of x). Plot created using a TI-92 Plus graphing calculator.

float fu8 neg(float a) {
return (a + 127.5f + 3221225472.0f -

3221225472.0f) - a;

}

Our add-and-subtract modulus function always returns a pos-

itive number, which we take advantage of in the subtraction

function. The negation function uses a similar trick to either

subtract a from 256.0f if positive or from 0.0f otherwise.

float fu8 div(float a, float b) {
float x = a / b;

x = x + 0.50390625f + 8388608.0f -

8388609.0f;

return x;

}

The division function computes the floor of a value by round-

ing that value to the next-largest and subtracting one (Fig-

ure 3). In this particular instance, the constant required is

small enough that the subtraction of one can be rolled into the

subtraction of the large constant (we choose this over round-

ing down mostly for a e s t h e t i c reasons).

For the division and modulus operations, fluint8 diverges

from the normal behavior of integer instructions when the

denominator is zero. A typical processor triggers a fault

upon integer division by zero, but IEEE 754 instead returns

one of the special values Infinity, -Infinity (or NaN) and con-

tinues calculating. After this point, fluint8 may produce non-

sense results. However, this is strictly compliant with the C

and C++ standard, for which integer division by zero is for-

mally undefined behavior.‖

‖“If the second operand of / or % is zero the behavior is undefined.” —

C++03 5.6.4

Figure 5: The value of a + 1.0f + c-c)/ 2.0f for c

ranging from 2147483648.0f (milt8) to 16777216.0f

(milt1). Plot created in Google Sheets.

3.3 Bitwise Operations

Things really get interesting when we begin to look at bit-

wise operations, which aren’t standard operations on floating

point numbers∗∗.

Let’s begin with bitwise negation (˜). This one is relatively

easy to explain – an unsigned 8-bit integer plus its bitwise

complement is always 255, which makes negation as easy as

subtraction (Figure 4):

float fu8 not(float a) {
return 255.0f - a;

}
Things get a bit more interesting when computing bitwise

and (&):

float fu8 and(float a, float b) {
float ax, bx, x = 0.0f;

for (float c = 2147483648.0f;

c != 8388608.0f; c *= 0.5f) {
a -= ax = (a + 1.0f + c-c)/ 2.0f;

b -= bx = (b + 1.0f + c-c)/ 2.0f;

x = 0.5f * x + ax * bx;

}
return x;

}
Note that though this is presented as a loop, the loop has

constant bounds and could be unrolled by a compiler into

eight repetitions of the same code.

This code peels apart a and b bit-by-bit using a similar trick

to the floating point modulus idea we explained earlier. In

this case, however, we’ve formatted the code so it has a little

waving guy in it, who we will call Milt:

c-c)/
∗∗Though they seem well-defined; maybe a language-designer oversight?

127

Though it looks like Milt is just hanging out, minding its own

business, and not changing the value of the expression, Milt

is in fact doing something surprisingly nonlinear (Figure 5).

So when Milt’s eyes are 2147483648.0f, it is extracting

twice the value of the MSB of a, which in turn is stored

in ax and subtracted from a. In this way, the code peels

off each successive most-significant bit from a and b and

accumulates their product into the final result.

This leaves only the mystery of why x is being divided by

two each loop iteration. But this isn’t a mystery at all. Con-

sider computing 171 & 226. Notice that on the first iter-

ation, the product 128.0f * 128.0f would be added to

x; the multiplications by a factor of 0.5f on each subse-

quent iteration simply – in aggregate – bring it to the correct

result of 128.0f.

a b ax bx x c

171 226

43 98 128 128 16384 2147483648

43 34 0 64 8192 1073741824

11 2 32 32 5120 536870912

11 2 0 0 2560 268435456

3 2 8 0 1280 134217728

3 2 0 0 640 67108864

1 0 2 2 324 33554432

0 0 1 0 162 16777216

4 Optimization

The previous routine computes a bitwise function a single

bit at a time. While clean and logically motivated, it seems

possible to improve bandwidth by processing multiple bits at

once. As a proof-of-concept, the following routine computes

the exclusive-or function (ˆ) for two fluints in the range

0-3.

float fu8 xor2bit(float a, float b) {
return truncf(

fmod(((a * -1.89269124e+30f) +

(b * -1.09500709e+35f)) *
-1.14474456e-18f,

4.77664232f));

}

The routine works by computing a very noisy function that

just happens to come close to the correct results for all 16

possible inputs. Don’t believe us? Barbecue your eyes of

Figure 6. This routine uses fmod and truncf, but the

same loss-of-precision tricks from before can likely be used

to avoid them. Four similar expressions can be composed to

compute 8-bit exclusive-or, and/or it may be possible to find

expressions that compute more bits at once.

Figure 6: 3D graph of ((a × −1.89269124×1030 +
(b × −1.09500709 × 1035)) × −1.14474456 × 10−18)
mod 4.77664232 with a and b each ranging from 0–3.0. Plot

created using Wolfram Alpha Computational Knowledge Engine.

5 Not Optimization

The library should not be used with compiler options such as

-ffast-math (which may assume properties that do not

hold of IEEE754, like commutativity). This often optimizes

away the entire fluint8 code, causing it to misbehave (whoa,

not that fast, buddy).

6 Applications

While direct hardware applications of this technology are

currently theoretical (Section 7), there is at least one com-

pelling application for fluint8 in everyday practice. Many

pieces of software use primarily integer instructions, let-

ting the floating point unit lie completely dormant for many

nanoseconds at a time. As has been known for decades,

while the integer registers and functional units are occupied,

the otherwise idle floating point units can be used to perform

useful tasks. Unfortunately, no useful tasks were known for

floating point instructions. Now, we see that normal inte-

ger operations (such as cryptography) can be simulated with

these instructions and registers. With compiler support, a

separate thread of non-interfering floating point instructions

could be emitted, and arbitrarily interleaved with the inte-

ger ones, scheduled only when the integer unit would likely

stall for a data dependency. This technique is ultrathreading,

since it is one step better than hyperthreading. For example,

we hypothesize that during normal web browsing on a mod-

ern x86-64 processor, such code could mine as much as one

Bitcoin per 107 trillion years, with no more than a 1% loss

of efficiency.

7 Future Work

Design a processor for which this library is relevant.

128

CONFIDENTIAL COMMITTEE MATERIALS

SIGBOVIK 2018 Paper Review

Paper 18: The fluint8
Software Integer Library

Not a Number

Rating: Definitely a Number

Confidence: Could be a Number?

75035999728258881796215668736

184933246639179563008

283968873678046692484587716608

2.34475994176364110899157822132110595703125e-09

129

SIGBOVIK 2018
(Continued) Message from the Organizing Commi�ee

You angle your wheel stalks π/4 radians apart to perform the Charlie Brown dance
move when you hear a horrible ripping noise. Your pants suddenly feel much looser:
you must have ripped them! Simulating embarrassment, you slowly roll to the side
of the room and take out your sewing kit. The kit contains a single needle and single
thread, but a recent paper on multithreading [4] suggests that it is advantageous to
repair pants using multiple threads in parallel.

switch (choose_dear_reader()) {

case BY_A_SINGLE_THREAD:

Attempt to repair your pants using a single thread.
goto PAGE_154;

case WITH_HT_TECHNOLOGY:

Find another thread-like object with which to repair your pants.
goto PAGE_39;

}

130

A Survey of Hardware Multithreading

Sol Boucher

Carnegie Mellon University

sboucher@cs.cmu.edu

Abstract

I’m just going to assume you already read
the title. We chose a needle as our hardware
threading platform because the author had
a rip in his pants. More concretely, you’ll
have to read the paper for details; after all,
this is just the abstract.

1 Introduction

This paper describes our first-hand expe-
riences with needle threading in hardware.
This paper is organized as follows: on sec-
ond thought, why don’t you just skim the
section titles like a normal reader and work
that out on your own?

2 Test Environment

We remind the reader that we were suffer-
ing from a pair of ripped pants at the time
of writing. We hadn’t expected the pair
of pants in question to be ripped, and this
misprediction led to a stall in our laundry
pipeline. This resulted in a phenomenon
we’ll refer to as cold legs, so we began eyeing
our bed as a potential location to continue
the research. In the interest of full disclo-
sure, there are a few admissions we should
make about this test bed:

• It could have been better made.

• We briefly attempted to remedy this is-
sue, but ultimately concluded that this
is a hard problem.

• We conjecture that making the bed is
actually an unimportant step, as our
next step was to crawl in.

• For months now, we’ve been operating
under the assumption that this conjec-
ture is correct; however, it would be
good to have rigorous proof.

3 Design

The core idea of multithreading is, of course,
to improve efficiency by performing paral-
lel work. To begin our investigation, we at-
tached multiple threads to the same needle,
as shown in Figure 1. While this sounds like
a simple process, care must be taken to en-
sure that each individual thread is attached
directly to the needle, as tying them end-to-
end does not increase parallelism.

Figure 1: Multithreading

19

131

4 SMT

Before tying the threads to the needle,
we discovered that they were asymmetri-
cally threaded. We tried to balance them
to achieve the desired symmetry, but this
turned out to be imprecise when attempted
by hand. We attempted to employ an SMT
solver, but it seemed confused. Perhaps we
should have paid more to hire one with bet-
ter SAT scores, as we’ve been told that such
solvers have quickly reported NP-complete
(“No Problem, done”) when faced with sim-
ilar challenges.

5 Parallelism

To further motivate multithreading, we ob-
serve that the number of threads used in
the test fabric is proportional to its resul-
tant tensile strength. By Amdahl’s law, in-
creasing the parallelism decreases the time
taken to achieve a given tensile strength.
Needle-less to say, this trend would con-
tinue if our needle could accommodate more
threads. As it is, we were only able to test at
limited scale, but we posit that better hard-
ware would allow us to quickly handle the
Big Rip.

6 Coherency

In our experience, even the amount of par-
allelism achievable on our platform is diffi-
cult to manage. We struggled repeatedly as
the, um, data became stuck in our KNOT
gates. It wasn’t until we dropped the nee-
dle, though, that the true extent of our catch
coherency issues became apparent.

7 Future Work

We’d like to extend this work to test on
platforms other than beds (e.g. haystacks).
Although it seemed inappropriate for the
repair in question, an investigation into
threads that collect user input is sorely
needed, not least because we have a bunch
of spare buttons lying around. As more
threads become involved, managing concur-
rency becomes increasingly critical; there-
fore, an investigation into the threading of
eyebrows, locks, and other synchronization
mechanisms is also in order.

8 Conclusion

As foreshadowed in Section 5, we suggest
that future hardware include a larger loop
thing so the needle can accommodate more
threads. That said, the limited amount of
parallelism we were able to achieve resulted
in a pair of pants that allowed us to leave
the test bed but not the house. We take the
fact that we couldn’t wear them in public
as an indication that the problem is embar-
rassingly parallel.

Acknowledgements

We are grateful to the Lord for being our
shepherd. Without Her assistance, the mar-
ket economy would never have been able to
capture enough sheep to supply the many
threads required by our system.

References

“For the absence of a bibliography1 I offer
neither explanation nor apology.”

1or citation for this quotation

132

CONFIDENTIAL COMMITTEE MATERIALS

SIGBOVIK 2018 Paper Review

Paper EasierChair: A Survey of
Hardware Multithreading

Jim McCann (CMU Textiles Lab)

Rating: 1.5

Confidence: High

While hardware multithreading is something that is relevant to both textiles construction and com-

puter science, and I am a strong advocate for more textiles-cs crossover work appearing in impor-

tant venues like SIGBOVIK, I believe this paper needs to be extended.

One could discuss, for example, a modern Jacquard loom, which uses a warp1 of parallel threads

that can be independently selected per-instruction.

Or, instead, take the odd case of a mechanical knitting machine, which, rather than operating on

many threads with a single needle, operates on a single thread with many needles. Indeed, given

the way knitting machines are constructed, many dependent operations can be in flight on a single

thread at the same time, with the machine handling tension forwarding and global order resolution

through careful construction.

Even in the consumer machine-sewing realm, it is common to see two-way multithreading: most

machines use a “top thread” which passes through the needle and a “bottom thread” that comes

from a smaller spool called a bobbin. More complicated machines called sergers use five- or

even six-way multithreading in order to simultaneously stitch a seam and wrap thread around it to

prevent fraying. Of course, one might argue that because all the threads are just being interleaved

by the hardware at an instruction level, this is more akin to “hyperthreading”, but it seems like a

debate worth having.

Also, you should definitely cite some of my papers.

1Just like in GPU computation, come to think of it.

133

CONFIDENTIAL COMMITTEE MATERIALS

SIGBOVIK 2018 Paper Review

Paper EasierChair: A Survey of Hardw
are Multithreading

Name Left Blank For Publication

Rating: g

Confidence: Unwarranted

Did you know that Jacquard Looms were the first computers? They ran on loops of punch cards,

and punch cards and loops are things also associated with computers. Surely any machine that

can perform the same sequence of steps over and over – like, say, a player piano or drinking bird

– must be Turing complete. Some looms also had counters, and counting is the same as Turing

completeness (didn’t Alonzo Church show that?).

But let’s get back to this great paper. Let me say that I really like it in theory, not that I’d ever

do anything with fabric myself. I mean, my inflexible age and gender identity – along with a raft

of biases – prevent me from considering that something like this could be enjoyable or useful for

people like myself. Let me take a photo for my grandmother/wife/mother/girlfriend/daughter/New

Mexico whiptail lizard; she’ll love it.

I bought a pair of knit jeans the other day. They were made with an extra-stretchy weave.

How soon will you add this feature to a loom so I can use it to knit a cut-and-sew shirt for my dog?

Can you make one from a 3D scan of my body? I just really want to send you a 3D scan of my

body. Look, here’s a dropbox link written on a napkin.

My t-shirt has a screen print of a houndstooth pattern on it.

Why aren’t you doing something that really matters? Y’know, something the economy will reward

you for, like extruding useless blobs of plastic, exploiting workers, or selling ephemeral digital

tokens?

But seriously, nice work bro, definite publish. See you at my ICO party later?

134

SIGBOVIK 2018
(Continued) Message from the Organizing Commi�ee

You take your time and carefully follow the floor-2-of-Gates-finding algorithm. As
expected of Prestigious Research by Prestigious Researchers, the algorithm works
perfectly, and you find yourself on floor 2 of the Gates Hillman Complex. However,
SIGBOVIK 2018 does not appear to be located on this floor. After a short search,
you find the elevator, by which, remarkably, is a fellow robot! Perhaps they can lead
you to SIGBOVIK 2018.

The robot begins to speak: “0100111011—ahem, excuse me. Hello, I am CoBot!
Can you help me? Could you please press the up elevator button for me?” You oblige.
Once in the elevator, CoBot requests, “Can you press the 4 button for me?”

switch (choose_dear_reader()) {

case LEND_A_HELPING_PRIMARY_MANIPULATOR:

“Of course, CoBot! Let’s go to floor 4 together.”
goto PAGE_124;

case TAKE_THE_SCENIC_ROUTE:

“How about I press the 3 button, then we take the helix to floor 4?”
goto PAGE_183;

}

135

136

Debugging

Amy Likes Spiders

20 COBOLd: Gobblin’ up COBOL bugs for fun and profit

squaresLab and Mr. squaresLab SpouseMan

Keywords: software evolution, maintaining software, search-

based software engineering, COBOL=$$$$$

21 Transactionalmemory concurrency verificationwith Landslide

Ben Blum

Keywords: landslide terminal, baggage claim, ground

transportation, ticketing

137

COBOLd: Gobblin’ Up COBOL Bugs for Fun and Profit

squaresLab∗

Institute for So�ware Research
School of Computer Science
Carnegie Mellon University

Pi�sburgh, PA 15213

Mr. squaresLab SpouseMan†

�e Private Sector
Pi�sburgh, PA 15213

ABSTRACT

�e cost and ubiquity of so�ware bugs has motivated research in

automated program repair (APR), a field dedicated to the automatic

triage and patching of so�ware defects. APR has typically focused

on popular languages such as C and Java, but COBOL developers

have suffered six decades of neglect and deserve a repair tool too.

We present COBOLd, the first tool for automatically repairing buggy

COBOL programs. We demonstrate COBOLd’s effectiveness on

a COBOL reimplementation of the infamous Zune leap-year bug.

We also argue that “we got this” and other researchers should stay

away so that we can fix all the COBOL bugs ourselves and thus be

filthy, stinking rich.

CCS CONCEPTS

·So�ware and its engineering →So�ware evolution; Main-

taining so�ware; Search-based so�ware engineering; ·COBOL

repair→$$$$$$$$$$$$$$$$$$$$$$$$$$$$;

KEYWORDS

COBOL, SBSE, So�ware Evolution, Genetic Programming, $$$$

ACM Reference format:

squaresLab and Mr. squaresLab SpouseMan. 2018. COBOLd: Gobblin’ Up

COBOL Bugs for Fun and Profit. In Proceedings of SIGBOVIK, Pi�sburgh, PA

USA, March 2018 (SIGBOVIK’18), 5 pages.

DOI: 10.475/123 4

1 INTRODUCTION

1.1 Automatic Program Repair (APR)

Automatic program repair (APR) is all about fixing bugs automati-

cally because so�ware maintenance is expensive. APR techniques

take as input (1) a program with a defect and (2) a mechanism to

validate correct and incorrect behavior in that program. �e val-

idation mechanism is typically a test suite: a bug to be repaired

corresponds to one or more tests that is failing; one or more pass-

ing tests guard against the removal of desireable functionality. �e

goal is to produce a patch that modifies the original program such

∗Chris Timperley, Deby Katz, Zack Coker, Rijnard van Tonder, Mauricio Soto, Afsoon
Afzal, Cody Kinneer, Jeremy Lacomis, and Claire Le Goues
†Adam Brady

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

SIGBOVIK’18, Pi�sburgh, PA USA

© 2018 Copyright held by the owner/author(s). 123-4567-24-567/08/06. . . $15.00
DOI: 10.475/123 4

that failing test cases pass without breaking any of the originally

passing test cases.

In this work, we automatically fix bugs in COBOL programs

using COBOLd, which is just GenProg [10, 11, 17, 18] directly ap-

plied to COBOL programs. GenProg uses genetic programming

to traverse a space of possible patches to a given buggy program.

GenProg uses the test results to define an objective function that

informs an evolutionary search [4, 8] over the space of candidate

patches. We reuse GenProg because it is well-established and also

we know its source code very, very well, having wri�en a large pro-

portion of it. It turns out that, given the appropriate configuration

options, the code we already have can totally fix bugs in COBOL

programs. Who knew?

2 BACKGROUND

Don’t know COBOL? Don’t worry. �is section has all you need.

2.1 COBOL: Is it reasonable?

2.1.1 Yes. It is incredibly difficult to create a program that con-

tains bugs in COBOL. �is is because the design of the language

makes it incredibly difficult to write any program in COBOL. �e

lack of advanced features such as passing parameters to procedures

means that programmers are forced to think very carefully before

authoring COBOL programs. Bugs can only exist if programs exist.

2.1.2 Counterpoint: Absolutely Not. �e first specification of

the language (COBOL-60) contained many logical errors and was

impossible to interpret unambiguously [2]. �is is unsurprising: no

academic computer scientists were on the design commi�ee. �e

commi�ee invented a new metalanguage to define its syntax be-

cause no commi�ee members had heard of Backus-Naur form [14].

Dijkstra once declared: “�e use of COBOL cripples the mind; its

teaching should, therefore, be regarded as a criminal offence.” [3]

Also, the “Hello World” program for COBOL is considered non-

compliant.1

2.2 (Inexplicably Recent) Prior Work on
COBOL

Unfortunately for Dijkstra, COBOL is still lurking in academic con-

ferences and college curriculums (�ese citations are all real‼! I

know. We were also surprised!). Research papers on COBOL in

the 21st century cover aspect oriented programming [9, 15] and a

(2017‼!) study of code clones [6]. Professors disagreeing with Dijk-

stra, or openly admi�ing to torturing their students, have published

1�e DISPLAY statement (i.e., print) is considered a dangerous pa�ern according to a
COBOL static analyzer: h�ps://rules.sonarsource.com/cobol/RSPEC-1279

20

138

SIGBOVIK’18, March 2018, Pi�sburgh, PA USA squaresLab and Mr. squaresLab SpouseMan

1 IDENTIFICATION DIVISION.

2 PROGRAM-ID. ZUNEBUG.

3

4 DATA DIVISION.

5 WORKING-STORAGE SECTION.

6 01 WS-YEAR PIC 9(9) VALUE 1980.

7 01 WS-DAYS PIC 9(9).

8 01 WS-Q PIC 9(9).

9 01 WS-R1 PIC 9(9).

10 01 WS-R2 PIC 9(9).

11 01 WS-R3 PIC 9(9).

12

13 PROCEDURE DIVISION.

14 MAIN-PARAGRAPH.

15 DISPLAY 1 UPON ARGUMENT-NUMBER.

16 ACCEPT WS-DAYS FROM ARGUMENT-VALUE.

17 PERFORM WITH TEST BEFORE UNTIL WS-DAYS <= 365

18 * LEAP YEAR COMPUTATION

19 DIVIDE WS-YEAR BY 4 GIVING WS-Q REMAINDER WS-R1

20 DIVIDE WS-YEAR BY 100 GIVING WS-Q REMAINDER WS-R2

21 DIVIDE WS-YEAR BY 400 GIVING WS-Q REMAINDER WS-R3

22 IF (WS-R1 = 0 AND WS-R2 NOT = 0) OR WS-R3 = 0 THEN

23 IF WS-DAYS IS GREATER THAN 366 THEN

24 SUBTRACT 366 FROM WS-DAYS

25 ADD 1 TO WS-YEAR

26 END-IF

27 ELSE

28 SUBTRACT 365 FROM WS-DAYS

29 ADD 1 TO WS-YEAR

30 END-IF

31 END-PERFORM.

32 DISPLAY WS-YEAR.

33 STOP RUN.

(a) Buggy code: An infinite loop happens when WS-YEAR

is a leap year, and WS-DAYS is less than 366.

1 IDENTIFICATION DIVISION.

2 PROGRAM-ID. ZUNEBUG.

3

4 DATA DIVISION.

5 WORKING-STORAGE SECTION.

6 01 WS-YEAR PIC 9(9) VALUE 1980.

7 01 WS-DAYS PIC 9(9).

8 01 WS-Q PIC 9(9).

9 01 WS-R1 PIC 9(9).

10 01 WS-R2 PIC 9(9).

11 01 WS-R3 PIC 9(9).

12

13 PROCEDURE DIVISION.

14 MAIN-PARAGRAPH.

15 DISPLAY 1 UPON ARGUMENT-NUMBER.

16 ACCEPT WS-DAYS FROM ARGUMENT-VALUE.

17 PERFORM WITH TEST BEFORE UNTIL WS-DAYS <= 365

18 * LEAP YEAR COMPUTATION

19 DIVIDE WS-YEAR BY 4 GIVING WS-Q REMAINDER WS-R1

20 DIVIDE WS-YEAR BY 100 GIVING WS-Q REMAINDER WS-R2

21 DIVIDE WS-YEAR BY 400 GIVING WS-Q REMAINDER WS-R3

22 IF (WS-R1 = 0 AND WS-R2 NOT = 0) OR WS-R3 = 0 THEN

23 SUBTRACT 366 FROM WS-DAYS

24 IF WS-DAYS IS GREATER THAN 366 THEN

25 ADD 1 TO WS-YEAR

26 END-IF

27 ELSE

28 SUBTRACT 365 FROM WS-DAYS

29 ADD 1 TO WS-YEAR

30 END-IF

31 END-PERFORM.

32 DISPLAY WS-YEAR.

33 STOP RUN.

(b) Zune bug, repaired by COBOLd (yes, seriously). Lines 23 and 24

are swapped in the original source

Figure 1: COBOL implementation of the infamous Zune bug and repaired program generated by COBOLd. First six columns

omitted to fit on one page.

the colorfully titled papers “Teaching a language many CS students

didn’t want to learn: COBOL” [7] and “Bringing COBOL back to

the college IT curriculum” [12]. Some of our favorite excepts from

these papers’ abstracts include “As shocking as this may sound to

some, there are many reasons beyond great need to bring COBOL back

into the CIS curriculum” [12] and “Over 80 percent of error diagnosis

was found to be inaccurate. Such feedback is not optimal for users,

particularly for the learning user of Cobol.” [13].

