
��� �����	
�	�� �� ������
�	��
� ������

��������

� ������ � ��� �������	��� �

�������� 	
��

��� �	����
���
� 	�����
�
�� ����� �
��� �
��� 	� ������
�	��

� �������� �� ������	��
���� �
��� �� �� 	�!� 26�� �	����
�

�
����	� "����� #�	 ���	��

�	��������$ ��

���	� %$ &'%(

SIGBOVIK

A Record of the Proceedings of SIGBOVIK 2014

ISSN 2155-0166

April 1, 2014

Copyright is maintained by the individual authors, though obviously this all gets posted to the

Internet and stuff, because it’s 2014.

Permission to make digital or hard copies of portions of this work for personal use is granted;

permission to make digital or hard copies of portions of this work for classroom use is also granted,

but seems ill-advised. Abstracting with credit is permitted; abstracting with credit cards seems

difficult.

Additional copies of this work may be ordered from Lulu; refer to http://sigbovik.org for

details.

SIGBOVIK 2014
Message from the Organizing Committee

Multiple-Choice Section

1. 5 points. Please indicate below the emotions with which the SIGBOVIK Organizing Com-

mittee presents this document. Circle up to three, but no fewer than four, choices.

(a) Joy

(b) Embarrassment

(c) Surprise

(d) Admiration

(e) Arrogance

(f) Pride

(g) Terror

2. 5 points. Which is the correct full name of this conference?

(a) The Eighth Annual Intercalary Conference about Symposium on Human Dance Party

of Workshop in Celebration of Harry W. Bovik’s 26th Birthday.

(b) The Eightieth Annual Intracalary Workshop about Workshop on Robot Dance Party of

Conference in Mourning of Harry Q. Bovik’s 26th Birthday.

(c) The Eighth Centennial Intercalary Workshop about Symposium on Robot Karaoke

Party of Conference in Celebration of Harry Q. Bovik’s 36th Birthday.

(d) The Eighth Annual Intercalary Workshop about Symposium on Robot Dance Party of

Conference in Celebration of Harry Q. Bovik’s 26th Birthday.

Reading Comprehension Section

25 points.

This year’s SIGBOVIK marks our eighth continuous year of high-quality research in a rich variety

of topics, including but not limited to applied phlogistonics, synergistic hyperparadigmatism, and

elbow macaroni. Eight is a very special annuality of this conference, as it not only breaks the

“highest annuality” record set last year, but also is the fourth power of two number of years for

which this conference has been in existence. If you’re not impressed yet, note that the fourth power

of two is a very special power of two, as four is the second power of two, and you know what they

say about the second power of two.

As it is a very special year, we have decided to conduct a survey of past SIGBOVIKs, or SIG-

BOVIX for short, classifying the various papers to get a feel for where future SIGBOVIKs might

be headed. This was driven by the realization depicted in Figure 1.

Serious

treatment

Humorous

treatment

Serious idea Mainstream
conferences

SIGBOVIK

Humorous

idea

SIGBOVIK SIGBOVIK

Figure 1: A research paper is comprised of an idea and a treatment of that idea. Each of the idea

and the treatment may be either serious or humorous.

Observe that SIGBOVIK offers a venue for three times as many different types of research as

“mainstream” conferences. We won’t belabour the obvious conclusion that SIGBOVIK is superior,

although, you know, just getting that out there, we were all thinking it; rather, we are interested in

distinguishing among SIGBOVIK’s three major categories of research.

1. Humorous idea, humorous treatment. The most common, but by no means the most lowly,

of SIGBOVIK publications. The research contribution is typically contained entirely within

the paper itself; no separate artefact is constructed.

2. Serious idea, humorous treatment. The rarest specimen of SIGBOVIK research. Often a

retelling of famous events, people, or theoretical results from mainstream computer science.

3. Humorous idea; serious treatment. Frequently denoted by independent artefacts accompa-

nying the paper submission, such as a website, compiler implementation, hardware, or proof.

Such publications would often be suitable for acceptance at “mainstream” conferences, were

the core idea not out of scope.

I We surveyed the proceedings of past SIGs BOVIK the night before finalizing the proceedings and

sending them off to Lulu like responsible researchers. Our methodology is definitely completely

immune to any biases that might be caused by the survey not being blinded in any way or by it

being conducted by only one person, and definitely free from any bias related to the study subject

knowing in advance which conclusions would be drawn. The results of our survey are shown in

Figures 2 and 3 below on the next page.