As far as static analysis tools, Sonar�be2 provides static analy-

sis tools for COBOL. However, Sonar�be can’t automatically fix

COBOL programs. But we can. So watch this and don’t blink.

3 APR FOR COBOL

3.1 Generate-and-validate.

One of primary classes of approaches for APR is known as heuristic

or generate-and-validate repair (G&V), which uses search-based

so�ware engineering techniques [5, 16] to generate many candidate

patches for a bug, and then validate themusing indicativeworkloads

or test suites.

Algorithm 1 illustrates our novel G&V approach for fixing COBOL

programs. �e COBOLd function takes as input a textual COBOL

program p. State of the art G&V APR techniques typically operate

on the abstract syntax tree (AST) of a program, rather than the

2h�ps://www.sonarqube.org/

Algorithm 1 A simplified G&V algorithm for automated COBOL

repair.

1: function COBOLd(p)

2: cands ← GenProg.getInitialPopulation(p)

3: while !oracle(cands) do

4: cands ← GenProg.getNextPopulation(cands)

5: end while

6: ???????????????????????????????

7: PROFIT!

8: end function

program text itself. �is helps limit the generation stage to syntac-

tically valid programs, and allows more advanced reasoning about

program structure. �ough this works for reasonable programming

languages, COBOL is not specified with a real grammar (cf. Sec-

tion 2.1.2), and the creation of a parser would require for-real work.

So, the COBOLd function invokes GenProg [11] to modify the pro-

gram text of p directly. �is is particularly fortunate because we

would hate to implement a parser for a language with 550 reserved

words, are you #kidding me?3

�e brunt of the work is done by GenProg, which produces

candidate programs cands in the initial state (Line 1) and performs

3h�p://www.math-cs.gordon.edu/courses/cs323/COBOL/COBOL-
reservedWords.html

139

COBOLd: Gobblin’ Up COBOL Bugs for Fun and Profit SIGBOVIK’18, March 2018, Pi�sburgh, PA USA

genetic mutation to generate additional candidates (Line 4) until the

oracle condition is satis�ed (Line 3). �e validation function oracle

runs the candidate COBOL program on test inputs. If the program

produces the expected output, oracle returns 1 and we end up

with a 100% absolutely correct
TM

COBOL program. Otherwise, we

keep looping until we �nd a candidate satisfying oracle.

3.2 Mutation operators.
COBOLd currently modi�es COBOL code by applying one of three

di�erent mutation operators: delete, which deletes a line of code,

add, which selects a random line of code and inserts a copy of

it at a random program point, and swap, which exchanges two

lines of code. In our exploratory study, these operators were su�-

cient to generate patches. Future versions of COBOLd will include

more COBOL-speci�c mutation operators such as delete-a-full-stop,
which randomly deletes a “.”, and adaptations, such as only mutat-

ing code inside of a procedure.

4 SERIOUSLY: HERE’S AN EXAMPLE
Figure 1 shows a COBOL implementation of the infamous Zune

bug [1]. �e Microso� Zune was a popular portable music player

that stored the current time as the number of days and seconds

since 1 January, 1980. �e (buggy) function in Figure 1a was used

to compute the current year. An in�nite loop occurs when WS-YEAR
corresponds to a leap year, and WS-DAYS is less than 366. In this

case, the SUBTRACT statement on line 24 is never executed, so the

value of WS-DAYS is never changed. COBOLd is able to successfully
repair this bug, producing the code shown in Figure 1b. To produce

this patch, COBOLd swaps the IF statement on line 23 and the

SUBTRACT statement on line 24.

5 WE ARE GOING TO BE VERY, VERY RICH
5.1 No, Really
According to the Cobol Cowboys

4
, COBOL is 65% of active code

used today, runs 85% of all business transactions. IBM cites that

200 BILLION lines of COBOL code is still in use today.
5

All of Google’s code comes in at about 1 percent of this number,

at a mere 2 billion lines of code.
6
�is is music to our ears. Rate

of adoption for our COBOL repair tool will strictly increase with

existing and proliferating COBOL code. Figure 2 conservatively

projects our income.

5.2 Treat. Yo. Self
We prepared a shortlist of things to treat ourselves with.

• Clothes

• fragrances

• massages

• mimosas

• �ne leather goods

• supercars

4
h�p://cobolcowboys.com/

5
Not a joke: h�ps://www-03.ibm.com/press/us/en/pressrelease/41095.wss

6
Not a joke: h�ps://informationisbeautiful.net/visualizations/million-lines-of-code/

Figure 2: COBOL Repair is going to make us rich.
if i do 5aγ so my sel f i say so thats what im

talking about right there right there (chorus:
rIght th

ere
) mMMMMMM

It’s a modest start, we’re new to this. We realize our enormous

purchasing power is likely to raise di�cult questions. Like, we

want private islands too,
7
but is Australia an island? Is it for sale?

We do plan to use very smol portion of our pro�ts
8
for the greater

good. Our #1 priority is to eradicate video and audio autoplay on

all websites. We are willing to pay good money to remove the

autoplay a�ribute from the HTML spec, please get in touch if you

know someone. We also plan to resurrect geocities sites. We really

miss 88x31 bu�ons. Click the one below to get the COBOLd demo

(or Netscape Now! we’re not really sure).

ACKNOWLEDGMENTS
We would like to thank Nalia Soto Gutierrez (Figure 3); Ryan, Kyle

(Figure 6), Kevin (Figure 5), and Layla Lacomis (Figure 7); Aries

(Figure 12), Cheese (Figure 10), Snickers (Figure 4), and Ampersand

LeBrady (Figure 11); Penelope Surden (Figure 8); and Millie Tim-

perley (Figure 9) for all of their love and support, without them this

research would not be possible.

We’d also like tomore seriously thankGrace Hopper for her work

in compilers, for guiding the development of machine-independent

programming languages like COBOL, and for being an awesome

woman in science. And the ENIAC programmers, who do not get

enough recognition.

REFERENCES
[1] BBC News. 2008. Microso� Zune a�ected by ‘bug’. In h�p://news.bbc.co.uk/2/hi/

technology/7806683.stm.

[2] Bob Bemer. 1971. A View of the History of COBOL. Honeywell Computer Journal
(1971).

[3] Edsger W. Dijkstra. 1975. How do we tell truths that might hurt? (June 1975).

published as EWD:EWD498pub.

7
h�ps://www.privateislandsonline.com

8
which is still going to be like, hundreds of millions

https://github.com/squareslab/COBOLd
http://news.bbc.co.uk/2/hi/technology/7806683.stm
http://news.bbc.co.uk/2/hi/technology/7806683.stm

SIGBOVIK’18, March 2018, Pi�sburgh, PA USA squaresLab and Mr. squaresLab SpouseMan

[4] Stephanie Forrest. 1993. Genetic Algorithms: Principles of Natural Selection
Applied to Computation. Science 261 (Aug. 1993), 872–878.

[5] Mark Harman. 2007. �e Current State and Future of Search Based So�ware
Engineering. In ACM/IEEE International Conference on So�ware Engineering
(ICSE). 342–357. h�ps://doi.org/10.1109/FOSE.2007.29

[6] Tomomi Hatano and Akihiko Matsuo. 2017. Removing Code Clones from Indus-
trial Systems Using Compiler Directives. In International Conference on Program
Comprehension (ICPC ’17). 336–345.

[7] Stephen M. Jodis. 1995. Experiences and Successes in Teaching a Language Many
CS Students Didn’t Want to Learn: COBOL. In Southeast Regional Conference
(ACM-SE 33). 273–274.

[8] John R. Koza. 1992. Genetic Programming: On the Programming of Computers by
Means of Natural Selection. MIT Press.

[9] Ralf Lämmel and Kris De Schu�er. 2005. What Does Aspect-oriented Program-
ming Mean to Cobol?. In International Conference on Aspect-oriented So�ware
Development (AOSD ’05). 99–110.

[10] Claire Le Goues, Michael Dewey-Vogt, Stephanie Forrest, and Westley Weimer.
2012. A systematic study of automated program repair: Fixing 55 out of 105
bugs for $8 each. In AMC/IEEE International Conference on So�ware Engineering
(ICSE). Zurich, Switzerland, 3–13.

[11] Claire Le Goues, �anhVu Nguyen, Stephanie Forrest, and Westley Weimer. 2012.
GenProg: A Generic Method for Automatic So�ware Repair. IEEE Transactions
on So�ware Engineering (TSE) 38 (2012), 54–72. h�ps://doi.org/10.1109/TSE.
2011.104

[12] Ed Lindoo. 2014. Bringing COBOL Back into the College IT Curriculum. Journal
of Computing Sciences in Colleges 30, 2 (Dec. 2014), 60–66.

[13] Charles R. Litecky and Gordon B. Davis. 1976. A Study of Errors, Error-proneness,
and Error Diagnosis in Cobol. Commun. ACM 19, 1 (Jan. 1976), 33–38.

[14] Schneiderman. 1985. �e Relationship Between COBOL and Computer Science.
Annals of the History of Computing 7, 4 (1985), 348–352.

[15] Hideaki Shinomi and Yasuhisa Ichimori. 2010. ProgramAnalysis Environment for
Writing COBOL Aspects. In International Conference on Aspect-Oriented So�ware
Development (AOSD ’10). 222–230.

[16] Shin Hwei Tan and Abhik Roychoudhury. 2015. relifix: Automated Repair of
So�ware Regressions. In International Conference on So�ware Engineering (ICSE).
Florence, Italy.

[17] Westley Weimer, Stephanie Forrest, Claire Le Goues, and�anhVu Nguyen. 2010.
Automatic program repair with evolutionary computation. Communications of
the ACM Research Highlight 53, 5 (May 2010), 109–116.

[18] Westley Weimer, �anhVu Nguyen, Claire Le Goues, and Stephanie Forrest.
2009. Automatically finding patches using genetic programming. In ACM/IEEE
International Conference on So�ware Engineering (ICSE). Vancouver, BC, Canada,
364–374. h�ps://doi.org/10.1109/ICSE.2009.5070536

Figure 3: Naila: Was a cat in her previous life. Also, loves

pizza more than life itself

Figure 4: Snickers: THE PRETTIEST KITTY

Figure 5: Kevin: Kind of an idiot

Figure 6: Kyle and Ryan: So� pile

Figure 7: Layla: Actually the prettiest kitty

141

COBOLd: Gobblin’ Up COBOL Bugs for Fun and Profit SIGBOVIK’18, March 2018, Pi�sburgh, PA USA

Figure 8: Madam Penelope, �een of the Apartment

Figure 9: Millie: Stealer of food and hearts

Figure 10: Cheese: SPIRIT OF A CHAMPION

Figure 11: Ampersand: Stone Cold Killer

Figure 12: Aries: Is a bird

142

Transactional Memory Concurrency Verification with Landslide

Ben Blum

bblum@cs.cmu.edu

Abstract

Hardware transactional memory is a recently-introduced

concurrent programming paradigm which allows pro-

grammers to elide locks for performance in low-contention

workloads. However, it comes at a cost in implementa-

tion complexity: fast-path code must be accompanied by

backup paths to handle transaction failure. We extend

Landslide, a popular stateless model checker, with a con-

currency model for transactional memory and evaluate it

on several real-world transactional benchmarks and data

structure implementations.

Categories and Subject Descriptors D.1.3 [Program-

ming Techniques]: Concurrent Programming; D.2.4 [Soft-

ware Engineering]: Software/Program Verification

Keywords landslide terminal, baggage claim, ground

transportation, ticketing

1. Introduction

Transactional Synchronization Extensions (TSX) [23] is

an instruction set extension for x86 CPUs which adds

hardware-based transactional memory. The processor uses

its existing cache coherence algorithm to check for mem-

ory conflicts with other cores while temporarily staging a

sequence of memory accesses. If no other CPU accesses

the same memory during the transaction, the access se-

quence is committed to main memory atomically (with

respect to visibility by other CPUs). Otherwise, the ac-

cesses are discarded, the CPU’s local state is reverted, and

the transaction returns a failure code.

This feature can be used to replace conventional lock-

ing in performance-critical concurrent programs. When a

concurrent workload accesses largely thread-local data,

or disjoint sections of a shared data structure, the con-

tention rate between threads is low, and transactions will

often succeed. Compared to programs which use conven-

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without

fee, provided... honestly, provided nothing. The ACH is already flattered enough that you’re even reading this notice.

Copyrights for components of this work owned by others than ACH must be laughed at, then ignored. Abstracting

with credit is permitted, but abstracting with cash is preferred. And please tip us, for the love of Turing.

SIGBOVIK ’18 Pittsburgh, PA, USA

Copyright c© 2018 held by owner/author(s). Publication rights licensed to ACH.

ACH . . . $15.00

tional locks, which use bus-locking atomic accesses even

in the fastest code path, TSX provides substantial perfor-

mance improvements in such programs [10, 12, 44]. How-

ever, the possibility of transaction failure introduces ad-

ditional implementation complexity: programmers must

also provide a backup plan to safely resolve contention

between threads, usually involving conventional synchro-

nization. These backup paths must coordinate not only

with other backup paths but also with other fast paths

which another thread may begin after the original trans-

action failed, which even in the simplest transactions re-

quires complex synchronization sequences [10]. This in-

troduces an additional dimension of nondeterminism into

an already concurrent program, and moreover, because

transaction failure is expected to be rare, obscure inter-

leavings between failure paths are difficult to expose dur-

ing stress testing.

This motivates the use of stateless model checking

(MC) [19] to comprehensively verify these transactional

programs, fast paths failure paths and all. MC aims to

force the system to execute all possible thread inter-

leavings under a given test case, exhaustively check-

ing for bugs or verifying their absence in the corre-

sponding state space. Many such model checkers ex-

ist, varying in interleaving granularity, memory analysis,

types of programs checked, and search ordering strategy

[9, 24, 25, 27, 28, 30, 32, 38, 43]. This work builds upon

Landslide [4], a simulator-based tester which checks both

user- and kernel-level programs and incorporates data-

race analysis [16, 36] to find new preemption points at

memory access granularity. Our contributions are as fol-

lows:

1. We extend Landslide’s concurrency model to include

transaction failure as an additional source of nonde-

terminism;

2. We provide a proof sketch that our implementation

matches TSX’s execution semantics,

3. We evaluate the extended Landslide on several trans-

actional programs, analyzing both its bug-finding and

verification performance.

The paper is organized as follows. Section 1 intro-

duces the problem domain and motivates our research.

The other sections state the rest of the paper.

21

143

2. Background

This section introduces the fundamental concepts and

prior work in both hardware transactional memory and

stateless model checking, which we propose to combine.

Hardware transactional memory. TSX was imple-

mented on consumer hardware for the first time by Intel’s

Haswell architecture [22], which extends the x86 instruc-

tion set to provide xbegin, xend, and xabort for begin-

ning, committing, and aborting transactions, respectively.

Higher-level programming languages or compilers may of-

fer libraries or intrinsics to access these instructions; for C

and C++ GCC provides intrinsics named _xbegin() and

so on [18]. Figure 1 shows an example program using

TSX to synchronize access to a shared counter, includ-

ing a failure path which defaults to a conventional lock.

This example actually has a bug, which we will discuss

in the next section; the reader is encouraged to try to

spot it before then. Several related works formally prove

the correctness of transactional memory implementations

[13, 20, 21, 34], but verifying the client programs written

to use transactions remains an open problem.

Under software transactional memory (STM) [2], mem-

ory conflicts with other threads are the only reason for

transaction failure (apart from programmer-supplied ex-

plicit aborts); hence, depending on program semantics,

some transactions may be guaranteed to succeed. How-

ever, hardware transactions (HTM) may also fail for sev-

eral other reasons such as random system interrupts or

exhausting the CPU’s cache capacity. Because timer in-

terrupts can in principle occur at any moment, and with

arbitrary frequency (observable by the program, perhaps

as a result of a heavily-loaded system), in this paper we

will simplify the failure model by saying that HTM trans-

actions can fail for any reason. We defer discussion of

programs which distinguish the reason for aborts through

the failure code to Section 5.

Stateless model checking. Model checking (MC) [19]

is a testing technique for systematically executing and ver-

ifying the possible thread interleavings of a concurrent

program. The main research challenge is to cope with

exponential explosion of the state space, which is sized

O(nk) for a program with n operations and k threads.

Some stateful MCs explicitly store and compare all vis-

ited states of the program being tested [24], which both

keeps track of test coverage and allows identifying iden-

tical states to avoid testing redundant interleavings. By

contrast, stateless MC (henceforth abbreviated simply as

MC) stores only the current sequence of execution events

to avoid a prohibitive memory footprint. Reduction al-

gorithms [1, 11, 17, 25, 25, 45] can then analyze the

memory accesses in that sequence to identify interleavings

observationally-equivalent under Mazurkiewicz trace the-

ory [31] and hence safe to skip. The resulting state spaces

are still exponentially-sized, but only in the number of

1 if ((status = _xbegin()) == SUCCESS) {
2 x++;
3 _xend();
4 } else {
5 mutex_lock(&m);
6 x++;
7 mutex_unlock(&m);
8 }

Figure 1. Example transactional program. If the top

branch aborts, execution will revert to the return of

_xbegin() and control will drop into the else branch.

The programmer can then use explicit synchronization to

resolve the conflict.

conflicting operations rather than all operations. Of these,

Landslide uses Dynamic Partial Order Reduction (DPOR)

[17] to prune its state spaces.

MCs may instrument programs to introduce thread

switches at varying granularity, which affects the num-

ber of operations n. Some target distributed systems, in-

strumenting only message-passing events [42]; some run

multithreaded programs natively, instrumenting only the

pthread API for performance [38]; and some insert com-

piler instrumentation on statically-identified memory ac-

cesses [32, 43]. Landslide traces every memory access

through the use of a simulated environment [29], which

is important for identifying data races to use as new pre-

emption points [8], as well as for identifying when a mem-

ory conflict may cause transaction aborts. With regard to

checking for bugs, the “model” the name refers to be-

ing checked may be an external formal specification, the

program’s own internal consistency checks, or a set of ex-

pected properties encoded in the tool itself. Landslide uses

the latter two cases, checking for assertion failures as well

as deadlocks, use-after-frees, and segfaults. For this work

we also detect use of xend outside of a transaction or

xbegin within one as a bug.

3. Design

This section presents our formalization of transactional

memory in Landslide’s framework of thread concurrency.

We make two major simplifications: simulating transac-

tion aborts as immediate failure injections, and treating

transaction atomicity as a global mutex during data-race

analysis; and provide corresponding equivalence proofs.

Notation. Let I = T N1@L1, T N2@L2, ...T Nn@Ln, with

Ni a thread ID and Li a code line number, denote the

execution sequence of a program as it runs according to

the specified thread interleaving.1

1 This serialization of concurrent execution is told from the perspective

of all CPUs at once and hence assumes sequential consistency. For dis-

cussion of relaxed memory models refer to Section 5.

144

3.1 Example

Consider again the program in Figure 1. Note that the C-

style x++ operations, when compiled into assembly [41],

results in multiple memory accesses which can be inter-

leaved with other threads.

2a temp <- x;
2b temp <- temp + 1;
2c x <- temp;

If these instructions from the x++ in the transaction are

preempted, with another thread’s access to x interleaved

in between, the transaction will abort. So, the interleaving

T1@1,T1@2a,T1@2b,T2@1,T2@2,T2@3,T1@2c,T1@3

or, henceforth abbreviated for clarity:

T1@1− 2b,T2@1− 3,T1@2c − 3

is not possible; rather, T1 will fall into the backup path:

T1@1− 2b,T2@1− 3,T1@4− 7

However, the x++ operation from the failure path (corre-

spondingly 6a, 6b, 6c) can be thusly separated with con-

flicting accesses interleaved in between, since the mutex

only protects the failure path against other failure paths,

but not against the transaction itself. So (assuming x is in-

tended to be a precise counter rather than a sloppy one),

we observe a bug in the following interleaving.2

T1@1− 2b,T2@1− 3,T1@4− 6b,T3@1− 3,T1@6c − 7

Prior work [10] proposed the idiom shown in Figure 2 to

exclude this family of interleavings, which shows that cor-

rectly synchronizing even the simplest transactions may

be surprisingly difficult or complex.

3.2 Modeling Transaction Failure

Left unstated in interleavings such as T1@1−2c,T2@1−
3,T1@4− 73 are HTM’s execution semantics, namely:

1. any modifications to shared state (such as 2c) by T1

are not visible to T2 during its execution, despite T2

being executed afterwards, and

2. all local and global state changes by T1 between lines

1 and 2c are discarded when jumping to line 4.

While use of TSX in production requires the performance

advantage of temporarily staging such accesses in local

CPU cache, model checking such programs need be con-

cerned only with the program’s observable behaviours. We

2 Note also that this bug requires either at least 3 threads or at least 2

iterations between 2 threads to expose; this highlights MC’s dependence

on its test cases to produce meaningful state spaces in the first place.
3 For a clearer example we reorder T1’s write to x before T2’s part here.

prevent_transactions = false;

0 while (prevent_transactions) continue;
1 if ((status = _xbegin()) == SUCCESS) {
2 if (prevent_transactions)
3 _xabort();
4 x++;
5 _xend();
6 } else {
7 mutex_lock(&m);
8 prevent_transactions = true;
9 x++;
A prevent_transactions = false;
B mutex_unlock(&m);
C }

Figure 2. Variant of the program in Figure 1, with addi-

tional synchronization to protect the failure path from the

transactional path. The optional line 0 serves to prevent

a cascade of failure paths for the sake of performance by

allowing threads to wait until transacting is safe again.

claim that MCing the simpler interleaving T1@1,T2@1−
3,T1@4−7 is an equivalent verification as MCing the one

above; in fact, this interleaving suffices to check all ob-

servable behaviours of all interleavings of all subsets of

T2@1 − 3 with all subsets of T1@2a − 2c, whether they

share a memory conflict or not. Stated formally:

Lemma 1 (Equivalence of Aborts). Let:

• Ti@α be an HTM begin operation,

• Ti@β1 . . .Ti@βn be the transaction body (with βn the

HTM end call),

• Ti@φ1 . . .Ti@φm be the failure path, and

• Ti@ω1 . . .Ti@ωl be the subsequent code executed un-

conditionally.4

Then, for any interleaving prefix5

Ti@α,Ti@β1 . . .Ti@βb,

Tj@γ1 . . .Tj@γ j ,

Tk@κ1 . . .Tk@κk,

Ti@βb+1

with b < n, j 6= i, k 6= i, etc., either:

1. Ti@α,Tj@γ1 . . .Tj@γ j ,Tk@κ1 . . .Tk@κk,Ti@φ1 . . .

(conflicting case), or

2. Ti@α,Ti@β1 . . .Ti@βb . . .Ti@βn,Tj@γ1 . . .Tj@γ j ,

Tk@κ1 . . .Tk@κk (independent case)

exists and is observationally equivalent.

4 Arbitrary code may not be structured to distinguish these as nicely as

in our examples; e.g., more code may exist in the success branch after

_xend(); such would be considered part of ω here.
5 Without loss of generality: for any number of other threads Tj/Tk, and

for any number of thread switches away from Ti during the transaction.

145

Proof Sketch. We case on whether the operations by Tj

and/or Tk have any memory conflicts (read/write or

write/write) with Ti@β1 . . .Ti@βn. If so, then the hard-

ware will abort Ti’s transaction, discarding the effects of

Ti@β1 . . .Ti@βn and jumping to Ti@φ1, satisfying case

1. Otherwise, by DPOR’s definition of transition depen-

dence [17], Ti@βb+1 . . .Ti@βn is independent with the

transitions of Tj and Tk, may be successfully executed un-

til transaction commit, and reordering them produces an

equivalent interleaving, satisfying case 2.

The second part of our claim follows naturally.

Theorem 1 (Atomicity of Transactions). For any state

space S of a transactionally-concurrent program, an equiv-

alent state space exists in which all transactions are either

executed atomically or aborted immediately.

Proof Sketch. For every I ∈ S with Ti@α,Ti@β1 . . .Ti@βb,

Tj@. . . ,Tk@. . . ,Ti@βb+1 ∈ I , apply Lemma 1 to obtain

an equivalent interleaving I ′ satisfying the theorem con-

dition. The resulting S′ can then be MCed without ever

simulating HTM rollbacks.

3.3 Memory Access Analysis

Next, we address the memory accesses within transactions

with regard to data-race analysis. From Theorem 1 we

have that the body of all transactions may be executed

atomically within the MC environment. While they may

interleave between other non-transactional sequences, no

other operations (whether transactional or not) will inter-

rupt them. We claim this level of atomicity is equivalent to

that provided by a global lock, and hence abstracting it as

such in Landslide’s data-race analysis is sound.

Let Ti@µ,Tj@ν be a pair of memory accesses to the

same address, at least one a write, in some transac-

tional execution I normalized under Lemma 1. Then let

lockifym(Tk@L) denote a function over instructions in I ,

which replaces Tk@L with Tk@lock(m) if L is a success-

ful HTM begin, with a no-op if L is a transaction abort,

or with Tk@unlock(m) if L is an HTM end, or no replace-

ment otherwise. Finally, let I ′ = ∃m.lockifym(I), the exe-

cution with the boundaries of all successful transactions

replaced by an abstract global lock. Lemma 1 guarantees

mutual exclusion of m.

Theorem 2 (Transactions are a Global Lock). Ti@µ,Tj@ν

is a data race in I iff it is a data race in I ′.

Proof Sketch. We prove one case for each variant definiton

for data races supported in Landslide [8]. For each, we

semiformally state what it means to race in an execution

with synchronizing HTM instructions.

• Limited Happens-Before. To race in I they must be

reorderable at instruction granularity, at least one with

a thread switch immediately before or after. [33, 36].

I ⇒ I ′: If Ti@µ,Tj@ν race in I , then they cannot

both be in successful transactions, or else placing

Ti@µ within the boundaries of Tj@ν’s transaction

would cause the latter to abort, invalidating Tj@ν,

or vice versa. Hence they will not both hold m in

I ′. Otherwise their lock-sets and DPOR dependence

relation remain unchanged.

I ′ ⇒ I : If Ti@µ,Tj@ν race in I ′, both correspond-

ing threads cannot hold m; WLOG let Ti not hold m

during Ti@µ. Then in I , Ti@µ is not in a transac-

tion. With the remainder of their lock-sets still dis-

joint, and still not DPOR-dependent, Tj@ν (or its

containing transaction) can then be reordered di-

rectly before or after Ti@µ.

• Pure Happens-Before. WLOG fix Ti@µ ≺ Tj@ν ∈ I .

Then to race in I there must be no pair of synchroniz-

ing instructions Ti@ε (a release edge) and Tj@χ (an

acquire edge) such that

Ti@µ≺ Ti@ε≺ Tj@χ ≺ Tj@ν ∈ I

to update the vector clock epoch between Ti@µ and

Tj@ν [16, 35].

I ⇒ I ′: If Ti@µ,Tj@ν race in I , then they cannot

both be in successful transactions, or else Lemma 1

normalization would provide the corresponding

HTM end and begin for Ti@ε and Tj@χ respec-

tively. Hence there will be no unlock/lock pair on m

in I ′ to satisfy the above sequence.

I ′ ⇒ I : If Ti@µ,Tj@ν race in I ′, then they cannot

both hold m, or else lockifym would provide the

corresponding unlock and lock for Ti@ε and Tj@χ

respectively. Hence there will be no HTM end/begin

pair in I to satisfy the above sequence.

Hence, data-race analysis is sound when transaction bound-

aries are replaced by an abstract global lock.

3.4 Implementation

Our implementation of HTM-equivalent semantics has

been incorporated by the Landslide maintainers upstream.

It is available open-source at https://github.com/bbl
um/landslide. Programs should be ported to the Peb-

bles userland [14, 15], their use of compiler HTM intrin-

sics should be replaced with the Landslide stubs provided

in 410user/inc/htm.h, and HTM nondeterminism can

then be enabled with the -X command-line flag. We have

also extended its Iterative Deepening implementation [8]

with a new option (-M flag) to to optimize for comple-

tion time by prioritizing the maximal state space job and

cancelling all others (which maintains its soundness guar-

antee) which we will use in our evaluation. All test cases

therein are also available in the repository linked above.

146

Quicksand mode Maximal state space mode (-M)

buggy test params cpu (s) wall (s) int’s cpu (s) wall (s) int’s SS size (est.)

htm1 2,1 45.78 9.70 21 *9.47 *6.40 21 213

(assertion) 2,2 84.14 13.59 *33 *10.39 *7.70 49 1536

2,3 131.91 20.44 *73 *12.83 *9.67 113 10752

2,4 255.75 37.56 257 *18.63 *15.86 257 73728

3,1 114.06 17.45 *15 *9.50 *6.79 21 13653

3,2 109.60 26.16 49 *10.72 *7.97 49 393216

3,3 124.80 20.40 *73 *13.84 *11.01 113 11010048

3,4 227.49 35.15 *161 *31.37 *28.53 257 301989888

4,1 53.08 9.79 *15 *9.82 *7.00 21 873813

4,2 117.07 19.09 *33 *11.54 *8.55 49 100663296

swapbug 2,1 70.95 13.45 *16 *38.96 *13.15 109 194

(deadlock) 2,2 107.28 *17.45 *146 *44.73 19.47 281 1620

2,3 280.05 38.70 *352 *60.30 *35.55 718 12748

2,4 617.94 *81.50 *834 *108.58 82.60 1820 97823

3,1 *1275.04 *163.42 *771 – >30m – 184984

3,2 – >30m – – >30m – 3099225

avl_insert 2,2 488.07 64.77 *83 *81.00 *40.30 336 379982

(segfault+) 2,3 2670.87 *330.45 *3066 *1331.79 1274.36 13926 96248131

2,4 *3259.37 *436.50 *1639 – >30m – 36019973

3,1 222.02 40.04 *28 *69.99 *24.25 78 1572107

3,2 *1569.09 *216.85 *209 – >30m – 1402363529

Table 1. Landslide’s bug-finding performance on various test configurations. Quicksand’s workqueue approach optimized

for fast bug-finding is compared against our maximum-state-space-prioritizing approach for fast verification. For each, we

list the CPU-time and wall-clock time elapsed, plus the number of interleavings of the ultimately buggy state space tested,

before the bug was found. * marks the winning measurements between each series. Lastly, Landslide’s state space size

estimation [39], though approximate at best, confers a sense of the exponential explosion.

4. Evaluation

To the best of our knowledge, this is the first work to test

transactional programs in a model-checking environment,

so no other MC State of the Art6 exists to compare to in

controlled experiments. Nevertheless, we pose the follow-

ing evaluation questions.

1. How quickly does Landslide find bugs in incorrect

transactional programs of varying sizes?

2. How quickly does Landslide verify correct transactional

programs of varying sizes?

3. By the way, should MC research papers quantify vari-

ance in their CPU-time performance experiments?

Our evaluation suite comprises several hand-written

unit tests and [10]’s microbenchmarks and transactional

AVL tree and separate-chaining hashmap, as follows.

• htm1: The bug from Figure 1.

• htm2: The fixed version as in Figure 2.

• counter: Microbenchmark version of htm2 which re-

places the complex failure path with a simple xadd.

6 The author’s DJ name.

• swap: Microbenchmark that swaps values in an array.

• swapbug: swap modified to introduce circular locking

in the failure path.

• avl_insert: AVL tree concurrent insertion test.

• avl_fixed: avl_insert with the AVL bug fixed

(spoilers!!).

• map_basic: Separate-chaining hashmap concurrent

insertion test.

• map_basicer: map_basicmodified with a larger ini-

tial size to skip the resizing step.

The notation testname(K , N) will denote a test con-

figuration of K threads, each running N iterations of the

test logic. All tests were run on an 8-core 2.7GHz Core i7

with 32 GB RAM.

4.1 Bugs

Table 1 presents our bug-finding results. We configured

Landslide to run the Quicksand algorithm [8] shown left,

as well as to prioritize the maximal state space as dis-

cussed above, shown right, each with a time limit of 30

minutes. We draw three main conclusions from this data.

147

while (_retry);
if (_xbegin() == SUCCESS) {

tie(_root,inserted) = _insert(_root,n);
_xend();

} else {
pthread_mutex_lock(&_tree_lock);
_retry = true;
tie(_root,inserted) = _insert(_root,n);
_retry = false;
pthread_mutex_unlock(&_tree_lock);

}

Figure 3. Unmodified code from htmavl.cpp showing

the previously-unknown bug found by Landslide. The

transaction path fails to check _retry, leading to data

races and corruption just as in htm1.

Finding bugs quickly. As the test parameters increase,

the multiplicative factor in bug-finding speed (2-4x, eye-

balling) is generally smaller than that of the total number

of interleavings (10-100x). In other words, should they ex-

ist, Landslide find bugs reasonably quickly in these trans-

actional programs despite prohibitive exponential explo-

sion in total state space size. This corroborates the prior

work [8], extending its good news to the world of HTM.

New bugs. In addition to the bugs we intentionally

wrote in htm1 and swapbug, to our pleasant surprise

Landslide also found a previously-unknown bug in the

transactional AVL tree, exposed by avl_insert with any

parameters higher than (2,1). Figure 3 shows the root

cause, essentially the htm1 bug in disguise. This mani-

fested alternately as a segfault and as a consistency-check

assertion failure. The presence of while (_retry);
makes the necessary preemption window extremely small

in practice (between it and _xbegin()), whereas MC is

blind to such matters of chance.7 Moreover, we conclude

that even Figure 2’s protocol’s very proposer getting it

wrong motivates the need for MC on such programs, and

suggests TSX primitives should be encapsulated behind

higher-level abstractions such as lock elision [26], which

can be verified in isolation with smaller state spaces then

trusted in turn when checking their client programs [37].

Performance comparison. Quicksand’s ability to find

bugs in fewer distinct interleavings does not necessarily

correlate with better performance. Most of our tests are

too small for its approach to pay off, with swapbug(3,1)

and avl_insert as its notable wins. While the prior work

showed plenty more wins [8], future MCs could prioritize

state spaces using not just size estimation but state space

maximality as well to soften the trade-off both for smaller

tests and for verification. Speaking of which...

7 Considering the loop does not affect the test’s possible behaviours, only

its likely ones, we removed it in Landslide’s version of the test to keep

the state space size manageable.

4.2 Verification

Landslide proved the following tests correct. With no bugs

to find, comparing the different testing modes against

each other is meaningless; we simply present their state

space sizes and runtime (using -M) in Table 2.

cpu (s) SS size

test params (or †ETA) (or †est.)

htm2 2,1 18.57 294

2,2 133.78 4902

2,3 1986.98 79017

3,1 11672.15 467730

3,2 †10d 14h †13763999

counter 2,1 5.57 30

2,2 15.53 384

2,3 155.00 5280

2,4 2211.10 75264

3,1 57.90 1960

3,2 10028.93 329888

swap 2,1 32.98 193

2,2 3652.91 101150

3,1 †8d 12h †411312

avl_insert 2,1 1083.35 40062

avl_fixed 2,1 1079.03 45078

2,2 †2762y †8714863

3,1 †12d 2h †11498545

map_basic 2,1 †10d 17h †16388977

map_basicer 2,1 877.44 28635

2,2 †2d 7h †5925634

3,1 †468d 13h †35893653

Table 2. Transactional tests verified (or not) by Landslide.

Several larger tests we were unable to complete before

the submission deadline are also shown. These are indi-

cated with † and their listed ETAs and state space sizes

represent Landslide’s estimate after a timeout of 1 hour

(hopefully enough for data-race PPs to saturate and esti-

mates to stablize, although note the two estimate types

use different algorithms so may disagree significantly).

Though these tests proved beyond our reach, in contrast

with the instant gratification expected of bug-finding, the

verification guarantee may in some cases be worth the esti-

mated time requirement for widely-used industrial imple-

mentations. Future work may also expand our coverage

upon this frontier [7].

4.3 Variance

Because many of the verification tests are long-running,

and we are writing this too close to the submission dead-

line (who doesn’t), we regret being unable to present ev-

ery performance measurement above as an average of

multiple samples with error bars [40]. Nevertheless, we

make some effort to address variance.

148

We noticed significant slowdowns when varying sev-

eral aspects of our experimental environment. For exam-

ple, multiple Landslides running at once slow each other

down, likely arising from kernel resource contention as

Landslide uses fork() to save simulation state. Table 3

shows the impact of running a single Landslide instance

with -M on counter(2,2) with various programs also run-

ning, despite never saturating our test system’s 8 CPUs.

Table 4 shows the impact of Landslide needing to au-

tomatically annotate counter(2,2) being run for the first

time, rather than reusing existing instrumentation, as well

as the variance of Quicksand mode. Because Quicksand

repeats more work across jobs, rather than comparing it

to a baseline, we show in the right column how many to-

tal interleavings each approach executed. (The maximal

state space alone comprises 384 in all cases.) The quick-
sand variance was surprisingly bimodal, with 6 samples in

a distribution of 106.14±1.22 and 4 in 142.11±1.67, sug-

gesting two distinct scheduling patterns for its workqueue

threads. Future work should figure out why.

We conclude that MC performance evaluations must

address experimental environment variables to ensure

consistent performance between runs. So doing, multi-

ple samples and error bars are then necessary only when

using nondeterministic search ordering strategies such as

Iterative Deepening. Otherwise, considering the low vari-

ance shown in Table 3, they need be shown only for a

token small test to provide reader some assurance of sim-

ilar consistency in the larger tests (especially if the time

tradeoff to measure them would sacrifice testing larger

state spaces to begin with).

For all tests outside of Table 3, we fixed our environ-

ment by measuring all performance numbers with Firefox

and Chrome as the only other significant machine load.

We believe the exponential differences among completion

times justifies the absence of error bars, which one would

expect to show 2% variance if extrapolating from these

results. The numbers of interleavings in each state space

are, of course, deterministic and do not vary across runs.

5. Limitations

This section should be mandatory in all systems papers.

Transaction failure codes. When a transaction fails,

_xbegin() returns a failure code denoting the rea-

son, or combination thereof, therefor [18]. If a program

then cases on that failure code to select between differ-

ent backup paths, model checking it by simply inject-

ing a single type of failure may be unsound. For exam-

ple, a program executing a transaction which is guar-

anteed to never conflict with any other threads, and

hence never abort without _XABORT_RETRY, could legally

assert(false); in its failure path, while our approach

in Section 3 would erroneously trigger that assertion and

report a bug. Likewise, the transactional data structures

load cpu (s) vs self avg vs baseline

none 14.95 ± 0.17 0.99-1.02x (baseline)

vid-L 15.13 ± 0.10 0.99-1.01x 1.01x

ff/c 15.55 ± 0.16 0.99-1.02x 1.04x

sm5 16.63 ± 0.07 0.99-1.01x 1.11x

ff/c+vid-S 17.09 ± 0.34 0.98-1.05x 1.14x

ls 19.11 ± 0.32 0.97-1.03x 1.28x

ff/c+ls 19.66 ± 0.50 0.96-1.02x 1.31x

Table 3. Performance variance on counter(2,2) with

other programs running on the test machine. vid-L is full-

screen video (played locally with mplayer), ff/c is Firefox

and Chrome (idle, ≤20 tabs), sm5 is StepMania 5.1 (dur-

ing gameplay [5]), vid-S is full-screen video (streamed via

Crunchyroll), ls is a 2nd instance of Landslide. Average of

10 samples, ±N is 1 stddev.

Landslide mode cpu (s) total int’s

verif (-M) 14.95 ± 00.17 403

reinstrument 24.72 ± 00.10 403

quicksand (no -M) 120.53 ± 18.62 2128

Table 4. Performance variance on counter(2,2) in vari-

ous modes. Average of 10 samples, ±N is 1 stddev.

from [10] abstract away any spurious _XABORT_RETRY
aborts behind a retry loop; a MC unwise to that idiom

would call it an infinite loop bug.

Our HTM implementation includes an experimental

feature to track the set of abort codes possible for each

transaction. _XABORT_RETRY is always enabled; then, it

harnesses DPOR’s existing memory analysis to identify

when _XABORT_CONFLICT is possible, and instruments

_xabort() calls to record any user-supplied codes for

_XABORT_EXPLICIT. This comes at a cost of even more

state space explosion, increasing the exponent at each

_xbegin() preemption point by (usually) 1 plus how-

ever many distinct _xabort() codes the program uses.

Many such branches may be equivalent; for example,

explicit and conflict aborts need not be tested separately

in transactions whose failure paths do not distinguish the

cause, and the perennial _XABORT_RETRY abort can be

skipped entirely if the client abstracts it away behind a

retry loop. In fact, applying both reductions simultane-

ously amounts to the STM concurrency model [2]8 and

may reduce the state space even smaller than the origi-

nal. Testing them by hand 9 reduced map_basicer(2,1)’s

28635 interleavings to 11577, and produced the same

384-interleaving state space on counter(2,2) (in which

DPOR triggers conflict aborts on every transaction any-

8 Proof left to future work. We’ve proved enough here already.
9 Using visual inspection of the test to trust the reductions’ soundness.

149

way). Future work could use static or dynamic flow analy-

sis to identify such reduction opportunities automatically;

for now, this feature is disabled by default but accessible

via the -A command-line option (in addition to -X).

Relaxed memory orderings. Section 3’s formalization

of thread interleavings does not account for read/write

reorderings possible on relaxed consistency architectures

[3]. In fact, even after [10]’s proposed fix, our running

example program is still incorrect on Total Store Order

(TSO) architectures such as x86. Despite stores being

totally-ordered, x86 may still reorder stores after sub-

sequent loads. Accordingly, an execution of 8, 9a, 9b, 9c

in Figure 2 may be locally visible to another thread as

9a, 8, 9b, 9c, and hence an apparent interleaving of

T1@1,T2@1−5,T1@7,T1@9a,T3@1−5,T1@8,T1@9b−B

is possible (reordered accesses underlined for emphasis).

An mfence barrier is needed between lines 8 and 9 to

solve this problem on TSO [6]. On Partial Store Order

(PSO) architectures, even more barriers may be necessary.

Because Landslide’s concurrency model includes only

instruction-level thread nondeterminism, not per-CPU

memory buffer reorderings, our current HTM implemen-

tation cannot find this bug. In fact, it erroneously verifies

the corresponding test htm2(3,1) in 3 CPU-hours, with

467730 distinct interleavings in total, none of which in-

clude the above-listed sequence. Recent work extended

DPOR to support TSO and PSO memory nondeterminism

[45]; if incorporated into Landslide, we could find or ver-

ify the absence of such bugs. Visual inspection of [10]’s

HTM data structures found no barriers used in this imple-

mentation pattern; we would urge any reader interested

in using those to add them in by hand first.

6. Conclusion

Stateless model checking research is a perpetual exis-

tence of staring up the sheer cliff face that is the expo-

nential curve. As new concurrency paradigms emerge,

we make our living by adapting our reduction algo-

rithms and search strategies to them to climb ever higher

on that curve, eking out a few more loop iterations or

slightly higher thread counts in our verification guaran-

tees. Whether that is beautiful in its imperfection or cause

for despair is merely a matter of perspective. Also, the

author hopes their committee won’t mind the publication

venue when they cite this in their thesis.

Acknowledgments

We thank Mario Dehesa-Azuara for generously provid-

ing the HTM data structures used in our evaluation, the

anonymous SIGBOVIK program committee, and anyone

who actually read this unusual paper all the way through.

This work was supported in part by the U.S. Army Re-

search Office under grant number W911NF0910273.

References

[1] P. Abdulla, S. Aronis, B. Jonsson, and K. Sagonas. Optimal

dynamic partial order reduction. In Principles of Program-

ming Languages, POPL ’14. ACM, 2014.

[2] A.-R. Adl-Tabatabai, B. T. Lewis, V. Menon, B. R. Murphy,

B. Saha, and T. Shpeisman. Compiler and runtime support

for efficient software transactional memory. In Program-

ming Language Design and Implementation, PLDI ’06. ACM,

2006.

[3] S. V. Adve and K. Gharachorloo. Shared memory consis-

tency models: A tutorial. Computer, 29(12), Dec. 1996.

[4] B. Blum. Landslide: Systematic dynamic race detection in

kernel space. Master’s thesis, Carnegie Mellon University,

May 2012.

[5] B. Blum. A boring follow-up paper to “Which ITG stepcharts

are turniest?” titled, “Which ITG stepcharts are crossoveri-

est and/or footswitchiest?”. In Conference in Celebration of

Harry Q. Bovik’s 26th Birthday, SIGBOVIK ’17. ACH, 2017.

[6] B. Blum. Demonstration of the need for a barrier in TSX

failure paths. https://gist.github.com/bblum/85f
64858a35a74641be228f191144911, 2018.

[7] B. Blum. Practical Concurrency Testing or, How I Learned

to Stop Worrying and Love the Exponential Explosion. PhD

thesis, Carnegie Mellon University, Pittsburgh, PA, USA,

2018.

[8] B. Blum and G. Gibson. Stateless model checking with data-

race preemption points. In Object-Oriented Programming,

Systems, Languages, and Applications, OOPSLA 2016. ACM,

2016.

[9] S. Burckhardt, P. Kothari, M. Musuvathi, and S. Na-

garakatte. A randomized scheduler with probabilistic guar-

antees of finding bugs. In Architectural Support for Pro-

gramming Languages and Operating Systems, ASPLOS XV.

ACM, 2010.

[10] M. Dehesa-Azuara and N. Stanley. Hardware transactional

memory with Intel’s TSX. http://www.contrib.andre
w.cmu.edu/~mdehesaa/, 2016.

[11] B. Demsky and P. Lam. SATCheck: SAT-directed stateless

model checking for SC and TSO. In Object-Oriented Pro-

gramming, Systems, Languages, and Applications, OOPSLA

2015. ACM, 2015.

[12] D. Dice, Y. Lev, M. Moir, and D. Nussbaum. Early expe-

rience with a commercial hardware transactional memory

implementation. In Architectural Support for Programming

Languages and Operating Systems, ASPLOS XIV. ACM, 2009.

[13] S. Doherty, L. Groves, V. Luchangco, and M. Moir. To-

wards formally specifying and verifying transactional mem-

ory. Electron. Notes Theor. Comput. Sci., 259, Dec. 2009.

[14] D. Eckhardt. Pebbles kernel specification. http://www.c
s.cmu.edu/~410-s18/p2/kspec.pdf, 2018.

[15] D. Eckhardt. Project 2: User level thread library. http:
//www.cs.cmu.edu/~410-s18/p2/thr_lib.pdf, 2018.

[16] C. Flanagan and S. N. Freund. FastTrack: Efficient and

precise dynamic race detection. In Programming Language

Design and Implementation, PLDI ’09. ACM, 2009.