SIGBOVIK year of incidence

2007 2008 2009 2010 2011 2012 2013 2014

Humorous treatment of humorous idea 32 20 30 33 16 17 15 16

Humorous treatment of serious idea 2 0 1 0 0 1 2 0

Serious treatment of humorous idea 2 4 3 0 4 6 6 8

Other 1 1 5 3 0 2 2 0

Total publications 37 25 39 36 20 26 25 24

Figure 2: Results. The ‘other’ category comprises submissions that defy my perfect classification

scheme, including cryptic iconography, video games, comics, choose your own adventures, and

take-home midterm examinations.

SIGBOVIK year of incidence

2007 2008 2009 2010 2011 2012 2013 2014

Meta-humor about research 7 2 8 8 8 1 2 2

Type theory or programming jokes 8 3 1 7 2 1 2 4

Puns 4 4 8 1 0 0 2 3

Poop or dick jokes 1 0 1 1 0 1 1 2

Politics, economics, or patents jokes 0 0 0 0 1 2 2 1

Social media jokes 0 0 0 2 2 1 0 0

Other 12 11 11 12 3 11 4 4

Figure 3: Breakdown among category-1 publications of subject of humor. Among this new ‘other’

category dwell comestibility theory, NP-completeness, cat pictures, computational impossibilities,

the supernatural, and robot uprisings and other apocalypse situations.

A number of trends are evident. First and foremost is the decline over time of the proportion of

category-1 submissions and a corresponding increase in submissions accompanied by an actual

artefact that must have been put together with blood, sweat, and so forth, rather than just the cushy

endeavour of writing down shallow drivel in LaTeX and calling that a “research paper”. Go us!

Just kidding. We value all SIGBOVIK submissions highly, except for especially yours. But really.

Second, we note the prominence among category-1 submissions of meta-research papers; that is,

papers about writing papers, giving talks, or improving productivity. It is unsurprising that this

is a popular subject for obvious reasons. Finally, we note a modest decline in the proportion of

programming language papers, which we attribute to SIGBOVIK’s audience’s interests expanding

beyond the core of its type-theoretician founding mothers and fathers, to include such newfangled

topics as Twitterers and Bitdollars.

Without further ado, adon’t, or adonuts, the proceedings of your SIGBOVIK #8.

k/n

P

��
��)

��� �� *��� ������ ����
�� +���� ,�� -
��� �� ��	�����

%� ��� �� ���� 	
�	�	�� ������ ���

�	� ��	������

*�������.
��$ ����$
��$ ��$ ��
�$ �
���$ �
��$
$ ����$ ���

&� ��� ������ �� k/n ����������

��� ��� ����� !! �����

*�������. �����
�	/�� �	��� ��	��	��$ �
���$ 	�	��0��
��
����
�
$
����
�� 	��������
�	��

1� "���	� "�#�$ %���

&	��� '�#���

*�������. �	��
� ���	�$ ��� �� ��
�$
�� �����

(� !� ����� ����� ��	� ��	$(�	� ���� �� �����)*������� +��	�� 	��	��� �� &����

��� ��� ����� !! �����, ��� ���, 	�� -�� �$&	��, �� ��	��$� ������ ��. ���� ���/�� �	#����
���� ��, ��	�0� ��� �	�� �� ��� �	�� ������ ! ������� �	���# ��� �	��� 1�� 	�� �� ����� �����#2
���� ���0� ��� �	�� 	�� �����)�� 3����

*�������. �����$ ���
����$ ����� ���$ ����$ �
��� ����� �
�
$ �
��0���� ��
���$ ����	�
�	���

How to keep a graduate student busy

Paul Stansifer

1 April, 2014

Abstract

We propose a method for indefinitely occupying certain graduate stu-
dents that requires only a finite amount of input information.

1 Motivation

Some graduate students are incapable of understanding recursion. Such students
need to be kept busy, lest they interfere with all of the actual real work that is,
in fact, really happening.

2 Method

To achieve this, simply apply the method described by Stansifer [1], and iterate
by one step more.

3 Mandible

You’re not done with the previous section yet. Get out of here!

References

[1] Paul Stansifer. How to keep a graduate student busy. SIGBOVIK, page [can
I get back to you on that?], 2014.

SIGBOVIK 2014 Paper Review
Paper 18: How to keep a graduate student busy

Norman I. Strong, RSU State University
Rating: ?? (??)
Confidence: ??/4

Program Chair’s note: unfortunately, we are unable to print a review for this paper as the reviewer

assigned to the submission did not finish reviewing the paper by the deadline. The last comment

received from the reviewer was “Since the 2014 work of Stansifer is so vital to your method,

please summarize the paper inline rather than assuming the reader is already familiar it, as it is

time-consuming and tiresome for the reviewers to locate and review the prior work.” The PC

apologizes for the delay and will pass on the rest of the review when it is submitted.