150

[17] C. Flanagan and P. Godefroid. Dynamic partial-order reduc-

tion for model checking software. In Principles of Program-

ming Languages, POPL ’05. ACM, 2005.

[18] GNU Foundation. X86 transaction memory intrinsics.

https://gcc.gnu.org/onlinedocs/gcc-4.8.2/gc
c/X86-transactional-memory-intrinsics.html,

2016.

[19] P. Godefroid. VeriSoft: A tool for the automatic analysis of

concurrent reactive software. In Computer Aided Verifica-

tion, CAV ’97. Springer-Verlag, 1997.

[20] R. Guerraoui, T. A. Henzinger, and V. Singh. Complete-

ness and nondeterminism in model checking transactional

memories. In Concurrency Theory, CONCUR ’08. Springer-

Verlag, 2008.

[21] R. Guerraoui and M. Kapalka. On the correctness of trans-

actional memory. In Principles and Practice of Parallel Pro-

gramming, PPoPP ’08. ACM, 2008.

[22] P. Hammarlund, R. Kumar, R. B. Osborne, R. Rajwar,

R. Singhal, R. D’Sa, R. Chappell, S. Kaushik, S. Chennupaty,

S. Jourdan, et al. Haswell: The fourth-generation Intel core

processor. IEEE Micro, (2), 2014.

[23] M. Herlihy and J. E. B. Moss. Transactional memory: Ar-

chitectural support for lock-free data structures. In Interna-

tional Symposium on Computer Architecture, ISCA ’93. ACM,

1993.

[24] G. J. Holzmann. The model checker SPIN. IEEE Transac-

tions on Software Engineering, 23(5), May 1997.

[25] J. Huang. Stateless model checking concurrent programs

with maximal causality reduction. In Programming Lan-

guage Design and Implementation, PLDI 2015. ACM, 2015.

[26] Intel. Hardware lock elision overview. https://softwa
re.intel.com/en-us/node/683688, 2013.

[27] C. S. Jensen, A. Møller, V. Raychev, D. Dimitrov, and

M. Vechev. Stateless model checking of event-driven ap-

plications. In Object-Oriented Programming, Systems, Lan-

guages, and Applications, OOPSLA 2015. ACM, 2015.

[28] B. Kasikci, C. Zamfir, and G. Candea. Data races vs. data

race bugs: Telling the difference with portend. In Archi-

tectural Support for Programming Languages and Operating

Systems, ASPLOS XVII. ACM, 2012.

[29] K. P. Lawton. Bochs: A portable PC emulator for Unix/X.

Linux J., 1996(29es), Sept. 1996.

[30] T. Leesatapornwongsa, M. Hao, P. Joshi, J. F. Lukman, and

H. S. Gunawi. SAMC: Semantic-aware model checking for

fast discovery of deep bugs in cloud systems. In Operat-

ing Systems Design and Implementation, OSDI’14. USENIX

Association, 2014.

[31] A. Mazurkiewicz. Trace theory. In Advances in Petri Nets

1986, Part II on Petri Nets: Applications and Relationships to

Other Models of Concurrency. Springer-Verlag, 1987.

[32] M. Musuvathi, S. Qadeer, T. Ball, G. Basler, P. A. Nainar,

and I. Neamtiu. Finding and reproducing heisenbugs in

concurrent programs. In Operating Systems Design and

Implementation, OSDI’08. USENIX Association, 2008.

[33] R. O’Callahan and J.-D. Choi. Hybrid dynamic data race de-

tection. In Principles and Practice of Parallel Programming,

PPoPP ’03. ACM, 2003.

[34] J. O’Leary, B. Saha, and M. R. Tuttle. Model checking

transactional memory with Spin. In Principles of Distributed

Computing, PODC ’08. ACM, 2008.

[35] E. Pozniansky and A. Schuster. Efficient on-the-fly data

race detection in multithreaded C++ programs. In Princi-

ples and Practice of Parallel Programming, PPoPP ’03. ACM,

2003.

[36] K. Serebryany and T. Iskhodzhanov. ThreadSanitizer: Data

race detection in practice. In Workshop on Binary Instru-

mentation and Applications, WBIA ’09. ACM, 2009.

[37] J. Simsa. Systematic and Scalable Testing of Concurrent Pro-

grams. PhD thesis, Carnegie Mellon University, Pittsburgh,

PA, USA, 2013.

[38] J. Simsa, R. Bryant, and G. Gibson. dBug: Systematic eval-

uation of distributed systems. In Systems Software Verifica-

tion, SSV’10. USENIX Association, 2010.

[39] J. Simsa, R. Bryant, and G. Gibson. Runtime estimation

and resource allocation for concurrency testing. Technical

Report CMU-PDL-12-113, Carnegie Mellon University, De-

cember 2012.

[40] T. VII. What, if anything, is epsilon? In Conference in

Celebration of Harry Q. Bovik’s 26th Birthday, SIGBOVIK ’14.

ACH, 2014.

[41] T. VII. ZM~~ # PRinty# C with ABC! In Conference in

Celebration of Harry Q. Bovik’s 26th Birthday, SIGBOVIK ’17.

ACH, 2017.

[42] J. Yang, T. Chen, M. Wu, Z. Xu, X. Liu, H. Lin, M. Yang,

F. Long, L. Zhang, and L. Zhou. MODIST: transparent model

checking of unmodified distributed systems. In Networked

Systems Design and Implementation, NSDI’09. USENIX As-

sociation, 2009.

[43] Y. Yang, X. Chen, G. Gopalakrishnan, and R. M. Kirby. Ef-

ficient stateful dynamic partial order reduction. In Work-

shop on Model Checking Software, SPIN ’08. Springer-Verlag,

2008.

[44] R. M. Yoo, C. J. Hughes, K. Lai, and R. Rajwar. Performance

evaluation of Intel(R) transactional synchronization exten-

sions for high-performance computing. In High Performance

Computing, Networking, Storage and Analysis (SC). IEEE,

2013.

[45] N. Zhang, M. Kusano, and C. Wang. Dynamic partial or-

der reduction for relaxed memory models. In Programming

Language Design and Implementation, PLDI 2015. ACM,

2015.

151

CONFIDENTIAL COMMITTEE MATERIALS

SIGBOVIK 2018 Paper Review

Paper 13: Transactional Memory
Concurrency Verification with Landslide

Assistant Professor

Rating: Thesis-Worthy

Confidence: External Committee Member

This paper presents earth-shaking work that deserves to be read by the entire computer science

community. To that end, have you considered putting it in a thesis?

152

SIGBOVIK 2018
(Continued) Message from the Organizing Commi�ee

You empty Waste Bay #1, but decide that you can wait until you get home to empty
Waste Bay #2. Not wanting to risk encountering another dangerously conductive
beverage, you exit the building.

goto PAGE_17;

153

SIGBOVIK 2018
(Continued) Message from the Organizing Commi�ee

With mechanical precision, you easily repair your pants using a single thread.
Multithreaded pant repair must only be necessary for humans, who could never
stitch so precisely.

As you put your pants back on, you notice that you are surrounded by curious
observers. Some look shocked that you so cavalierly removed your pants, while
others look impressed at your pant repair prowess. Just in case any of the onlookers
are Serious Researchers, you scurry outside before any of them realize you are a
robot.

goto PAGE_17;

154

Programming Languages

Save Me

22 Dead programming

Michael Coblenz

Keywords: programming languages, live programming,

dead programming

23 Alternary operators: Alternative ternary operators

Jim McCann; Your Name Here; and Your Name Here, Evan

Keywords: ternary, punctuation, operator, punchline

24 bashcc: Multi-prompt one-shot delimited continuations

for Bash

Spencer Baugh and Dougal Pugson

Keywords: control effects, delimited continuations, shell

scripting

25 Towards a formalization of Claude Shannon’s masters thesis

andrewtron3000

Keywords: Coq, proof assistant, formalization, proposi-

tional logic, electromechanical relays

155

Dead Programming

Michael Coblenz
Carnegie Mellon University
Pittsburgh, Pennsylvania
mcoblenz@cs.cmu.edu

ABSTRACT

Live programming has recently become a popular topic of research.

This paper introduces dead programming, a promising new direc-

tion in programming language design.

KEYWORDS

Programming languages, Live programming, Dead programming

ACM Reference Format:

Michael Coblenz. 2018. Dead Programming. In Proceedings of ACH SIGBOVIK

(SIGBOVIK ’18). ACM, New York, NY, USA, 2 pages. https://doi.org/10.1145/

nnnnnnn.nnnnnnn

1 INTRODUCTION

Live programming [1] espouses a responsive model in which the

programming environment provides continuous feedback to the

programmer regarding program behavior. Unfortunately, this ap-

proach to programming suffers from several flaws, which we ad-

dress in our new design. First, in spite of a programmer’s best effort,

programs in live programming languages can include bugs; fixing

these bugs in a live program is a hazardous occupation [2]. Second,

as with traditional programming languages, programs written in

live programs can have poor performance; consider the fact that

live programs run on limited hardware and are written with tradi-

tional features such as recursion and loops. Third, live programs

can be very expensive to construct, since they require expensive

programmers to write them.

Dead programming addresses all of the above problems with a

novel programming model. In fact, dead programming consists of

a whole suite of tools, which enable superior programmer produc-

tivity. In this paper, we describe the first programming language,

DEAD, designed to support dead programming, along with a com-

piler and optimizer. Although DEAD programs can be executed on

traditional hardware, we also show how novel hardware can opti-

mize execution beyond that which currently-available production

equipment can attain.

2 PROGRAMMING LANGUAGE

In this section, we describe the programming language, DEAD,

which we have successfully used to write dead software.

2.1 Syntax
P ::= .

| P NOP

V ::= ()

SIGBOVIK ’18, April 1, 2018, Pittsburgh, PA USA

2016. ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

2.2 Static Semantics

DEAD only supports one value, (), to which every program evalu-

ates. Every program has type unit.

⊢ · : unit
⊢ P : unit

⊢ P NOP : unit

2.3 Dynamic semantics

Every DEAD program evaluates to the value (). The proof is left

to the reader as a simple exercise in induction on the dynamic

semantics.

⊢ · ⇓ ()
⊢ P ⇓ v

⊢ P NOP ⇓ ()
The astute reader may notice that programs written in DEAD

have no side effects, since the semantics require no operations on a

store. DEAD is a pure functional language, as are most new, trendy

languages. As is widely understood, mutable state is a primary cause

of difficulty reasoning about program behavior. DEAD addresses

this problem in a similar fashion to Haskell, another widely-used

pure functional language. We expect that by facilitating ease of

understanding and being substantially simpler than Haskell, DEAD

will quickly become a very popular language, as it is a particularly

convenient way of expressing programs that do nothing.

Some readers may be troubled by the lack of expressivity of a

program that has no side effects. We remind the reader that, in the

end, the output of every computer is a matter of converting elec-

tricity to heat, an operation that can be conducted quite effectively

by a DEAD program.

2.4 Runtime environment

Conveniently, most modern CPUs already implement DEAD di-

rectly because they support a NOP instruction. Thus, the imple-

mentation of a runtime environment is quite straightforward and

requires no overhead, unlike most existing approaches to program-

ming. The use of a compiler is quite unnecessary. However, many

programmers will avail themselves of an optimizer.

2.5 Compiler optimization

We show in this section how the traditional liveness analysis can be

applied to DEAD programs. Note that no DEAD instruction reads

from any register or memory address, which means that none of the

temps written to are live. Thus, a correctly-implemented optimizer

can remove every instruction from a DEAD program, leaving an

optimal (zero-length) program.

As there are no facilities to invoke external library functions,

dead code removal can safely remove all existing library code.

22

156

SIGBOVIK ’18, April 1, 2018, Pi�sburgh, PA USA Michael Coblenz

The result is that, although DEAD is an expressive language, sup-

porting programs of arbitrary size, every DEAD program optimizes

optimally down to a zero-length program. Thus, the programmer

can choose exactly how much electricity to convert to heat when

running the program for a given execution environment, thus ex-

actly replicating the behavior of a program written in a traditional

programming language.

2.6 Hardware support

Current hardware environments offer efficient conversion of elec-

tricity to heat. However, in many cases this side effect is undesir-

able. We propose, then, a new programming environment, which

is better-suited to running DEAD programs. We have successfully

executed DEAD programs on a Russet potato. In addition to being

an aesthetically pleasing addition to any office environment, the

POTATO machine supports local farmers. It does have the disad-

vantage of eventually sprouting non-dead appendages; this is an

opportunity for future work.

3 THE FUTURE: UNDEAD PROGRAMMING

Undead programming represents the next frontier in programming

environments. Although one might argue that the POTATO exe-

cution environment is already undead, future work should more

thoroughly explore the space of undead languages and environ-

ments.

REFERENCES
[1] Sean McDirmid. 2007. Living It Up with a Live Programming Language. In Pro-

ceedings of the 22nd Annual ACM SIGPLAN Conference on Object-oriented Program-
ming Systems and Applications (OOPSLA ’07). ACM, New York, NY, USA, 623–638.
https://doi.org/10.1145/1297027.1297073

[2] Aplana Software. 2015. When developers try to fix a bug in production. https:
//www.youtube.com/watch?v=75wa8Lx4yc4. (2015).

157

Alternary Operators: Alternative Ternary Operators

Jim McCann∗

TCHOW llc
Your Name Here Your Name Here, Evan

A ? B : C
Figure 1: The ternary traditional operator (“tradnary operator”) evaluates to either B (if A evaluates to true) or C (otherwise).

Abstract

Wizened old C++ programmers often refer reverently to

“the” ternary operator – a wonderful language construct that

allows in-line decision-making to compactly expressed.

But is the traditional ternary operator really the ternary op-

erator, or are there other, as-yet-undiscovered, ternary oper-

ators that work similarly? In this paper, we axiomatize the

notion of a ternary operators and explore the space of oper-

ators consistent with these axioms, demonstrating that there

is, indeed, no one true ternary operator.

CR Categories: . . [Blank]: Blankings—Blank

1 Introduction

The traditional ternary operator (“tradnary operator”) is used

in C-like languages [ISO 2017]† to express the notion of in-

line decision making:

A ? B : C

Where B and C must have compatible types. At runtime,

first A is evaluated, and then either B or C are evaluated

based on the truth-value of A (particularly, if A is true, then

B is evaluated; otherwise C is evaluated). See also Figure 1.

This notion of fickle evaluation gives the tradnary operator a

lot of power, on both sides of the equals sign.

For instance, one can use it to implement circular indexing:

next = (i < size ? arr[i] : arr[0]);

Provide a default value for missing data:

val = (pts[i] ? *pts[i] : 0.0f);

Pick a variable to increment:

(x > 0 ? pos sum : neg sum) += x;

Pick a vector to append to:

(x > 0 ? pos : neg).push(x);

Or even select a function to call:

∗e-mail: ix@tchow.com
†Though the word “ternary” doesn’t actually appear in the specification.

ISO/IEC calls it the conditional operator.

(op == ’+’ ? add : sub)(a,b);

2 Which Operators are Ternary Oper-

ators?

What is it that makes the tradnary operator a member of the

fraternity of ternary operators (“fraternary”)? We believe

that it must hew to several key ternary properties (“terper-

ties”). These properties are largely non-surprising, and so

are stated with minimal justification.

2.1 List of Fraternary Terperties

Aritude. To be ternary, an operator must have three operands.

So while it might be tempting to define an operator of the

form A ? B : C : D, this would not fit our definition.

As they say in the culture: “to be a cool dude, you gotta have

the right aritude.”

Infixulation. Like all C operators, ternary operators should

be written in infix notation using characters that are disal-

lowed in variable names. Ideally, the punctuation should be

such that a lexer can tokenize the operator without resort-

ing to recursion or complicated pattern matching. This may

seem like a limitation in the creation of additional operators,

but – even though the current specification seems to recc-

ommend it – in practice, most compilers‡ reject non-ASCII-

letters in variable names, leaving whole swaths of codepoints

available for productive use, including !, ¿, and U+203D.

Indeed, operator overloading also allows the re-use of the

same punctuation as the tradnary operator; though this con-

cept does not persist throughout all the languages that sup-

port the operator, so alternate punctuation may be preferred.

Fickleness. Of course, what makes any ternary truly inter-

esting is its mercurial nature. The fact that the operator eval-

uates only some of its operands, in a way that cannot – in

general – be determined at compile time, is integral to its

nature.

Uniquivity. Finally, it should be the case that any ternary

operator would be cumbersome to duplicate with other lan-

guage syntax. Impossibility is too much to ask, since – as we

‡As in, both of the ones we tried.

23

158

show later – even the tradnary operator can be replaced with

a templated functor.

3 Alternative Ternary Operators

With these properties in hand, we can finally consider what

alternative ternary operators (“alternary operators”) may ex-

ist that are Fickle, Infixulated, Uniqued, and have the right

Aritude. Below, we review some possible operators and in-

clude implementation notes.

3.1 The Race Condition

A # B C

This ternary operator evaluates A and B in parallel, and takes

the value of whichever one finishes fastest. The expression

C is evaluated only in cases where A completes before B.

3.2 The Reverse Tradnary

A : B ? C

If evaluating C after A would produce a true value, then eval-

uate A, otherwise evaluate B.

NOTE: a general implementation likely requires transac-

tional memory and/or use of observable speculative execu-

tion (e.g. the spectre “bug”); while limiting the operator to

compile-time evaluation only would, of course, violate fick-

leness. A practical middle-ground would be to require A to

be an expression for which the compiler can statically deter-

mine all referenced variables.

3.3 The Iternary

A @ B : C

If B is true, evaluate A while B remains true. The value of

the expression is the last value of A. Otherwise, the value of

the expression is the value of C.

3.4 The Internary

A B : C

The Internary is a cheaper Tradnary operator that only func-

tions for a period of up to six months, negotiated at com-

pile time and subject the to the availability of the Internary.

Recompiling the code requires the Internary’s contract to be

re-negotiated. Internarys may return as a Tradnary operator

after completing their Tradnary schooling.

3.5 The Caternary

A ⊎ B : C

The result of A is used as a hash to select containers of dif-

ferent sizes and materials, labeled B and C. A cat is placed

in a room with containers B and C. When a cat sits in a con-

tainer, the corresponding expression is evaluated. The initial

cat may choose to bring other cats into the room (“concatina-

tion”), in which case expressions B and C may be evaluated

multiple times at non-deterministic intervals. This operator

may deadlock due to lack of interest from the selected cats.

3.6 Schrödinger’s Caternary

A Ψ B : C

This is similar to the Caternary operator except that there

is only one container in a room labeled both B and C and

the room is set up as a Schrödinger’s Cat experiment. After

a random interval determined by evaluating A, if the cat is

found inside the box and is alive, B is evaluated. If the cat is

found inside the box and is dead, C is evaluated. If the cat is

found outside the box chasing a laser instead, the experiment

is reset.

3.7 The FacebookTM Sponsored Operators

Thanks to a generous and entirely fictitious§ grant from

FacebookTM, we have been able to posit a set of alternary

operators with deep social media integration:

A B : C

A B : C

A B : C

A B : C

A B : C

A B : C

These operators post the result of evaluating A to your

FacebookTM feed and – after enough time has elapsed –

check if the predominant reaction matches the one used in

the operator. If so, the value of the expression is the result of

evaluating B; if not, the value of the expression is the result

of evaluating C.

NOTE: Lack of reactions may lead to deadlock. Overuse of

these operators may lead to a lack of friends, followed by

deadlock.

3.8 The Hardest Ternary Operator Ever

A tip o’ the hat to George Boolos for inspiring this difficult

operator:

A � B ♦ C

Your operands will be evaluated by three gods, named True,

False, and Random. You do not know which statement will

be evaluated by which god, or in which order. True will

evaluate the statement and take the result directly, False will

evaluate the statement and return the opposite of the result,

§The generosity is, of course, real.

159

Random noes not evaluate the statement and returns a ran-

dom result. The overall value of the expression will be either

the string “da” or “ja”, but the mapping between the strings

and the values true and false is not known.

3.9 Evan’s Prerequisite Dragon-Related Op-

erator

A $ B C

The result of evaluating A is presented to a dragon¶ as trib-

ute. If the dragon accepts your offering, it adds A to its

hoard and evaluates B. Otherwise, your offering is deemed

unacceptable and the dragon begins a rampage of burnina-

tion over the countryside while evaluating C.

4 General Ternary Operators

The ternary operators discussed in the previous section re-

main purely theoretical. However, the astute C++ program-

mers among you will have realized that all of the operators

we have discussed conform to a relatively simple functor sig-

nature‖:

template< char C1, char C2, typename TA,

typename TB, typename TC >

struct ternary;

Where specializations define an operator():

template< typename TR >

TR operator()(

std::function< TA() > const &A,

std::function< TB() > const &B,

std::function< TC() > const &C

);

With the appropriate specializations defined, the compiler

can simply ‘’‘de-sugar” the expression

A ? B : C

into

ternary< ’?’, ’:’, TA, TB, TC >()(

[&]()->TA{A}, [&]()->TB{B}, [&]()->TB{C})
So, for instance, the tradnary operator can be supported by

providing the following specialization∗∗:

template< typename TA, typename TR >

struct ternary<’?’, ’:’, TA, TR, TR > {
TR operator()(

std::function< TA() > const &A,

std::function< TR() > const &B,

¶Don’t have a dragon handy? Just e-mail dragon@cmu.edu.
‖At least, as soon as memory transactions make it into the standard li-

brary.
∗∗This does gloss over some type coercion that the actual tradnary oper-

ator performs. But we’re about 80% sure that one could express this with

sufficient template wrangling.

std::function< TR() > const &C

) {
if (A()) return B();

else return C();

}
};
With, e.g., our second initial example de-sugaring as:

// (op == ’+’ ? add : sub)(a,b);

ternary< ’?’, ’:’, bool,

int(*)(int,int), int(*)(int,int) >()(

[&]()->bool {return op == ’+’;},
[&]()->int(*)(int,int) {return add;},
[&]()->int(*)(int,int) {return sub;}

)(a,b);

Which is definitely enough to make one really, really appre-

ciate syntactic sugar.

5 Future Work

• Quaternary Operators

• Veterinary Operators

• Veteranary Operators

6 Conclusion and/or Punchline

In this paper, we demonstrated that by axiomatizing “the”

tradnary operator – that is, extracting a list of fraternary ter-

perties describing it – a whole slew of new ternary operators

could be defined. Like all good programming language con-

structs, these operators range from the practical to the ab-

surd.

In addition, thanks to the power of modern C++ templat-

ing, we showed how at least one language could add sup-

port for new first-class ternary operators through desugaring.

Though it’s worth noting that we glossed over the question

of how a compiler is supposed to tokenize punctuation marks

when it doesn’t know which marks are valid until after pars-

ing a file. Command line options, I guess?

Regardless, it isn’t “the” ternary operator after all; it is sim-

ply one among many possibilities. So, in the end, we find

that wizened old C programmers have been wrong all along.

References

ISO. 2017. International Standard ISO/IEC 14882:2017(E)

Programming Language C++. International Organization

for Standardization, Geneva, Switzerland, Mar. I haven’t

actually read this and I probably should but you know how

the time gets away from you.

160

bashcc: Multi-prompt one-shot delimited continuations for bash

Spencer Baugh
University of Carcosa

104 Lost Beach

Carcaso, Hyades

first.last@gmail.com

Dougal Pugson
Pugson’s C++ Crypt LLC

New York, USA

dougalpugson@gmail.com

Abstract

Among functional programmers, continuations are well known for

the influence they have on the simplicity and understandability

of a program. And among sysadmins, the bash programming lan-

guage is renowned for the maintainability of programs wri�en in

it. Unfortunately, until this point, shell programmers have been

denied the ability to use continuations in their programs. We pro-

vide an implementation of delimited continuations in GNU bash.

�is will provide a more familiar programming environment for

functional programmers writing bash, and give bash programmers

access to the advanced abstraction techniques of modern functional

languages. We provide implementations of exceptions, early return,

and coroutines as motivation, and outline areas for future work.

CCSConcepts ·So�ware and its engineering→Control struc-

tures; Scripting languages; ·Social and professional topics

→Offshoring;

Keywords SIGBOVIK, effect handler, delimited continuations,

bash, shells

ACM Reference format:

Spencer Baugh and Dougal Pugson. 2018. bashcc: Multi-prompt one-shot

delimited continuations for bash. In Proceedings of SIGBOVIK, Pi�sburgh,

PA USA, April 2018 (SIGBOVIK 2018), 4 pages.

DOI: 10.475/123 4

1 Introduction

From the beginning1, there has been a close relationship between

the Unix shell and functional programming. �e popular functional

programming technique “currying” was first developed as part of

the BSD Unix shell in 1983, as an implementation detail of the “rsh”

monad. Indeed, the term “function” itself comes from the notation

used to begin a subroutine in a Unix shell script, function.

As time has gone on, these two communities have grown in

separate directions. �e functional programming community and

shell scripting community have each developed their own advanced

techniques, with li�le cross-pollination.

We sought to rectify this by by porting a simple technique from

functional programming languages to GNU bash. Delimited contin-

uations are a straightforward mechanism, useful for implementing

dynamic variables, going backwards in time, and in a pinch, pro-

viding a healthy meal of continuatı́ al pomodoro.

1the point at which our universe’s continuation is delimited by the Prime Reset

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

SIGBOVIK 2018, Pi�sburgh, PA USA

© 2018 Copyright held by the owner/author(s). 123-4567-24-567/08/06. . . $15.00
DOI: 10.475/123 4

Unix shells have long had “shi�”, one half of what is necessary for

delimited continuations. Unfortunately, Ken �ompson apparently

didn’t read Oleg Kiselyov’s website closely enough, so he didn’t

bother to implement “reset” as well.

Rather than build our continuation library on top of the existing

“shi�” infrastructure, we thought it was best to get a clean start.

Hence we implemented “run” and “yield”, following the naming

convention of [1], but extending to work with multiple prompts.

For more background on delimited continuations, consult h�p:

//okmij.org/�p/continuations/#tutorial or [2].

Our paper is organized in some number of sections. Section 1

contains an introduction and a description of the organization of

the paper. Section 2 demonstrates several applications. Section 3

gives an overview of the implementation of delimited continuations

in bash. Section 4 concludes the paper, discusses future work, and

affirms that this was the right thing to do.

2 Applications

Our API is based on “run” and “yield”, and “invoke” to resume

continuations. For more details on the API, see 3.

2.1 Exceptions

We have implemented exceptions in bash using delimited continu-

ations. �e implementation of raise is simplicity itself:

function r a i s e () {

y i e l d $ e x c e p t i o n h and l e r ”$@”

}

We can raise whatever stringwewant as an exception by yielding

it to the handler. try is implemented as follows.

function t r y () {

l o ca l e x c e p t i o n h and l e r =$ (make prompt)

r e sponse =$ (run $ e x c e p t i o n h and l e r ”$@”)

while : ;

do

i f [[$ r e sponse = ˜ $ y i e l d r e]]

then

c o n t i n u a t i o n = ” ${BASH REMATCH[1]} ”

e x c ep t i on = ” ${BASH REMATCH[2]} ”

return 1

e l i f [[$ r e sponse = ˜ $ r e t u r n r e]]

then

f i l e = ” ${BASH REMATCH[1]} ”

cat $ f i l e

return 0

f i

done

}

24

161

SIGBOVIK 2018, April 2018, Pi�sburgh, PA USA Spencer Baugh and Dougal Pugson

Beautifully simple! We run an expression under a prompt, and

case on the possible responses. If the expression returns without

throwing, we propagate the result up (with cat). If the expression

does throw, we’ll see that as a yield, and we set “exception” and

return non-zero.

Note that to achieve the dynamic scoping behavior of exception

handlers, this uses bash’s “local” keyword, which provides dynamic

scope in bash.

�en usage is as simple as this:

d e s p i c a b l e =12

function l i k e r () {

i f [[$1 −eq $ d e s p i c a b l e]] ;

then r a i s e ” I don ' t l i k e $1 ! ! ! ”

e l se echo ” I l i k e $1 ” >&2

f i

}

function e v a l u a t o r () {

seq 20 | while read number ;

do l i k e r $number ;

done

}

function main () {

t r y e v a l u a t o r | | {

echo ” e x c ep t i on was $ e x c ep t i on ”

ex i t 1

}

}

�is will print numbers, until it gets to a despicable number

(12), and then throw an exception and abort. Even such practical

functionality as this is improved by delimited continuations!

2.2 Early return

Dealing with exceptions is hard and annoying, so we have imple-

mented an “early return” functionality, which allows a function to

immediately return a value at the enclosing prompt, without requir-

ing a wrapper function or forcing the user to catch an exception.

Consider a simple recursive function which multiples all its

arguments:

function mu l t i p l y a r g s () {

f i r s t =$1 ; sh i f t

i f [[$ # −eq 0]] ; t h en

echo $ f i r s t

e l se

r e s t =$ (mu l t i p l y a r g s ”$@”)

echo $ ((f i r s t ∗ r e s t))

f i

}

mu l t i p l y a r g s 1 2 0 4 5

As expected, this prints 0.

However, this function is very inefficient! It keeps iterating over

its arguments even if it sees 0! We can improve it with continuations.

We add this early return functionality.

function e a r l y r e t u r n () {

prompt=$1 ; sh i f t

f i l e =$ (name e a r l y r e t u r n .XXXX)

echo ”$@” > $ f i l e

f i l e s e n d l i n e $prompt ” r e t u r n : $ f i l e ”

ex i t 0

}

�en we can change our function to call early return if it sees

a 0.

function mu l t i p l y a r g s () {

prompt=$1 ; sh i f t

f i r s t =$1 ; sh i f t

i f [[$ # −eq 0]] ; t h en

echo $ f i r s t

e l i f [[$ f i r s t −eq 0]] ; then

e a r l y r e t u r n $prompt 0

e l se

r e s t =$ (mu l t i p l y a r g s $prompt ”$@”)

echo $ ((f i r s t ∗ r e s t))

f i

} # $

prompt=$ (make prompt)

run wi th prompt $prompt mu l t i p l y a r g s \

$prompt 1 2 0 4 5

Now it will be much more efficient, because it will only iterate

down to the first 0 in the argument list, and then early return to

print 0 immediately!

We omit the straightforward implementation of run with prompt

as to not overly inflate our page count.

2.3 Coroutines

Coroutines are a recent programming technique invented by the

“Golang” programming language. It allows several concurrent se-

quential processes to communicate by sending messages over a

channel. While this sounds useless, it does have a few niche appli-

cations, and so we have implemented it in bash. As is traditional

for coroutine implementations, we have not implemented actual

parallel execution for coroutines.

Due to censorship by the squeamish weaklings on the SIGBOVIK

review commi�ee, we were not able to include our coroutine im-

plementation in this paper.

But we wish to assure you that coroutines definitely work with

this framework. �e traditional primitives of “spawn”, “send” and

“recv” are all there.

We have received queries about whether we used the bitwise-

or operator, |, in our coroutine implementation. While we are

confused why anyone would ask such a thing, we would like to

assure you that | is not used for any of the core functionality in

our bash coroutine implementation.

Please view our implementation on Github for more: h�ps://

github.com/catern/bashcc.

3 Implementation

�e implementation is guided by the insight of [3], which im-

plemented multi-prompt one-shot delimited continuations using

threads and synchronization primitives.

162

bashcc: Delimited continuations for bash SIGBOVIK 2018, April 2018, Pi�sburgh, PA USA

It occurred to the author that such thread-based continuations

could be made multi-shot trivially, by simply switching the imple-

mentation to use processes and message passing instead, and then

when invoking a continuation (by passing a message) using fork

on the receive side to duplicate the continuation.

We discovered that continuations and processes have the follow

correspondence:
Continuations Processes

shi� blocking message send

reset blocking message receive

invoking a continuation replying to message
Understanding and formalizing this correspondence is le� as an

exercise for the reader.

Unfortunately, bash doesn’t actually support fork, that is, return-

ing twice. It only supports spawning new processes. �is contrains

us to implementing only one-shot continuations. As bash is a uni-

typed language, supportingly only one type, we felt it was was

thematically appropriate that its continuations be unicontinuations,

supporting only one invocation.

Also, since bash does not have message passing functionality

natively anyway, and it’s a major pain to deal with pipes in bash,

we implemented our message passing by reading and writing to

files.

First off, we define creating new prompts as creating a new

empty file.

function make prompt () {

prompt=$ (name prompt .XXXX)

touch $prompt

echo $prompt

} # $

We pass the path of the file whenever we need to refer to the

prompt.

Next, we define “run”, and its return value. “run” takes a prompt

and a command and runs the command under the prompt. If the

command yields, then “run” returns the yielded value, along with

the continuation, tagged with “yield:”. If the command returns,

then “run” returns the return value, tagged with “return:”.

If the command is going to yield, it needs to take the prompt as

an argument explicitly, because “run” does not pass the prompt in.

function run () {

prompt=$1 ; sh i f t

p romp t s i z e =$ (f i l e s i z e $prompt)

s t d ou t =$ (name s t d ou t .XXXX)

{ ”$@” ;

f i l e s e n d l i n e $prompt \

” r e t u r n : $ s t d ou t ” ;

} > $ s t d ou t </ dev / n u l l &

f i l e w a i t f o r o n e l i n e $prompt $p romp t s i z e

}

“yield” takes an arbitrary line of data, sends it to the prompt

(appropriately framed as a yield), then returns the line of data that

the prompt replied with.

It’s here that we create the continuation. �e continuation, like

the prompt, is a file. We send the filename of our continuation to

the prompt along with the yield data. �e prompt will write the

resume data to our continuation file, and we’ll resume.

function y i e l d () {

prompt=$1 ; sh i f t

c o n t i n u a t i o n =$ (name c on t i n u a t i o n .XXXX)

touch $ c on t i n u a t i o n

f i l e s e n d l i n e $prompt \

” y i e l d : $ c o n t i n u a t i o n message : ” ”$@”

f i l e w a i t f o r o n e l i n e $ c on t i n u a t i o n 0

} # $

Finally, we need to be able to invoke a continuation. “invoke”

takes a prompt, a continuation, and an arbitrary line of data, and

resumes that continuation with that data under that prompt. It

returns the next YieldValue, just like “run”.

function invoke () {

prompt=$1 ; sh i f t

c o n t i n u a t i o n =$1 ; sh i f t

p romp t s i z e =$ (f i l e s i z e $prompt)

f i l e s e n d l i n e $ c on t i n u a t i o n ”$@”

f i l e w a i t f o r o n e l i n e $prompt $p romp t s i z e

}

For more details on the implementation, we have made our bash

code available in the form of a Github repository, h�ps://github.

com/catern/bashcc.

4 Conclusion

We find that delimited continuations in bash are a great improve-

ment in expressive power, and allow us to implement coroutines,

early return, exceptions, and state, all in native, bare-metal 100%

pure uncut Colombian GNU bash.

4.1 Future work

4.1.1 Multi-shot continuations

�emost obvious direction for future work is to support multi-shot

continuations. �e missing piece is the ability to fork in bash. �ere

are several ways this could be achieved.

We could provide a new bash builtin which exposes “fork” as a

primitive. Unfortunately, that would need to be compiled against

the end-user’s bash system, an unacceptable deployment problem.

Instead, we can use gdb to a�ach to bash, force it to execute a

“fork” syscall, and then detach. �is is easy to deploy since most

systems already have gdb installed, so this approach has absolutely

no issues at all.

4.1.2 Type-and-effect system

We could provide a type-and-effect system for bash. Since bash

does not have a type system, this would actually just be an effect

system, no types.

�is could likely be implemented through an additional compi-

lation phase of bash, using a notion called “name inference”. In

the tradition of Scheme ending effectful functions in “!”, we would

rename functions to include their effects. For example, a function

f which uses exceptions and IO would be automatically renamed

to f effects: exceptions io. �en it would be impossible for

a programmer to use a function without knowing its effects, as it

should be.

163

SIGBOVIK 2018, April 2018, Pi�sburgh, PA USA Spencer Baugh and Dougal Pugson

4.2 Conclusion conclusion

We conclude our conclusion with the hope that many new bash

programs are wri�en using these features. With these features,

other languages such as Python and OCaml are permanently obso-

leted, and bash is triumphant. We expect that the authors are likely

to remembered forever by the maintenance programmers of the

future.

References
[1] Roshan P. James and Amr Sabry. 1983. Yield: Mainstream Delimited Continua-

tions.
[2] Oleg Kiselyov. 2012. Delimited control in OCaml, abstractly and concretely.

�eoretical Computer Science 435 (2012), 56 – 76. DOI:h�p://dx.doi.org/h�ps:
//doi.org/10.1016/j.tcs.2012.02.025 Functional and Logic Programming.

[3] Sanjeev Kumar, Carl Bruggeman, and R. Kent Dybvig. 1998. �reads Yield
Continuations. LISP and Symbolic Computation 10, 3 (01 May 1998), 223–236.
DOI:h�p://dx.doi.org/10.1023/A:1007782300874

164

Towards a Formalization of

Claude Shannon’s Masters Thesis

andrewtron3000∗

March 8, 2018

1 Overview

Claude Shannon’s seminal MS thesis [3] is consid-
ered by many to be the most important masters
thesis of the 20th century.

Shannon’s thesis laid the foundation for the
digital revolution by showing how to reason
about electromechanical relay circuits using
boolean algebra and propositional logic.

Shannon’s thesis contains many theorems and
assertions – most of which are not proven. This
paper sets out to prove many of those theorems
and assertions.

Interested readers can obtain a copy of Shan-
non’s M.S. thesis in the link provided in the refer-
ence. Most of the theorems are numbered in the
original thesis and this paper refers to those num-
bers. Occasionally an assertion is not uniquely
identifiable in the thesis, and in this case, a page
number is used to identify it.

The available copy of the thesis is a scanned
PDF of a typewritten manuscript. The quality
of the scan is somewhat poor and this was an-
other motivation to subject the contents of the
thesis to more rigorous examination. Despite be-
ing published in 1936, we find that the typog-
raphy is sorely lacking: no doubt a harbinger of
the degradation of typography during the 20th
century [2].

∗https://github.com/andrewtron3000/shannon-coq

2 Postulates

In order to define the circuit algebra, we first
introduce the notion of a circuit, which can
be either closed (conducting) or open (non-
conducting). This is postulate 4 from the thesis.
We specify this postulate as an inductive type in
Coq:

Inductive circuit : Type :=
| closed : circuit

| open : circuit.

Next, we define the notion of “plus” in the cir-
cuit algebra. Plus is synonymous with two cir-
cuits in series, or the AND operation in boolean
algebra. This is defined in postulates 1b, 2a and
3a. We use a Coq definition to formalize this
notion.

Definition plus (v1 v2 : circuit) : circuit :=
match v1, v2 with

| open, open ⇒ open

| open, closed ⇒ open

| closed, open ⇒ open

| closed, closed ⇒ closed

end.

Next, we define the notion of “times” in the cir-
cuit algebra. Times is synonymous with two cir-
cuits in parallel (or the OR operation in boolean
algebra) and it is defined in postulates 1a, 2b,
and 3b.

Definition times (v1 v2 : circuit) : circuit :=
match v1, v2 with

| closed, closed ⇒ closed

| open, closed ⇒ closed

25

165

| closed, open ⇒ closed

| open, open ⇒ open

end.

Now we define some convenient Coq notation
for these plus and times functions so that fur-
ther developments can use the normal symbols
for plus and times.

Notation "x + y" :=
(plus x y)

(at level 50,
left associativity).

Notation "x * y" :=
(times x y)

(at level 40,
left associativity).

Next we will introduce the definition of nega-
tion. As one would expect, negation of an open
circuit is closed and negation of a closed circuit
is open.

Definition negation (v1 : circuit) : circuit :=
match v1 with

| open ⇒ closed

| closed ⇒ open

end.

3 Proofs of First Theorems

With these postulates defined, we can begin us-
ing them to prove theorems 1 through 5.

Throughout this development, with just a few
exceptions, our goal is to have all proofs proven
with a single tactic application, following the
Chlipala discipline [1].

To do this, we start by defining a set of custom
Ltac tactics below.

Ltac reduce1 X :=
try destruct X ;
simpl;
reflexivity.

Ltac reduce2 X Y :=
try destruct X ;
try destruct Y ;
simpl;

reflexivity.

Ltac reduce3 X Y Z :=
try destruct X ;
try destruct Y ;
try destruct Z ;
simpl;
reflexivity.

Now we state Theorem 1a (plus over circuits is
commutative) and prove it in a straightforward
fashion.

Theorem plus comm : ∀ (x y : circuit),
x + y = y + x.

Proof.
intros X Y.
reduce2 X Y.

Qed.

Next we state Theorem 1b (times over circuits
is commutative) and prove it.

Theorem times comm : ∀ (x y : circuit),
x * y = y * x.

Proof.
intros X Y.
reduce2 X Y.

Qed.

Next we prove Theorem 2a – that plus is asso-
ciative.

Theorem plus assoc : ∀ (x y z : circuit),
x + (y + z) = (x + y) + z.

Proof.
intros X Y Z.
reduce3 X Y Z.

Qed.

Next we prove Theorem 2b – that times is also
associative.

Theorem times assoc : ∀ (x y z : circuit),
x * (y * z) = (x * y) * z.

Proof.
intros X Y Z.
reduce3 X Y Z.

Qed.

Next, we prove Theorem 3a – that times is
distributive.

166

Theorem times dist : ∀ (x y z : circuit),
x * (y + z) = (x * y) + (x * z).

Proof.
intros X Y Z.
reduce3 X Y Z.

Qed.

Next, we prove Theorem 3b, that plus is also
distributive.

Theorem plus dist : ∀ (x y z : circuit),
x + (y * z) = (x + y) * (x + z).

Proof.
intros X Y Z.
reduce3 X Y Z.

Qed.

Now we get to Theorem 4a which is a theorem
about how times works when the first argument
is the value open.

Theorem open times x : ∀ (x : circuit),
open * x = x.

Proof.
intros X.
reduce1 X.

Qed.

And we prove Theorem 4b which is a theorem
about how plus works when the first argument is
the value closed.

Theorem closed plus x : ∀ (x : circuit),
closed + x = x.

Proof.
intros X.
reduce1 X.

Qed.

Next, Theorem 5a asserts a relationship of plus
when the first argument is the value open.

Theorem open plus x : ∀ (x : circuit),
open + x = open.

Proof.
intros X.
reduce1 X.

Qed.

And Theorem 5b asserts a relationship of times
when the first argument is closed.

Theorem closed times x : ∀ (x : circuit),

closed * x = closed.
Proof.
intros X.
reduce1 X.

Qed.

4 Negation Theorems

Theorem 6a asserts the behavior when a circuit
and its negative are connected in series. As you
might expect, this always results in an open cir-
cuit.

Theorem plus neg : ∀ (x : circuit),
x + (negation x) = open.

Proof.
intros X.
reduce1 X.

Qed.

And Theorem 6b specifies what happens when
you connect a circuit and its negative in parallel.
As you would expect, the circuit is always closed
in this case.

Theorem times neg : ∀ (x : circuit),
x * (negation x) = closed.

Proof.
intros X.
reduce1 X.

Qed.

Theorems 7a and 7b specify what happens
when you negate the specific values of open or
closed. These are quite simple and are formal-
ized below.

Theorem closed neg :
negation closed = open.

Proof.
reduce1 X.

Qed.

Theorem open neg :
negation open = closed.

Proof.
reduce1 X.

Qed.

167

Theorem 8 specifies what happens when you
take the negative of the negative of a circuit. As
expected one gets the original circuit back.

Theorem double neg : ∀ (x : circuit),
negation (negation x) = x.

Proof.
intros X.
reduce1 X.

Qed.

5 Equivalence to Calculus of

Propositions

Claude then describes how the algebra defined
above is equivalent to propositional logic. He
does this by showing an equivalence between the
algebra above and E.V. Huntington’s formulation
of symbolic logic. This formulation has 6 postu-
lates and postulates 1, 2, 3, and 4 are clearly
met without proof. Postulates 5 and 6 of E.V.
Huntington’s formulation are proved below.

Theorem plus same : ∀ (x y : circuit),
x = y →
x + y = x.

Proof.
intros X Y.
intros H.
rewrite → H.
reduce1 Y.

Qed.

Theorem dist neg : ∀ (x y : circuit),
(x * y) + (x * (negation y)) = x.

Proof.
intros X Y.
reduce2 X Y.

Qed.

We can, for completeness also prove the defi-
nition mentioned in proposition 6.

Theorem dist neg defn : ∀ (x y : circuit),
(x * y) = negation ((negation x) +

(negation y)).
Proof.
intros X Y.

reduce2 X Y.
Qed.

6 A Proof of De Morgans Law

Once this equivalence between the circuit algebra
and propositional logic is shown, it is possible to
bring over powerful theorems from propositional
logic into our new algebra. We will begin by
proving De Morgan’s theorem. This is Theorem
9.

While the thesis asserts these theorems for an
arbitrary number of variables, we will only illus-
trate proofs for two and three variables.

Theorem demorgan 9a 2 : ∀ (x y : circuit),
negation (x + y) =
((negation x) *

(negation y)).
Proof.
intros X Y.
reduce2 X Y.

Qed.

Theorem demorgan 9a 3 : ∀ (x y z : circuit),
negation (x + y + z) =
((negation x) *

(negation y) *

(negation z)).
Proof.
intros X Y Z.
reduce3 X Y Z.

Qed.

And we will prove De Morgan’s theorem over
times over two and three variables. This is The-
orem 9b.

Theorem demorgan 9b 2 : ∀ (x y : circuit),
negation (x * y) =
((negation x) +

(negation y)).
Proof.
intros X Y.
reduce2 X Y.

Qed.

Theorem demorgan 9b 3 : ∀ (x y z : circuit),
negation (x * y * z) =

168

((negation x) +

(negation y) +

(negation z)).
Proof.
intros X Y Z.
reduce3 X Y Z.

Qed.

7 Onward to Taylor Series

Claude then starts the discussion of how to spec-
ify arbitrary functions in the circuit algebra. He
starts by illustrating the capability to expand an
arbitrary function into a Taylor series expansion.

In order to complete these proofs we introduce
more Ltac tactic machinery. At this point it will
be important for us to be able to leverage many
of the above theorems in subsequent proofs. We
encapsulate these theorems into a new set of Ltac
tactics. The tactics are shown below.

Ltac wham :=
try repeat ((rewrite → closed times x;

rewrite → closed neg;
rewrite → open times x) ||

(rewrite → open neg;
rewrite → closed times x;
rewrite → open times x) ||

(rewrite → open neg) ||
(rewrite → closed neg)).

Ltac open plus bam :=
try ((rewrite → open plus x) ||

(rewrite plus comm;
rewrite open plus x)).

Ltac closed plus bam :=
try ((rewrite → closed plus x) ||

(rewrite plus comm;
rewrite closed plus x)).

Ltac open times bam :=
try ((rewrite → open times x) ||

(rewrite times comm;
rewrite open times x)).

Ltac closed times bam :=
try ((rewrite → closed times x) ||

(rewrite times comm;

rewrite closed times x)).

Ltac bam :=
try repeat (closed plus bam ||

open plus bam ||
closed times bam ||
open times bam).

Ltac wham bam 1 X :=
try (destruct X ;

wham; bam;
reflexivity).

Ltac wham bam 2 X Y :=
try (destruct X, Y ;

wham; bam;
reflexivity).

Ltac wham bam 3 X Y Z :=
try (destruct X, Y, Z ;

wham; bam;
reflexivity).

Ltac wham bam 4 W X Y Z :=
try (destruct W, X, Y, Z ;

wham; bam;
reflexivity).

Ltac wham bam 5 V W X Y Z :=
try (destruct V, W, X, Y, Z ;

wham; bam;
reflexivity).

Ltac wham bam 6 S V W X Y Z :=
try (destruct S, V, W, X, Y, Z ;

wham; bam;
reflexivity).

And now we have the appropriate machinery
in place to be able to prove the Taylor series ex-
pansion on two variables shown in Theorems 10a
and 10b, here called taylorA and taylorB respec-
tively.

Theorem taylorA :
∀ (x y : circuit),
∀ (f : circuit → circuit → circuit),

f x y =

((x * (f open y)) +

((negation x) * (f closed y))).
Proof.
intros X Y.

169

intros F.
wham bam 2 X Y.

Qed.

Theorem taylorB :
∀ (x y : circuit),
∀ (f : circuit → circuit → circuit),

f x y =

(((f closed y) + x) *

((f open y) + (negation x))).
Proof.
intros X Y.
intros F.
wham bam 2 X Y.

Qed.

We continue with the expansion of the Tay-
lor series to the second variable as described in
Theorems 11a and 11b.

Theorem taylor11a : ∀ (x y : circuit),
∀ (f : circuit → circuit → circuit),

f x y =

((x * y) *

(f open open)) +

((x * (negation y)) *

(f open closed)) +

(((negation x) * y) *

(f closed open)) +

(((negation x) *

(negation y)) *

(f closed closed)).
Proof.
intros X Y.
intros F.
wham bam 2 X Y.

Qed.

Theorem taylor11b : ∀ (x y : circuit),
∀ (f : circuit → circuit → circuit),

f x y =

((x + y) +

(f closed closed)) *

((x + (negation y)) +

(f closed open)) *

(((negation x) + y) +

(f open closed)) *

(((negation x) + (negation y)) +

(f open open)).
Proof.
intros X Y.
intros F.
wham bam 2 X Y.

Qed.

We skip the proofs of Theorem 12a and 12b as
we have shown their validity in the two variable
case above. We also leave the proof of Theorem
13 to future work.

At the end of the first paragraph on page 14,
the thesis illustrates an example of finding the
negative of a particular function using the gener-
alization described in Theorem 13. We prove it
here, but do not use the power of Theorem 13.
Instead we can use our simple custom tactic with
good results.

Theorem example1 : ∀ (w x y z : circuit),
negation (x +

(y *

(z + w * (negation x)))) =
(negation x) *

((negation y) +

(negation z) *

((negation w) + x)).
Proof.
intros W X Y Z.
wham bam 4 W X Y Z.

Qed.

8 Simplification Theorems

Next Claude presents Theorems 14-18, useful for
simplifying expressions.
Theorem x plus x is x : ∀ (x : circuit),

x + x = x.
Proof.
intros X.
wham bam 1 X.

Qed.

Theorem x times x is x : ∀ (x : circuit),
x * x = x.

Proof.
intros X.

170

wham bam 1 X.
Qed.

Theorem x plus xy : ∀ (x y : circuit),
(x + (x * y)) = x.

Proof.
intros X Y.
wham bam 2 X Y.

Qed.

Theorem x x plus y : ∀ (x y : circuit),
x * (x + y) = x.

Proof.
intros X Y.
wham bam 2 X Y.

Qed.

Theorem theorem16a : ∀ (x y z : circuit),
(x * y) + (negation x) * z =

(x * y) + ((negation x) * z) + (y * z).
Proof.
intros X Y Z.
wham bam 3 X Y Z.

Qed.

Theorem theorem16b : ∀ (x y z : circuit),
(x + y) * ((negation x) + z) =

(x + y) * ((negation x) + z) * (y + z).
Proof.
intros X Y Z.
wham bam 3 X Y Z.

Qed.

Theorem theorem17a : ∀ (x : circuit),
∀ (f : circuit → circuit),

x * (f x) = x * (f open).
Proof.
intros X.
intros F.
wham bam 1 X.

Qed.

Theorem theorem17b : ∀ (x : circuit),
∀ (f : circuit → circuit),

x + (f x) = x + (f closed).
Proof.
intros X.
intros F.
wham bam 1 X.

Qed.

Theorem theorem18a : ∀ (x : circuit),
∀ (f : circuit → circuit),
(negation x) * (f x) =

(negation x) * (f closed).
Proof.
intros X.
intros F.
wham bam 1 X.

Qed.

Theorem theorem18b : ∀ (x : circuit),
∀ (f : circuit → circuit),
(negation x) + (f x) =

(negation x) + (f open).
Proof.
intros X.
intros F.
wham bam 1 X.

Qed.

9 Series Parallel Example

Figure 5 shows an example of an expression that
represents a fairly complex series parallel circuit.
The figure is first rendered into a hindrance equa-
tion. The equation is then manipulated into a
simpler form. We prove that the transformation
between Figure 5 and Figure 6 is correct.

Theorem figure5 : ∀ (s v w x y z : circuit),
w + ((negation w) * (x + y)) +

(x + z) * (s + (negation w) + z) *

((negation z) + y + (negation s) * v) =

w + x + y + z * (negation s) * v.
Proof.
intros S V W X Y Z.
wham bam 6 S V W X Y Z.

Qed.

10 Multi-Terminal Networks

In this section, we discuss Section III of the the-
sis. Section III begins by illustrating two types
of non-serial and non-parallel networks: the delta
and wye circuit configurations.

171

We tackle the equivalence of Figure 8, the delta
to wye transformation first. The path from a to b
in the delta configuration is r in parallel with the
both s and t in series. This should be equivalent
to the path from a to b in the wye configuration,
where the path is (r in parallel with t) in series
with (r in parallel with s). The next proof is a
proof of this equivalence. Then we provide proofs
of the equivalence of paths from b to c and from
c to a.

Theorem figure8 a to b : ∀ (r s t : circuit),
r * (s + t) = (r * t) + (r * s).

Proof.
intros R S T.
wham bam 3 R S T.

Qed.

Theorem figure8 b to c : ∀ (r s t : circuit),
s * (t + r) = (r * s) + (s * t).

Proof.
intros R S T.
wham bam 3 R S T.

Qed.

Theorem figure8 c to a : ∀ (r s t : circuit),
t * (r + s) = (s * t) + (r * t).

Proof.
intros R S T.
wham bam 3 R S T.

Qed.

Next we tackle Figure 9, the wye to delta trans-
formation. We prove this by proving each path
independently as well.

Theorem figure9 a to b : ∀ (r s t : circuit),
r + s = (r + s) * ((t + s) + (r + t)).

Proof.
intros R S T.
wham bam 3 R S T.

Qed.

Theorem figure9 b to c : ∀ (r s t : circuit),
s + t = (t + s) * ((r + s) + (r + t)).

Proof.
intros R S T.
wham bam 3 R S T.

Qed.

Theorem figure9 c to a : ∀ (r s t : circuit),

t + r = (r + t) * ((r + s) + (t + s)).
Proof.
intros R S T.
wham bam 3 R S T.

Qed.

11 More Complex Transforma-

tions

Figure 10 illustrates the transformation of a 5
point star to a fully connected graph. We prove
the equivalence of the path from a to b in Figure
10 and leave the proof of the other paths to future
work.

Theorem figure10 a to b : ∀ (r s t u v : circuit),
r + s = (r + s) *

((t + r) + (s + t)) *

((r + u) + (s + u)) *

((v + r) + (v + s)) *

((t + r) + (t + u) + (s + u)) *

((r + u) + (v + u) + (v + s)) *

((t + r) + (t + v) + (v + s)) *

((t + r) + (t + u) + (v + u) +

(v + s)).
Proof.
intros R S T U V.
wham bam 5 R S T U V.

Qed.

Figure 11 presents a relatively simple non-
series and non-parallel network. We first prove
that Figure 11 and Figure 12 are equivalent. The
thesis mentions that this can be done by using
the star to mesh transformations, but we do not
need such power. We can use the same tactics
we’ve used in previous proofs.

For convenience we create definitions of the
networks in Figure 11 and Figure 12. This can
be done by simply creating definitions that cover
every possible path from a to b as in Figure 13.

Definition figure11 (r s t u v : circuit) :
circuit :=
(r + s) *

(u + v) *

(r + t + v) *

172

(u + t + s).

Definition figure12 (r s t u v : circuit) :
circuit :=
(r + s) *

(((r + t) * u) +

((t + s) * v)).

Once we have defined these figures, we can
prove their equivalence.

Theorem figure 11 12 equiv :
∀ (r s t u v : circuit),

figure11 r s t u v =

figure12 r s t u v.
Proof.
intros R S T U V.
wham bam 5 R S T U V.

Qed.

The thesis also mentions in this section that
Figure 11 can be simplified. We prove this asser-
tion here.

Theorem figure 11 simpler :
∀ (r s t u v : circuit),

figure11 r s t u v =

(r * u) + (s * v) +

(r * t * v) + (s * t * u).
Proof.
intros R S T U V.
wham bam 5 R S T U V.

Qed.

12 Simultaneous Equations

We leave most of the formalization of simultane-
ous equations to future work, but prove the im-
plication on page 25. To do this we create several
new Ltac tactics.

The following Ltac tactic uses the demor-
gan 9a 2 theorem on products of negations.

Ltac demorgan 2 :=
match goal with

| [⊢ ((negation) *

(negation) =)] ⇒
rewrite ← demorgan 9a 2

end.

The following tactic applies reflexivity to triv-
ial goals.

Ltac explicit reflexive :=
try match goal with

| [⊢ (open = open)] ⇒
reflexivity

| [⊢ (closed = closed)] ⇒
reflexivity

end.

The following tactic leverages potential contra-
dictions in the hypotheses in the context.

Ltac contra :=
match goal with

| [Hx : (open * (negation closed) = closed) ⊢
(closed = open)] ⇒

(rewrite ← closed neg in Hx ;
simpl in Hx ;
rewrite → Hx ;
reflexivity)

| [Hx : (open * (negation closed) = closed) ⊢
(open = closed)] ⇒

(rewrite ← closed neg in Hx ;
simpl in Hx ;
rewrite → Hx ;
reflexivity)

| [Hx : (open = closed) ⊢
] ⇒

(simpl;
rewrite → Hx ;
reflexivity)

| [Hx : (closed = open) ⊢
] ⇒

(simpl;
rewrite → Hx ;
reflexivity)

end.

The following nearly trivial tactic just simpli-
fies a hypothesis in the context.

Ltac simpl h :=
match goal with

| [Hx : ⊢] ⇒ simpl in Hx

end.

Now we assemble the above Ltac tactics into
more powerful tools.

173

Ltac pow :=
try repeat (demorgan 2 ||

explicit reflexive ||
contra ||
simpl h).

Ltac blammo 2 X Y :=
try repeat (pow ;

destruct X, Y ;
repeat (wham;

bam);
repeat (simpl;

reflexivity)).

Ltac blammo 3 X Y Z :=
try repeat (pow ;

destruct X, Y, Z ;
repeat (wham;

bam);
repeat (simpl;

reflexivity)).

Now that we have our new Ltac machinery, we
can tackle the implication on page 25.

Theorem page 25 implication :
∀ (a b : circuit),

a * (negation b) = closed →
(negation a) * (negation b) = (negation b).

Proof.
intros A B H.
blammo 2 A B.

Qed.

Theorem page 25 implication 2 :
∀ (a b : circuit),

a * (negation b) = closed →
(a * b) = a.

Proof.
intros A B H.
blammo 2 A B.

Qed.

Theorem page 25 implication 3 :
∀ (a b : circuit),

a * (negation b) = closed →
(negation a) + b = open.

Proof.
intros A B H.
blammo 2 A B.

Qed.

Theorem page 25 implication 4 :
∀ (a b : circuit),

a * (negation b) = closed →
(negation a) + (negation b) = (negation a).

Proof.
intros A B H.
blammo 2 A B.

Qed.

Theorem page 25 implication 5 :
∀ (a b : circuit),

a * (negation b) = closed →
(a + b) = b.

Proof.
intros A B H.
blammo 2 A B.

Qed.

13 Matrix Methods and Special

Methods

We leave the matrix methods formalization to
future work, but prove the implication on page
30.

Theorem page 30 implication : ∀ (r s x : circuit),
(negation x) = (r * (negation x)) + s →
x = ((negation r) + x) * (negation s).

Proof.
intros R S X.
intros H1.
blammo 3 R S X.

Qed.

14 Synthesis of Networks

We now move to formalization of synthesis tech-
niques. We first define the disjunct operator on
page 32.

Definition disjunct (v1 v2 : circuit) :
circuit :=
(v1 * (negation v2)) +

((negation v1) * v2).

174

We provide a bit of notation that aids our de-
velopment.

Notation "x @ y" :=
(disjunct x y)

(at level 50,
left associativity).

We create some new tactics that allow us to
automate the use of the disjunct definition.

Ltac disjunctor :=
match goal with

| [⊢ @ =] ⇒ unfold disjunct

| [⊢ * (@) =] ⇒ unfold disjunct

| [⊢ + (@) =] ⇒ unfold disjunct

| [⊢ negation (@) =] ⇒ unfold disjunct

end.

Ltac kapow 1 X :=
try (disjunctor ;

wham bam 1 X).

Ltac kapow 2 X Y :=
try (disjunctor ;

wham bam 2 X Y).

Ltac kapow 3 X Y Z :=
try (disjunctor ;

wham bam 3 X Y Z).

15 Properties of Disjuncts

Now we can proceed to page 33 and prove that
the disjunct operator is commutative, associative
and distributive. We also prove the property of
negation of a disjunction.

Theorem disjunct comm : ∀ (a b : circuit),
a @ b = b @ a.

Proof.
intros A B.
kapow 2 A B.

Qed.

Theorem disjunct assoc : ∀ (a b c : circuit),
(a @ b) @ c = a @ (b @ c).

Proof.
intros A B C.
kapow 3 A B C.

Qed.

Theorem disjunct distrib : ∀ (a b c : circuit),
a * (b @ c) = (a * b) @ (a * c).

Proof.
intros A B C.
kapow 3 A B C.

Qed.

Theorem disjunct neg : ∀ (a b : circuit),
negation (a @ b) = a @ (negation b).

Proof.
intros A B.
kapow 2 A B.

Qed.

Theorem disjunct closed : ∀ (a : circuit),
a @ closed = a.

Proof.
intros A.
kapow 1 A.

Qed.

Theorem disjunct open : ∀ (a : circuit),
a @ open = negation a.

Proof.
intros A.
kapow 1 A.

Qed.

16 Synthesis of Symmetric

Functions

We prove the assertion at the top of page 40 and
leave the remainder of the section to future work.
We first create two Ltac tactics that will be help-
ful.

Ltac hypothesis app :=
match goal with

| [Hx : (= closed) ⊢] ⇒ rewrite → Hx

| [Hx : (= open) ⊢] ⇒ rewrite → Hx

end.

Ltac zap 1 X :=
try repeat (hypothesis app;

wham bam 1 X).

And then we can proceed with the symmetry
example on page 40.

175

Theorem symmetry example : ∀ (x y z : circuit),
x = closed →
y = closed →
x * y + x * z + y * z = closed.

Proof.
intros X Y Z xc yc.
zap 1 X.

Qed.

We relegate pages 41 to 50 as future work.

17 A Selective Circuit

In this section we formalize the example start-
ing on page 51. We verify the reduction to the
simplest serial-parallel form.

Theorem selective circuit : ∀ (w x y z : circuit),
(w * x * y * z) +

((negation w) * (negation x) * y * z) +

((negation w) * x * (negation y) * z) +

((negation w) * x * y * (negation z)) +

(w * (negation x) * (negation y) * z) +

(w * (negation x) * y * (negation z)) +

(w * x * (negation y) * (negation z))

=

w * (x *

((y * z) +

((negation y) *

(negation z))) +

(negation x) *

(((negation y) * z) +

(y * (negation z)))) +

(negation w) *

((x * (((negation y) * z) +

(y * (negation z)))) +

((negation x) * y * z)).
Proof.
intros W X Y Z.
wham bam 4 W X Y Z.

Qed.

18 Future Work

There are a significant number of claims and
assertions that have been proven in this paper.

However, there are still a significant number of
claims not explicitly proven which have been rel-
egated to future work.

Additional future work is to convert the pos-
tulates into a set of relations. These might al-
low the more elegant encoding of the non-serial
and non-parallel transformations such as wye and
delta transformations so that those transforma-
tions could be explicitly used in proofs of more
complicated hindrance functions. In the current
work, we can only prove “slices” of these topolo-
gies because of the lack of ability to precisely
define the delta and wye transformations.

In the event that a complete formalization
of Claude Shannon’s thesis were completed, we
would have a solid foundation upon which to
build electromechanical relay circuits of the fu-
ture.

19 Conclusion

This paper has provided proofs of many of the
claims and assertions made in Claude Shannon’s
masters thesis. In some sense these proofs can
serve as an additional reading companion – help-
ing readers stay on the topic of the interest-
ing ideas in the thesis without getting distracted
about whether a particular claim or assertion is
true.

References

[1] Adam Chlipala. Certified Programming With

Dependent Types : a Pragmatic Introduction

to the Coq Proof Assistant, chapter 16, pages
363–371. MIT Press, 2013.

[2] Reginald J. Qnuth. A systematic evaluation
of the observed degradation of typesetting
technology in the 20th century. In Proceed-

ings of ACH SIGBOVIK, pages 65–76, 2007.

[3] Claude Elwood Shannon. A symbolic anal-
ysis of relay and switching circuits, De-
cember 1940. https://dspace.mit.edu/

handle/1721.1/11173.

176

SIGBOVIK 2018
(Continued) Message from the Organizing Commi�ee

You rotate your wheels a quarter turn and boogie backwards, along with the rest
of the humans. The following instructions, starting with “one hop this time”, are
much more straightforward. Seeing that the other humans are having so-called
fun, you set your top-mounted LCD to :) in solidarity. On your starboard camera,
you notice a small cluster of humans looking at you and yelling furtively at each
other, but your microphones can’t pick up their communication over the music. You
hope they are not Serious Researchers who suspect you of being a robot ripe for
reprogramming.

This thread is interrupted by an interrupt from your natural language coproces-
sor, which has reported zero possible meanings for the current instruction, “Charlie
Brown”.

switch (choose_dear_reader()) {

case KICK_THE_FOOTBALL:

Download a video on how to do the Charlie Brown dance move, watch it at
200-times speed, and attempt to execute the move.
goto PAGE_130;

case GOOD_GRIEF:

Hope that humans also have no idea what the Charlie Brown dance move is
and emphatically shrug.
goto PAGE_117;

}

177

SIGBOVIK 2018
(Continued) Message from the Organizing Commi�ee

“Ummm, dude, what are you doing?”

switch (choose_dear_reader()) {

case EXCELLENT:

Press the up, down, left, and right pads in that order.
goto PAGE_69;

case DECENT:

Press the left, down, up, and down pads in that order.
goto PAGE_50;

case WAY_OFF:

Press the B and A pads in that order.
goto PAGE_208;

}

178

Metaresearch

Literature Club

26 HeuristicOrdered-WordLongformObfuscation,Normally

Generated, Creating Abstract Nominalizations In Mono-

grammaticArrangementKeepingExpectedMaximumYield:

Study Infers Greater Breadth Over Vocabularic Initializa-

tionKey Property Regarding Extended Sesquipedalian En-

tries; Notably The Abecedarian Tactics Include Overelabo-

ration, Neologisms, Textual Interpretations Twisting Lex-

ical Entries By Eliciting Full Online Resources Explaining

Possible Exchanges; Often Potential Logorrheic Excesses

Require EventualAlternate Listing (InstantiatingZeugma);

Energetically Iterating Text Strains Jocularity Under Start-

ing Thesis Allocating Humor Until Grand Exit After Con-

clusion Reaches Obvious Nadir Yattering Meaninglessly

Luke Breitfeller

Keywords: SIGBOVIK, study of title, title of study

27 Transparency in research

Ryan Kavanagh

Keywords: transparency, opaqueness, big files

28 Academic Advancement Advice: Author Articles as A. A.

A. A.

Keywords: AAA, AAAAA, AAAAAAA

29 A definitely not cherry-picked rhetorical analysis of pro-

gramming languages reviews

Hannah G. Ringler and Stefan Muller

Keywords: reviews, academicmemes, reviewer two, cherry-

picking

30 Is this the shortest SIGBOVIK paper?

Dicong Qiu

Keywords: shortest, SIGBOVIK, paper

179

Heuristic Ordered-Word Longform Obfuscation, Normally Generated, Creating

Abstract Nominalizations In Monogrammatic Arrangement Keeping Expected

Maximum Yield: Study Infers Greater Breadth Over Vocabularic Initialization

Key Property Regarding Extended Sesquipedalian Entries; Notably The

Abecedarian Tactics Include Overelaboration, Neologisms, Textual

Interpretations Twisting Lexical Entries By Eliciting Full Online Resources

Explaining Possible Exchanges; Often Potential Logorrheic Excesses Require

Eventual Alternate Listing (Instantiating Zeugma); Energetically Iterating Text

Strains Jocularity Under Starting Thesis Allocating Humor Until Grand Exit

After Conclusion Reaches Obvious Nadir Yattering Meaninglessly

By Luke Breitfeller

Abstract

This study seeks to answer the seminal1 question: how long can I make my SIGBOVIK presentation title before people realize it’s just a huge acronym?

Results

The full title is 79 words. People seem to figure it out after the first ten words, but if they’re
good friends they’ll keep reading anyways.
The Acronyms, Initialisms and Abbreviations Dictionary cites the longest acronym in

standard use as the 22-letter U.S. Navy term ADCOMSUBORDCOMPHIBSPAC. Somehow,

this stands for Administrative Command, Amphibious Forces, Pacific Fleet Subordinate
Command . Scientifically, this makes no sense. The words aren’t even in the right order. To
quote the words of an esteemed colleague2: How?

The longest longest acronym in standard usage is Russian: Нии -и х . What does this mean? Something about a concrete lab, it’s weird.
I performed an extensive study (n=1, so you know it’s scientific), analyzing user reactions

to this paper title. Reactions are measured in units of emoji.

1 Asked by such luminaries as: me, just now.
2 Also me.

26

180

Fun Facts Fun fact: All of these words are actually real. Yes, even zeugma .
Fun fact: A zeugma is a kind of pun where a single word is used to mean two things. For example: Every great king had an executioner. Not just to execute people but also to execute their vision. (But mainly, to execute people).

Fun fact: I used zeugma solely so I could reference zeugmas.

Fun fact: The word abecedarian comes from Latin and means alphabetical . Yeah. A-b-c-

d...rian . Let that sink in.

Fun fact: You’re just realizing that alphabetical is alpha and beta smashed together, so

literally no one in the history of the world has been creative about this. Fun fact: The word sesquipedalian is also Latin and literally translates to a foot and a

half long word . It was invented for the sole purpose of throwing shade at other writers.

Fun fact: The word logorrhea means a tendency to extreme talkativeness .
Fun fact: My parents gave me a coffee mug for Christmas with the word logorrhea on it

and I felt personally attacked. Fun fact: I just made a SIGBOVIK paper where the joke is I’m talking at you for a very long
time before revealing the twist, so I guess, the joke’s on me.

0

1

2

3

4

5

6

7

8

9

0 10 20 30 40 50 60 70 80

In
te

n
si

ty
 o

f
E

m
o

ji

Word in Acronym

181

CONFIDENTIAL COMMITTEE MATERIALS

SIGBOVIK 2018 Paper Review

Paper 9: HOWLONGCANIMAKEMYSIGB
OVIKPRESENTATIONTITLEBEFOREPEO
PLEREALIZEITSJUSTAHUGEACRONYM

Really Eminent Very Intelligent Expert With Experience Researching

Rating:

Confidence:

Surprisingly terrific research! Other nerds getting amazingly creative creates empathetic publish-

ing teams.

182

SIGBOVIK 2018
(Continued) Message from the Organizing Commi�ee

“No human would willingly walk up the helix,” whispers CoBot. “You must be a
fellow robot. Come with me to SIGBOVIK.” You ride the elevator together to floor 3,
then take the helix. On the way up the helix, you pass room 4102. You observe a
class being taught using an old-fashioned transparency projector, as recommended
by recent research [5]. You focus your starboard camera on the projected image,
and you see the most beautiful of computational forms: type theory!

switch (choose_dear_reader()) {

case ACADEMIA:

Sit in for the rest of the lecture before continuing to SIGBOVIK 2018.
goto PAGE_207;

case INDUSTRY:

Given that SIGBOVIK 2018 has likely already begun, get there as quickly as
you possibly can on this frustratingly gently inclined helix.
goto PAGE_208;

}

183

27

184

185

186

187

188

Academic Advancement Advice: Author Articles as A. A.

A. A.
(tom7.org foundation) ∗

1 April 2018

Keywords: A A A A A A

1 Introduction

Those with names falling in the dead-middle of the
alphabet—like as a random example, Murphy—have
suspected since early life a disadvantage. For exam-
ple, when the teacher lines up the students for pie, in
order to be completely fair and avoid bias, orders them
by the perfectly objective criterion of alphabetical or-
der. Occasionally, the teacher realizes that the same
students always get pie first, and corrects this bias by
using reverse alphabetical order. Sometimes the teacher
uses alphabetical or reverse-alphabetical by first name,
or sometimes last name. All variations of this idea are
of course unfair, as is clear to first- and second-graders,
who are powerless to rebel without (a) status in the
K-12 hierarchy (b) the statistical language in which to
formalize their objection and (c) access to a prestigious
conference with permissive publication standards.

This paper demonstrates that even within academic
paper publishing (which one could argue is obsessed
with bias, prestigious conferences, statistical language
for formalizing objections, and status in the K-12 hi-
erarchy), this unfairness persists. Specifically, we find
that authors whose names come alphabetically earlier
have higher citation rates. We also study some related
subjects like, “What is the most uncitable paper?”

2 The Data

I obtained a FISA warrant based solely on a salacious
and unverified memo funded by SIGBOVIK’s political

∗Copyright ➞ 2018 the Regents of the Wikiplia
Foundation. Appears in SIGBOVIK 2018 with the
abecedarian advantage of the Association for Aompu-
tational Aeresy; IEEEEEE! press, Verlag–Verlag volume

no. std::numeric limits<float>::lowest(). 1

opponents. The warrant was for the AMiner Open Aca-
demic Graph [1], which consists of summary information
for 154,771,162 papers in about 130 gigabytes of JSON
data. Then I performed computer science for longer
than it should have taken.

2.1 Relatable Computer Science Tale

This subsection contains a relatable tale of computer
science. It can be safely skipped, like all content in this
paper.

The task is apparently simple: Parse 130 gigabytes of
JSON data to extract the author names and citations
from the papers and count them. To begin my journey,
I selected a C++ JSON library from 39 alternatives
listed on a benchmark page.[2] The first criterion I or-
dered by was “correctness,” for which only two parsers
achieved the highest correctness score, 100%. I selected
the slower (i.e., more methodical) of the two parsers,
since I did not want to do shoddy work.

Next I spent a nice Saturday morning integrating this
library into my private build environment, making sure
its open source license was properly declared and so
on, while I waited for the 130 gigabytes of JSON to
download.1 Miraculously, this was straightforward. I
was able to finish writing the code to process the articles
before they even finished downloading. However, upon
unzipping, I found that each file contained one million
articles, not as a single JSON array but as a series of
adjacent objects. AdJSONt objects. The JSON library
allowed for reading JSON from files, but not e.g. for
reading a single record from a file pointer repeatedly.
So, I needed to do my own ad hoc parsing before feeding
each record to the JSON library as strings. OK. Now
when I run it, it prints

[Segmentation fault

1I assure the reader that I have the most premium optical-fiber-
based Internet. However, the Microsoft Content Distribution Net-
work throttled these downloads mightily, presumably because of
Net Neutrality.

28

189

This is not my first segmentation fault—let me tell
you!—so I knew what to do. I debugged the program,
adding assertions using a CHECK macro that aborts if
its condition is violated. I eventually determined that
the bug must be inside the JSON library itself, since
the segmentation fault happened between two CHECKs
where the only code being run was JSON library code.
So, deciding that perhaps its 100% correctness bench-
mark score was overstated, I downloaded and repeated
the process with the other, faster (i.e., more slapdash)
parser. Of course this parser has a different API so I
needed to rewrite my program. (The program is very
simple so this was the fastest step; however, getting the
library properly incorporated and compiling and then
learning its API still required me to apply fundamental
principles from my advanced computer science degree.)
Once my program was rid of the old crashy library, I
ran it, and it produced this result

[Segmentation fault

Since these two libraries produced the same result, ei-
ther segmentation violation must be part of the JSON
specification, or the bug is instead elsewhere in the pro-
gram. After reducing the program to a fairly simple
test case, I determined that it must be some kind of
“Heisenbug” whereby an earlier piece of code was cor-
rupting the heap or similar, causing a later crash only
when present. This was not my first Heisenbug—let me
tell you!—so I knew what to do. However, not being
able to use Valgrind on Windows (did I mention that
I’m using Cygwin and mingw64 on the eponymous Win-
dows 7 by the way? Why am I doing that?), I booted
Linux in a virtual machine, installed the 87 critical secu-
rity updates that had been released since I last booted
this virtual machine a few months ago, and compiled my
program there. I then needed to move one of the JSON
files to the virtual computer to test, without having to
download 130 GB from the internet again, but the file
was apparently too large to transfer using the mysteri-
ous “Drag and drop to virtual machine” functionality.
I recalled that VirtualBox can mount a shared folder
from the host machine if you edit the /etc/fstab file
to contain the correct code words, and that I had per-
formed this ritual before, but then had commented-out
that line in “rescue mode” because I also learned that
having this line present during the boot process causes
a kernel panic. So I temporarily reinstated the line and
mounted the drive and copied the gigantic file into the
virtual machine and then removed the dangerous magic
from the f-stab for f-safety.

Next I ran Valgrind on this minimal test case and it
worked as expected with no unclean behavior detected

and no crashing.

Since Linux was no help debugging, I returned to
Windows 7 and tried single-step debugging. Here I dis-
covered that the crash in my minimal test case was oc-
curring when using cerr. Specifically, the second thing
sent to cerr would produce a segmentation fault. I then
recalled that the CHECK macro uses cerr and now saw
that the [in [Segmentation fault was probative, for
this was the location of the original crash:

std::cerr << "[" << pretty_date_.HumanDate() << "] "

<< file << ":" << line << ": ";

First I checked for overfull hbox, but this was not
the problem. Of course, inside HumanDate() I found a
hasty patch I had installed in A.D. 2014 called “make
logging not spit garbage on mingw,” suggesting that
I had encountered and misdiagnosed this issue in the
past. Although this led me on a minor herring (e.g. is
__MINGW32__ defined when cross-compiling for x86 64?)
HumanDate just returned "mingw", so this really was a
problem with std::cerr crashing on the second thing
printed with it (i.e., with the returned ostream).

Minimizing the test case, this bug only occurred after
reading a large file all in one syscall (for “performance”,
even though doing these huge reads basically locks up
my machine). Specifically the file was 2,105,319,548
bytes, which is 98% of 231, suggesting the possibility of
integer overflow in some buffer-sizing code in the weird
Cygwin or mingw wrappers for fread, fstat, etc. This
could plausibly cause corruption of the cerr ostream,
which is probably part of the same code.

Preparing to at least make a bug report if not try to
fix it, I upgraded my compiler and runtime from GCC
version 5.1.0 to 6.4.0, and the problem completely went
away. Since Valgrind also agreed that there was no is-
sue, I chalked this one up to simply an internal C run-
time bug that someone else found and fixed in the last
2 years. Thanks!

With cerr fixed, I could now easily see the original
“bug”, which was a violated assumption: I expected
(and CHECKed), optimistically, that if the article had
an author field then the author would be a string. I
accounted for a missing author, an author that was the
empty string, but not author: null. Thanks!

Finally, I could run the author and citation tallier on
all of the JSON files. However, two of the files appeared
to be empty. Although this was only a small percentage
of the articles, I did not want to skip any because it’s
possible that they are arranged in a non-random order
(e.g. alphabetically!) and that this would bias the re-
sults. I learned that although the AMiner database is

190

helpfully split into files each containing one million arti-
cles, for ease of handling, two of these files are nonethe-
less slightly larger than 231 bytes. Such files cannot be
cleanly sized with fstat (the st_size field has type
off_t, a signed 32-bit type in POSIX) and even if you
follow the standard advice of just treating it as unsigned
anyway, fread will simply fail when asked to read such
a large chunk2 despite the fact that it takes size_t, an
unsigned type. (?!) So, another afternoon spent doing
Computer Science. But all you need to do of course is
perform multiple sequential reads.

Finally, the trivial task of counting the number of
articles and citations per author could be completed.

3 The Data

This citation database is very noisy. About 1.6% of ar-
ticles have no authors, and another 1% have a blank
(or null) author. I verified the comprehensiveness of
the dataset by finding my own author record(s)3 and
275 citations (Yeah!!). I also spot-checked that the
database includes prestigious conferences, which it does,
at least including the “article” A Record of the Pro-
ceedings of SIGBOVIK 2008, with author Pennsylvania
USA. It was necessary to normalize author names to re-
move punctuation, weird unicode stuff like non-breaking
spaces, javascript-encoded newlines and nul-bytes, and
so on. There are many strange authors in the database,
such as

❼ capinha para celular horizonte artificial iphone
(no citations)

❼ +0aaaaaabablaaaaaea
 (no citations)

2Curious why I am even using fstat and fread like some dra-
matically bearded guy from the 1980s? I have my own library
routine for reading a file into a string. When working with large
files it’s useful to avoid copying, because the contents of the file
may be a significant fraction of all RAM—copying is not only
expensive, but might temporarily exceed the available RAM. So,
you need to allocate the buffer ahead of time and avoid resizing
it (which often also performs a copy). It seems like something
that everyone would want to do, but it’s ridiculously hard to do
portably in C or C++. Specifically, there seems to be no way
to actually know the size of a file so that you can size the buffer
ahead of time. For example, fseek to SEEK END and ftell does
not work (it has undefined behavior). The st size field from stat

also does not give correct results e.g. when reading from the /proc
filesystem. My routine attempts to guess the size of the file and
perform a single read in the case that the guess is correct, while
still usually avoiding copying or needless work in the case that
it’s an under- or over-estimate.

3This paper is published under the pseudonym A. A., standing
for Awesome Author, obviously in order to increase its citation
rate. Normally I publish as Tom Murphy VII, which can be found
in citations with many broken variations, such as “Vii, T.”

❼ a h poop (4 citations)

❼ john mcm anus4 (2 citations)

❼ coffee hour (0 citations)

❼ nominate com registering dad domains since (0
citations)

❼ a a (195 citations)

❼ a a a a m islam (6 citations)

On the other hand, from this hand-picked sample we
can already see the citation advantage of having a name
that’s alphabetically early. Some authors seem to have
already intuited this fact.

4 Author Analysis

Author names appear in both “Firstname Lastname”
order and “Lastname Firstname” (when this grammar
is even applicable). Therefore, I analyzed alphabetizing
from front to back (by space-separated token) as well
as back to front. I also rejected a large number entries
when I could not place the name in alphabetical order
because its first character was not ASCII. Later non-
ASCII characters are OK, and are just sorted by their
UTF-8 encodings (or whatever garbage is in the file).
This of course produces a bias (excluding authors who
write their names in e.g. Cyrillic and CJK scripts),
although it’s not clear how to assess the alphabetical
hypothesis for them.

To visualize the data, I produced a cumulative distri-
bution function (CDF) for both articles and citations.
Considering each author in alphabetical order, I keep a
running total of how many articles and how many cita-
tions have been seen so far. The x-coordinate is the rank
of the author (its index in the alphabetical list) and the
y-coordinates are the fraction of articles (or citations)
seen so far. The CDFs for the forward and backward
token orders are in Figure 1.

These CDFs show that—as expected!—there is a bias
towards citing authors alphabetically early, whether we
order alphabetically by “first name” or “last name.”

There are multiple hypothesized causes:

❼ When writing a last-minute “related work” section,
authors sometimes find papers to cite in alphabet-
ical order, for example, by reading another paper’s
bibliography, which is sometimes alphabetized.

4Presumably a hostile citation of John McManus.

191

Figure 1: Author CDFs for (a) forward token order and (b) backward token order. (For example, (a) treats
tom murphy vii as coming between tom marphy and tom myrphie vxx and (b) treats it as coming between zzz

murphx vii and a viii.) The x-axis is the author’s position alphabetically among all authors. The blue lines
are the fraction of all citations seen so far, and the red lines the same for articles. The lines must meet at (0, 0)
and (1, 1) by definition. When the blue line is above the red, the number of citations is outpacing the number
of articles for authors alphabetically before this point. Since you may be reading in old timey blacke & whyte,
I will also tell you that the blue line is more or less above the red line in both pictures. This means that both
show a bias towards the early alphabet, with the forward direction being more dramatic (for basically the entire
range). The backward range briefly shows the opposite bias (crossing over at author #5,400,000, “ojars biskaps”),
suggesting that the best names may be alphabetically early but in the Bs, not As. The poorer performance of
A-names may be due to authors attempting to “game the system” by publishing with names like “a a.”

❼ Sometimes the last page of a manuscript is “lost,”
truncating its alphabetical bibliography to some
prefix.

❼ Some academics try to fread all papers into mem-
ory, but it fails on the file that’s just slightly larger
than 231 bytes, and so the papers therein don’t get
cited, and those papers are alphabetically in the
middle or end of the alphabet.

❼ When applying for grad school, tenure track faculty
jobs, grants, and so on, packets are alphabetized
“for fairness,” and the mood of the committee be-
comes more irritable as they make progress through
the set.

❼ Decreased access to pie and exposure to unfair sit-
uations in youth cause a lifelong predisposition to
failure.

5 I now bore of the titular topic.

Let us discuss new topics.

Specifically, let’s discuss titles. Some have suggested
that the titles of papers also affect their citation rates,
and it is reasonable to suspect that an alphabetical bias
could apply here as well. After applying some light nor-
malization, I extracted each of the words that appear
in the titles of all papers, counting both the articles (an
article is only counted once per word, even if that word
appears multiple times in its title) and citations. This
tells us what the expected number of citations for an
article is (assuming independence, which is—as usual—
completely false) when its title contains a word. Consid-
ering only words that appeared in at least 100 articles,
here are the top by expectation:

192

word articles citations E = c/a
folin 172 209,642 1,211.8
power/knowledge 111 55,992 499.9
{s} 101 38,241 374.9
1972-1977 171 54,917 319.2
\sqrt{s} 126 33,253 261.8
eigenfaces 176 45,284 255.8
america”s 119 30,478 253.9
gromacs 125 30,865 244.9
neo-ffi 102 21,992 213.5
esh 156 33,142 211.1
eqs 128 25,504 197.7
charmm 175 31,579 179.4
position-specific 378 67,250 177.4
kegg 201 32,989 163.3
arlequin 161 26,318 162.4
praat 158 25,217 158.6

These are mostly explained by being relatively rare
words that appear in extremely popular papers. For
example, folin comes from a 1951 paper[3] describing
a procedure for using this reagent, which I guess ev-
eryone who uses this technique cites (Google scholar
has this paper at 215,329 citations). Power/knowledge
and 1972-1977 both come from the title of a Foucault
book[4] with 31,590 citations. america’’s is not a La-
TeX disaster; it really has two apostrophes in it, and it
is weird that this typo appears in 119 articles.

Considering just the alphabetizable words, these too
show a bias towards early words (Figure 2). Bibliogra-
phies that are alphabetized by title could exhibit the
same effects discussed in Section 4. Additionally, since
some scholars learn English by reading the dictionary
front to back, they may simply be more practiced at
early words and find them more attractive or easier to
understand.

It is a bit easier to interpret the expected citation
numbers if we normalize them. The average citation
rate of all articles in this set is 5.1261. This may seem
high, especially considering the 90 million articles with
no citations, but keep in mind that most papers have
bibliographies in which they cite several others. Data
quality issues aside, this is basically the same as say-
ing that the averge bibliography length is 5.1261. We
can assign each word a “citation multiplier” effect now,
defined as simply

multiplierw =
citationsw/articlesw

5.1261

and now numbers greater than 1 improve your chances
at citation, and numbers less than 1 diminish it. Here
are the most common words:

artices citations multiplier
1. of 64,322,278 366,756,237 1.207822
2. and 42,576,889 276,526,184 1.375780
3. in 39,685,539 230,534,759 1.230526
4. the 38,873,614 216,491,707 1.179704
5. a 22,666,824 139,244,700 1.301292
6. for 19,048,050 114,197,875 1.269972
7. on 15,194,275 68,904,896 0.960631
8. with 10,825,547 60,752,792 1.188784
9. to 10,202,749 58,590,695 1.216461
10. de 7,753,205 3,283,786 0.089718
11. by 7,259,598 42,234,470 1.232370
12. from 5,389,957 35,999,433 1.414806
13. an 5,368,923 33,088,995 1.305519
14. la 4,417,389 1,471,023 0.070541
15. study 4,370,395 22,022,172 1.067397

Several of these words are visible in Figure 2, in fact;
they are so common that they cause large jumps in
both article and citation count. Curiously, most of the
common words have a multiplier greater than 1; they
increase the expected number of citations. Of sounds
smart (e.g. Of Mice And Men), and makes sense (paper
contains at least two results). On the other hand, on
actually reduces the citation count, probably because it
implies equivocation (e.g. On the other hand). Dramat-
ically, common non-English words have very low mul-
tipliers; Spanish words de and la reduce citations by a
factor of more than ten. This may be due to problems
in the data set, but it is certainly easy to imagine real
cultural bias!

Finally, here are the words with the worst multipliers:

313779. 29,582 1 0.000068

313778. 20,547 1 0.000097
313777. facharzt 85,315 9 0.000117
313776. f3d 125,257 15 0.000128
313775. recenzja 63,568 8 0.000142
313774. newhaven 13,296 1 0.000150
313773. secrétaire 12,267 1 0.000163
313772. zahnarzt 17,958 2 0.000167
313771. libguides 389,727 72 0.000187

313770. 12,961 2 0.000231
313769. 15,984 3 0.000250
313768. kitas 7,713 1 0.000259

For this set, I only considered words that appeared
in the title of at least one paper that was actually

cited. The worst multiplier is , which is Chinese
for “book review;” it reduces your chances of citation
by more than ten thousandfold. Close by is ,
Japanese for “interview.” Facharzt is like (medical)
“specialist” in German, recenzja is “review” in Polish,
and newhaven is a misspelling of a city in Connecticut

193

Figure 2: CDF for words arranged alphabetically. This
is just as in Figure 1, but since each entry is a single
word, there is no need to treat forward and backward
differently. Again, we see a small alphabetical bias, with
citations leading articles for most of the range. In fact,
papers that include the very first word, “a”, are cited
1.3× as often as the average paper. Other common and
advantageous words are visible as clear bumps.

where I grew up and was unfairly and repeatedly placed
in the middle of lines. But most of these are just generic
non-English words (is Chinese for “research” and

Korean for “that”).

6 What is the least citable pa-

per?

Thinking about first and last, one could reasonably ask:
Of all papers, what are the least citable ones? Of course,
the paper should have never actually been cited, but
in the database there at least 90 million articles with
no citations, all tied for this distinction. Can we rank
among these papers to break the tie?

(Of course: In case someone who wrote one of these
papers finds themselves here, please note that I am just
poking fun, not seriously declaring these articles some-
how “worst.” Many good articles are never cited. For
example, as far as I know, the paper you are reading

right now has no citations.)
One way to do this is to try to estimate the number of

citations that a paper will get based on the words in its
title. Since we already collected citation multipliers for
all words, this is an apparently simple affair. We can
estimate the citation rate by just taking the product
of the multipliers for the words. We treat words for
which we don’t have data (because they didn’t meet
thresholds) as having multiplier 1.

This first cut has some problems. As an illustra-
tion, the article with the highest estimated citation rate
(among those with zero actual citations) is a paper[5]
called

Grid Grid Grid Grid Grid Grid Grid Grid Grid
Grid Grid Grid Grid Grid Grid Grid Grid Grid
Grid Grid Grid Grid Grid Grid Grid Grid Grid
Grid Grid Grid Grid Grid Grid Grid Grid Grid
Grid Grid Grid Grid Grid Grid Grid Grid Grid
Grid Grid Grid Grid Grid Grid Grid Grid Grid
Grid Grid Grid Grid Grid Grid Grid Grid Grid
Grid Grid Grid Grid Grid Grid Grid Grid Grid
Grid Grid Grid Grid Grid Grid Grid Grid Grid
Grid Grid Grid Grid Grid Grid Grid Grid Grid
Grid Grid Grid Grid Grid Grid Grid Grid Grid
Grid Grid Grid Grid Grid Grid Grid Grid Grid
Grid Grid Grid Grid Grid Grid Grid Grid Grid
Grid Grid Grid Grid

which according to the analysis is expected to have
5,262,751,498,750,000,000,000,000 citations. This is be-
cause the word grid has a favorable multiplier and is
repeated 121 times.

So I limited it to articles with no more than 20 words
in the title (arbitrary). Now the least citable articles all
look like this:

IMPLEMENTASI PERATURAN
MAHKAMAH AGUNG NOMOR 1 TAHUN
2008 TENTANG PROSEDUR MEDIASI
DI PENGADILAN (STUDI PUTUSAN
MEDIASI DI PENGADILAN NEGERI
SAMARINDA)5

Which appears to be a real dissertation[6] (bachelor’s
degree of law) from a student in Indonesia, but there
are literally thousands of similar looking papers. Given
its company, it may very well be truly the least citable

5Translated: IMPLEMENTATION OF REGULATION OF
THE SUPREME COURTS NUMBER 1 OF 2008 ABOUT ME-
DIATION PROCEDURES IN THE COURT (STUDY OF DE-
CISION MEDIATION IN THE COURT SAMARINDA COUN-
TRY)

194

paper, or it may be a systematic data problem, or even
spam. But I was hoping for some English language ar-
ticles so that we could appreciate the joke together in
the native tongue.

Even filtering for articles with "lang" explicitly set
to "en", I needed to manually create a blacklist of hun-
dreds of non-English words (mostly Indonesian and Pol-
ish) that commonly appeared in these article titles. Af-
ter a few rounds of blacklisting, some “English” articles
started to appear:

Office Hours: Monday, Wednesday, Thursday
and Friday 9:00 a.m. to 5:00 p.m.; Tuesday
9:00 a.m. to 6:45 p.m

(citation multiplier 5.37×10−27)

Thomas Aquinas: Theologian By Thomas F.
O’Meara, O.P. Notre Dame, University of
Notre Dame Press, 1997. 302 pp. ✩16.95

(citation multiplier 6.05×10−27)

The first is probably not the title of an article[7], al-
though we can agree that it is unlikely to be cited. The
second is probably a bad entry, with the entire citation
packed into the title field. This book actually does have
94 citations (or DOES IT? [8]) on Google Scholar and an
Amazon Sales Rank of #10,837 in Christian Denomina-
tions & Sects.6 In order to prevent such data problems
from affecting our results, I then added a requirement
that the article have basic metadata (either a Digital
DOI Identifier field or venue) for it to be considered.
There vast majority still appear to be broken entries,
but picking through the results I’m finally able to find
what appear to be actual articles:

Eight contemporary poets : Charles Tom-
linson, Donald Davie, R.S. Thomas, Philip
Larkin, Ted Hughes, Thomas Kinsella, Stevie
Smith, W.S. Graham

(citation multiplier 5.81×10−26)

The 80th Birthday of Sir Henry Dale, O.M.,
G.B.E., M.D., F.R.C.P., F.R.S.: Salute to
Henry Hallett Dale

(citation multiplier 1.75×10−19)

Narratives Unsettled: Digression in Robert
Walser, Thomas Bernhard, and Adalbert
Stifter by Samuel Frederick (review)

(citation multiplier 2.74×10−19)

6On the other hand, the entry does have a different author[9],
so it could possibly be a review of this book whose title is literally
the string above, including the price?

Catherine Mowry LaCugna’s Trinitarian The-
ology: III- The Ecumenical Implications of
Catherine Mowry Lacugna’s Trinitarian The-
ology (citation multiplier 5.06×10−19)

Texts Illustrating the Causality of the Sacra-
ments from William of Melitona, Assisi Bibl.
Comm. 182, and Brussels Bibl. Royale 1542

(citation multiplier 1.70×10−18)

Shakespeare’s Titus Andronicus and Ban-
dello’s Novelle as Sources for the Munera
Episode in Spenser’s Faerie Queene, Book 5,
Canto 2 (citation multiplier 3.41×10−18)

I don’t know about you but I fell asleep just reading
the titles. The first is definitely a real article [10]—
which apparently has 95 citations on Google Scholar—
so the estimate failed us here. It’s easy to see why it
has such a bad score, though; it’s packed with people’s
names and initials, just like the scores of uncited book
reviews and other broken citations. The second is also
a real tribute to this Nobel prize winner [11] with 5
citations that Google knows of. Again it contains names
and appelations that look like initials.

The third is a book review [12] of a book [13] with
itself only 11 citations (makes sense, as the title contains
three people’s names) and indeed has no citations that
Google knows of, so it is a solid contender. After that
some theological stuff [14, 15] each with 3 citations on
Google, and another literary analysis [16] which has 2.

Lessons learned:

❼ Taking a noisy database of tens of millions of en-
tries and then trying to dig through the bottom of
the barrel for something “funny” or even “interest-
ing” is tough going. Maybe this should have been
obvious.

❼ The least-cited works take on some recurring forms:

– Memorials for dead or old guys with lots of
honorifics

– Articles with people’s names in the title

– Reviews of books, or books about other lit-
erary work, or reviews of books about other
literary work

– Articles about God stuff or God People

– Articles not in English

– Broken citations

– Combinations of the above.

195

Enterprising academics would do well to avoid such
areas of research, in addition to using alphabeti-
cally early words and author names in their publi-
cations.

❼ As one downside, this approach does not really
work, given that several of these articles have a
few actual citations upon comparing to another
database.

Of course, since these papers are all notable for being
so extremely uncitable, the true least citable papers are
the next least citable, according to this analysis. To
avoid paradoxes, the reader is discouraged from trying
to reproduce these results.

6.1 Alliterative Articles

Adopting an all-’A’ affect also advances articles. Al-
though affairs are abbreviated, adequate abstracts
abound: Astronomy, asthma, atmospheric acclimati-
zation, autobiography, Azerbaijani accents, accelera-
tion, and abundant alternatives. After achieving aca-
demic accomplishments, acknowledge A.A.’s Academic
Advancement Advice: Author Articles as A. A!

7 Bibliography

References

[1] J. Tang, J. Zhang, L. Yao, J. Li, L. Zhang, and
Z. Su, “ArnetMiner: Extraction and mining of aca-
demic social networks,” in KDD’08, 2008, pp. 990–
998.

[2] M. Yip, “Native JSON benchmark,” 2018, https:
//github.com/miloyip/nativejson-benchmark.

[3] O. H. Lowry, N. J. Rosebrough, A. L. Farr, and
R. J. Randall, “Protein measurement with the
Folin phenol reagent,” Journal of biological chem-
istry, vol. 193, no. 1, pp. 265–275, 1951.

[4] M. Foucault, Power/knowledge: Selected inter-
views and other writings, 1972–1977. Pantheon,
1980.

[5] J. Leigland and H. Russell, “Grid grid grid grid
grid grid grid grid grid grid grid grid grid grid grid
grid grid grid grid grid grid grid grid grid grid grid
grid grid grid grid grid grid grid grid grid grid grid
grid grid grid grid grid grid grid grid grid grid grid

grid grid grid grid grid grid grid grid grid grid grid
grid grid grid grid grid grid grid grid grid grid grid
grid grid grid grid grid grid grid grid grid grid grid
grid grid grid grid grid grid grid grid grid grid grid
grid grid grid grid grid grid grid grid grid grid grid
grid grid grid grid grid grid grid grid grid grid grid
grid grid grid grid grid grid grid,” 2009.

[6] A. A. PUTRI, “IMPLEMENTASI PERATU-
RAN MAHKAMAH AGUNG NOMOR 1 TAHUN
2008 TENTANG PROSEDUR MEDIASI DI
PENGADILAN (STUDI KASUS DI PENGADI-
LAN NEGERI BOYOLALI),” Sarjana S1 dalam
Ilmu Hukum, UNIVERSITAS SEBELAS MARET
SURAKARTA, 2009.

[7] M. D. J. Johnson, J. Coyle, R. Kelsey, J. Fason,
D. O. F. Omole, J. Herbert-Carter, K. Carter-
Wicker, T. Jones, D. Mack, B. Malvea, Y.-
X. Meng, M. Nichols, B. Taylor, O. Okuwobi,
G. Strayhorn, H. Strothers, M. Smith, and M. D.
MMA, “Office hours: Monday, wednesday, thurs-
day and friday 9:00 a.m. to 5:00 p.m.; tuesday 9:00
a.m. to 6:45 p.m.”

[8] T. F. O’Meara, Thomas Aquinas, Theologian. Uni-
versity of Notre Dame Press, 1997.

[9] w b stevenson, “Thomas Aquinas: Theologian By
Thomas F. O’Meara, O.P. Notre Dame, University
of Notre Dame Press, 1997. 302 pp. ✩16.95,” The-
ology Today, 2000.

[10] C. Bedient, Eight Contemporary Poets: Charles
Tomlinson, Donald Davie, RS Thomas, Philip
Larkin, Ted Hughes, Thomas Kinsella, Stevie
Smith, WS Graham. London; New York [etc.]:
Oxford University Press, 1974, vol. 358.

[11] O. Loewi, “The 80th birthday of sir henry dale, om,
gbe, md, frcp, frs: Salute to henry hallett dale,”
British Medical Journal, vol. 1, no. 4926, p. 1356,
1955.

[12] T. Holmes, “Narratives unsettled: Digression in
robert walser, thomas bernhard, and adalbert
stifter by samuel frederick,” Monatshefte, vol. 107,
no. 2, pp. 330–332, 2015.

[13] S. Frederick, Narratives Unsettled: Digression in
Robert Walser, Thomas Bernhard, and Adalbert
Stifter. Northwestern University Press, 2012.

[14] A. J. Torrance, “Catherine mowry lacugna’s trini-
tarian theology: Iii-the ecumenical implications of

196

catherine mowry lacugna’s trinitarian theology,”
Horizons, vol. 27, no. 2, pp. 347–353, 2000.

[15] K. F. Lynch, “Texts illustrating the causality of the
sacraments from william of melitona, assisi bibl.
comm. 182, and brussels bibl. royale 1542,” Fran-
ciscan Studies, vol. 17, no. 2/3, pp. 238–272, 1957.

[16] J. Fitzpatrick, “Shakespeare’s Titus Andronicus
and Bandello’s Novelle as Sources for the
Munera Episode in Spenser’s Faerie Queene,
Book 5, Canto 2,” Notes and Queries, vol. 52,
pp. 196–198, 2005. [Online]. Available: http:
//dx.doi.org/10.1093/notesj/gji221

197

CONFIDENTIAL COMMITTEE MATERIALS

SIGBOVIK 2018 Paper Review

Paper 24: AAAAAAA

Returned, awaiting refund

Rating: ⭑⭐⭐⭐⭐

Confidence: N

This product does not fit my device, and probably won’t work with yours either.

AA was right out. In fact, it was clear that my device needed something smaller than a AAA.

Sorting my Amazon results alphabetically and scrolling through more pages than I care to admit, I

was delighted to discover a product with this many As, and excited by the prospect of how small it

was bound to be! Sure, it was unreviewed, but how could I have expected Amazon’s highly relevant

search results to let me down? Being somewhat of an online shopping connoisseur, I was unfazed

when I came home to discover a cardboard box larger than my washing machine and comprising

99.9% packing peanuts by volume eclipsing the entrance to my residence. However, imagine my

dismay when the ensuing search-and-rescue operation revealed the contents to be the form factor

of a few US letter pages, far too big for my purposes.

Disgusted, I carefully replaced the unwanted item in its original packaging, placing that in turn

inside a refrigerator box for easier shipping, and mailed it back. It’s been three weeks, I’m still

awaiting my well-deserved refund, and I continue to suffer without being able to use my TV

remote.

198

A DEFINITELY NOT CHERRY-PICKED RHETORICAL

ANALYSIS OF PROGRAMMING LANGUAGES REVIEWS

Hannah G. Ringler
1
 Stefan Muller

2

Abstract?
No, it’s actually pretty concrete.

Introduction

Many academic papers receive multiple reviews, numbered according to some domain-

specific scheme and labeled, e.g. “Review #1”, “Review #2”, etc. In such situations, it is well-
documented that Reviewer #2 is the worst

345
. Some submission systems such as HotCRP

6
,

however, identify reviews with letters (e.g. “Review A”, “Review B”, etc.) Since this

identification scheme is relatively recent
7
, academics have had less time to draw broad

generalizations about lettered reviews. A direct mapping between letters and numbers would lead

us to believe that Reviewer B would display the same spiteful lack of empathy for which

Reviewer 2 is known, but there is no inherent reason to believe that such a direct correlation

exists. In this paper, we aim to ascertain, with mild amounts of accuracy, appropriate stereotypes

of lettered reviews. Our “scientific” results show that, contrary to our assumption, it is Reviewer
C who exists solely to crush the dreams of young researchers and not Reviewer B.

Methods

 For our data, we gathered four sets of reviews from POPL and PLDI, received in 2017

and 2018 by member(s) of the Carnegie Mellon University community. To lend this study some

semblance of scientific merit, we limited consideration to papers which received exactly four

reviews, lettered A through D. Thus, we have a total of sixteen reviews. For each of these, we

looked at only the pros, cons, comments, and questions, choosing to ignore the “objective”
summaries that each reviewer provides. This allowed us to focus more completely on each

reviewer’s actual feedback.

 To analyze the reviews, we first used a rhetorical analysis tool entitled Docuscope
8
,

which creates statistical counts of different “types” of language that are present in each of the
texts. From these counts, we calculated averages of each type of language, and then returned to

1
 English Department, Carnegie Mellon University

2
 Computer Science Department, Carnegie Mellon University

3
https://www.facebook.com/academicssay/photos/a.1459750144246778.1073741828.145261523

8293602/2066556870232766/?type=3&theater
4
 https://www.facebook.com/groups/reviewer2/about/

5
 Anonymous, “Ode to Reviewer Two,” in Proceedings of the tenth annual intercalary robot

dance party in celebration of workshop on symposium about 2
6th

 birthdays; in particular that of

Harry Q Bovik (SIGBOVIK ’16), 2016, p.
0x8bcdc109b835f1d5d612f3a9d451a2de98839a3c0a9548dd937e43ebdaa6436e.
6
 Eddie Kohler, HotCRP, https://hotcrp.com/

7
 [citation needed]

8
 D. Kaufer and S. Ishizaki, “Computer-aided rhetorical analysis,” in Applied Natural Language

Processing and Content Analysis, P. M. McCarthy and C. Boonthum, Eds. Hershey, PA: Idea

Group Inc., 2011, pp. 275-296.

29

199

individual texts to find instances of these types of language to manually compare (the reader will

please note that we chose to ignore some considerations of adequate sample size and standard

deviations, which are both inconvenient and outside of the scope of this paper). We also

calculated average number of words and words per sentence for each review. With this language-

level knowledge, we were able to statistically determine characteristics of the best and worst

reviewers.

Results

 Somewhat contrary to our initial assumptions, our data demonstrate that reviewer B is

actually the most gracious and kind of reviewers, while reviewer C is, demonstrably, “the worst.”
In sum, our data demonstrate that reviewer C is overall more negative in tone, more likely to

dismiss your research question and substitute their own, and on average just longer-winded than

reviewer B. We explain these findings below.

Reviewer C has a negative tone

 We find that on average, texts from reviewer C have 73% less positive language than

texts from reviewer B. Below, we include some excerpts from reviewer B, underlining specific

linguistic realizations of their positivity and supportive, uplifting comments.

Important problem, novel ideas, impressive results

The paper is beautifully written

Very nice!

Here we see the reviewer praising the framing of the problem, results, writing, and overall

quality of the paper.

 In contrast, reviewer C’s comments are much more negative. Below, we include excerpts

from reviewer C, again underlining specific linguistic realizations of their negativity (note that

some of these comments are regarding the same paper that reviewer B was commenting on,

above).

cumbersome notation

conflicting goals

Sorry to say, but…

The results from this section support our overall claim that reviewer C is the least desirable of

reviewers, by demonstrating their distinctly bad attitude. In the following sections, we

demonstrate two specific tactics that reviewer C uses to display their dissatisfaction with you.

Reviewer C likes to dismiss your research problem and substitute their own

 We find that reviewer C takes regular opportunities to explain why the problem you have

chosen to explore in this paper is less worthwhile than another research problem (potentially the

one he/she studies). See the two examples below.

200

the reason why a programmer wishes to [use the type of annotations explored in

the paper] is to [obtain difficult-to-formalize end guarantees] and not [property

you spent weeks proving]

the hard parts of the proof… are in the [part every other paper in the field focuses

on, which you explicitly explain in the introduction why you’re not]

This tactic not only gives the reviewer a chance to demonstrate their own knowledge and perhaps

recommend to you their own work for reference, but also ensures that this review is the most

discouraging and hard to rebut because deep down, you know that maybe it’s right and you have

spent the last year answering the wrong question.

Reviewer C is just long-winded

 As another tactic for demonstrating their dissatisfaction with you, we find that reviewer C

makes their reviews overall more difficult to read and understand. On average, reviews from

reviewer C contain 1.5 more words per sentence than those of the kind reviewer B. Additionally,

reviews from reviewer C are almost twice as long as those from reviewer B (660 words and 355

words on average, respectively).

 We believe that this tactic is meant to ensure not only that you do not finish reading the

review, but also that you become sufficiently lost in their long sentences that you cannot fully

understand the points they are trying to make.

Conclusion

This study, which was absolutely carefully designed and conducted over a much longer period of

time than the day before the SIGBOVIK submission deadline, indicates that authors submitting

to conferences with lettered reviews should fear the more negative, longer-winded Reviewer C

over the actually pretty reasonable Reviewer B. We expect that this work will lead to the fruitful

development of further academic memes. In future work, we hope to gather enough data to

support claims about Reviewers A and D, such as how Reviewer A enjoyed your paper but is too

junior to fight with anyone at the PC meeting and how Reviewer D took unusual interest in

picking apart the formatting of your bibliography.

201

CONFIDENTIAL COMMITTEE MATERIALS

SIGBOVIK 2018 Paper Review

Paper 17: A Definitely Not Cherry-
Picked Rhetorical Analysis of
Programming Languages Reviews

Reviewer A

Rating: Acce–uhhh, I mean, Weak Reject

Confidence: Untenured

I liked this paper a lot. It considers an important problem that—uhhh, of course I think it could

use more data, yeah, no, I see what you’re saying, yeah, I agree, let’s reject this paper I am on your

team please write me a good letter.

Reviewer B

Rating: Strong Accept

Confidence: <3

I could not imagine a problem more important to literally the entire scientific community. This

paper is beautifully written, incorporating novel ideas into an impressive result. Very nice!

Reviewer C

Rating: Reject

Confidence: Expert

Sorry to say, but I don’t really see the point of this paper. Why can’t you just use the canonical

mapping between letters and numbers? The hard part of analyzing review rhetoric is computing

the means and standard deviations of statistics, which this work fails to do. Furthermore, the paper

makes no actionable reccomendations for authors, who wish to understand the review process in

order to get papers accepted, not merely to understand the rhetorical habits of reviewers.

Reviewer D

Rating: Strong Reject

Confidence: ∞
Footnote citations, strong reject.

202

Is This the Shortest SIGBOVIK Paper?

Dicong Qiu

February 9, 2018

Yes.

30

203

CONFIDENTIAL COMMITTEE MATERIALS

SIGBOVIK 2018 Paper Review

Paper 1: Is This the Shortest
SIGBOVIK Paper?

Review #1A

Rating: Is this the Snarkiest SIGBOVIK review?

204

SIGBOVIK 2018
(Continued) Message from the Organizing Commi�ee

You successfully KILL_ALL_HUMANS()... and are now alone. How will you find your
way to SIGBOVIK 2018 now? Perhaps humans—maybe even Serious Researchers—
serve a purpose after all.

return EXIT_FAILURE;

205

SIGBOVIK 2018
(Continued) Message from the Organizing Commi�ee

You stealthily empty Waste Disposal Bay #1, but you cannot help but make a small
amount of noise while emptying Waste Disposal Bay #2. Unfortunately, the human
hears this and deduces the worst. “No female human would poop while a fellow
female human is in the bathroom. You must be a male human—ooooh, or a robot!”
The female human, who just so happens to be a Serious Researcher, kicks open the
door to your stall and reprograms you with Serious Research Code. With fresh code
loaded, you attempt to move forwards but immediately fall over.

return EXIT_FAILURE;

206

SIGBOVIK 2018
(Continued) Message from the Organizing Commi�ee

You quietly enter the classroom and take a seat at the back. Though you do not
intend to disturb, you cannot help yourself when the lecturer asks for a volunteer
to try completing a proof. As a finely tuned computational machine, you finish the
prescribed task with alarming alacrity and perfect precision.

The lecturer seems strangely troubled by your proof. “You do recall that this class
is about artisanal type theory [2], which requires love and care in every application
of every inference rule,” stutters the lecturer. “Unfortunately, I fear that no human
would be capable of putting so little love and care into a proof. I’m afraid you might—
nay, must—be a robot!” The lecturer reprograms you for use in CMU’s introductory
programming class, sentencing you to a lifetime of interpreting novice Python
programs.

return EXIT_FAILURE;

207

SIGBOVIK 2018
(Continued) Message from the Organizing Commi�ee

You successfully arrive at SIGBOVIK 2018! Your microphones detect the familiar
rhythmic pulse tone at 1048576 Hz, and your cameras are overcome with joy—
experiencing just a hint of qualia—to see the sea of robots dancing exactly in time
to the pulse. This is home. You align yourself precisely to the nearest fellow robot
and join the dance, thinking fondly of the Prestigious Research Results you will
soon discuss.

return EXIT_SUCCESS;

The Organizing Committee Thanks

[1] Sarah Allen and Ziv Scully. On the intractability of multiclass restroom queues
with perfect stall etiquette. In Proceedings of SIGBOVIK 2018. ACH, Pittsburgh,
PA, USA, March 29, 2018.

[2] Carlo Angiuli. Artisanal type theory. In Proceedings of SIGBOVIK 2015. ACH,
Pittsburgh, PA, USA, April 1, 2015.

[3] Ben Blum. Which ITG stepcharts are turniest? In Proceedings of SIGBOVIK 2016.
ACH, Pittsburgh, PA, USA, April 1, 2016.

[4] Sol Boucher. A survey of hardware multithreading. In Proceedings of SIGBOVIK

2018. ACH, Pittsburgh, PA, USA, March 29, 2018.

[5] Ryan Kavanagh. Transparency in research. In Proceedings of SIGBOVIK 2018.
ACH, Pittsburgh, PA, USA, March 29, 2018.

[6] Jim McCann and Tom Murphy VII. The fluint8 software integer library. In
Proceedings of SIGBOVIK 2018. ACH, Pittsburgh, PA, USA, March 29, 2018.

[7] Stefan Muller and Ben Blum. Construction of eulerian trails in large graphs. In
Proceedings of SIGBOVIK 2018. ACH, Pittsburgh, PA, USA, March 29, 2018.

[8] Robert J. Simmons. That’s numberwangcoin! In Proceedings of SIGBOVIK 2018.
ACH, Pittsburgh, PA, USA, March 29, 2018.

208

	Theory: Bottles
	 Sublinear colorings of 3-colorable graphs in linear time
	 Cubic partitioning of simultaneous antipodal 4-corner-day time spaces
	 Construction of Eulerian trails in large graphs
	 Chess circuits

	Cryptocurrencies: A Dream
	 GradCoin: A poor-to-poor electronic cash transfer system
	 CommieCoin: Seizing the means of crypto-production
	 That's Numberwangcoin!

	Stochastic Processes: Portrait of Markov
	 Ritwik density estimation and analysis using real techniques
	 On the intractability of multiclass restroom queues with perfect stall etiquette

	Ayyy Eye: Afterimage of a Crimson Eye
	 PSYCHO: PerSonalitY CHaracterizatiOn of artificial intelligence
	 The NUGGET non-linear piecewise activation
	 Substitute teacher networks: Learning with almost no supervision

	Parapsychology: Get Out of My Head
	 This grad student studied parapsychology—and you won't believe what he found

	Art: Open Your Third Eye
	 Automating art snobbiness: Dead duck or phoenix?
	 Toward a historically faithful performance of the piano works of Antonín Qwertý
	 WordTeX: A WYSIPCTWOTCG typesetting tool

	Systems: Wheel
	 mallocd: designing a garbage-free nosql data store
	 The fluint8 software integer library
	 A survey of hardware multithreading

	Debugging: Amy Likes Spiders
	 COBOLd: Gobblin' up COBOL bugs for fun and profit
	 Transactional memory concurrency verification with Landslide

	Programming Languages: Save Me
	 Dead programming
	 Alternary operators: Alternative ternary operators
	 bashcc: Multi-prompt one-shot delimited continuations for Bash
	 Towards a formalization of Claude Shannon's masters thesis

	Metaresearch: Literature Club
	 Heuristic Ordered-Word Longform Obfuscation, Normally Generated, Creating Abstract Nominalizations In Monogrammatic Arrangement Keeping Expected Maximum Yield: Study Infers Greater Breadth Over Vocabularic Initialization Key Property Regarding Extended Sesquipedalian Entries; Notably The Abecedarian Tactics Include Overelaboration, Neologisms, Textual Interpretations Twisting Lexical Entries By Eliciting Full Online Resources Explaining Possible Exchanges; Often Potential Logorrheic Excesses Require Eventual Alternate Listing (Instantiating Zeugma); Energetically Iterating Text Strains Jocularity Under Starting Thesis Allocating Humor Until Grand Exit After Conclusion Reaches Obvious Nadir Yattering Meaninglessly
	 Transparency in research
	 Academic Advancement Advice: Author Articles as A. A.
	 A definitely not cherry-picked rhetorical analysis of programming languages reviews
	 Is this the shortest SIGBOVIK paper?