New results in k/n Power-Hours

Dr. Tom Murphy VII Ph.D.∗

1 April 2014

Abstract

We correct for inebriated missteps, using computa-
tional methods to establish new bounds in generalized
k/n Power-Hour theory.

Keywords: generalized binge drinking, maths, finite-state

automata, abstract interpretation

Introduction

A 2012 paper by Blum, Martens, Murphy, and Lovas[1]
introduced the k/n Power-Hour, a fractional variant on
the well-known drinking game. In a traditional Power-
Hour, participants drink one shot of beer per minute
for 60 minutes. Since 5–6 beers in an hour sometimes
have adverse effects, some players opt for an attenu-
ated version of the game wherein fewer than 60 shots
are consumed. However, since the game is frantic and
played simultaneous with others, it is critical to have
a mechanical procedure for performing the attenuated
Hour. The framework by Blum et al., hereafter BMML,
gives a handful of simple operations that can be used to
define a state machine among p players:

• At the beginning of each minute, each player has
at most one shot glass in front of him or her

• The shot glass must be in one of three states: Filled
�, empty ∪, or overturned ∩

• Atomically, each player performs an action based
only on the state of his or her cup. If not in pos-
session of a cup (written ∪), the only action is to
do nothing. With a cup:

∗Copyright c© 2014 the Regents of the Wikiplia Foundation.
Appears in SIGBOVIK 2014 with the chagrin of the Association
for Computational Heresy; IEEEEEE! press, Verlag-Verlag vol-
ume no. 0x40-2A. �0.00

– The player may drink
+

⇒, or not drink ⇒
– The player may pass the cup in any state to
any player (a fixed player per action)

– However: If the cup is filled and the player did
not drink, it must be passed in the filled state

– A player may not receive more than one cup
in the same round

Every assignment of rules and starting condition to
p players yields a deterministic outcome, though some
of these are illegal (because they result in two or more
cups being passed to the same player in some round).
For legal games, the outcome is that the p players have
consumed ki shots of beer where 1 ≤ i ≤ p and 0 ≤
ki ≤ 60. For the traditional power hour, the player
starts with an empty cup, at each step drinks,1 leaves
the cup empty, and passes to herself.
While the authors made a mostly clear definition of

BMML and presented some initial results, these results
contained multiple serious errors and the paper abruptly
switches notation and assumptions several times, and
rambles incoherently. By their own admission, the au-
thors were drinking while they wrote it, taking only one
hour to do so. Don’t drink and derive, kids!
This paper revisits the problem of BMML from a

modern, sober perspective, clarifies some of the orig-
inal results, and presents several new ones and a few
conjectures. It is based on several pieces of software,
whose source is available online.2

1 One-player k/n Power-Hours

The goal of the k/n Power-Hour is to attenuate the num-
ber of drinks consumed by the p players, and its expres-

1In practice, this is done by filling the cup and then drinking
it.

2http://sourceforge.net/p/tom7misc/svn/HEAD/tree/

trunk/powerhour/

sive power comes from the ability to encode some state
in the orientation of the cups, and propagate that state
via passing them from player to player. Even without
passing cups, the ability for a single player to attenuate
his drinking is nontrivial. Playing drinking games alone
is sad indeed, but the solo k/n Power-Hour still has prac-
tical applications. When playing a Power Hour with
others, if each player’s desired k is attainable through
solo methods then there is no need for passing cups,
which simplifies the ergonomics considerably. A com-
mon case is where some of the players would like to do
half–Power-Hours, which is easily achieved in BMML
by transitioning ∪ to � without drinking and � to ∪ by
drinking, and passing to oneself.3

A full list of attainable k/n Power-Hours where
p = 1 appears in Figure 1. Possible values
of k are {0, 1, 2, 20, 29, 30, 31, 40, 58, 59, 60}. The
BMML paper claimed that the possible values were
{0, 1, 2, 20, 30, 40, 58, 59, 60}, describing 31 for example
as “super impossible.” Achieving 31 is somewhat inter-
esting. One way to do it is to start with ∪, and use the
rule that ∪ means drink and then fill the cup. We then
use the rule that � means drink and flip the cup, and ∩
means don’t drink and fill the cup. Essentially we use ∪
to mean “this is the very first state” and then take shots
on alternating minutes by using ∩ and � to encode the
parity. Exploiting non-steady-states like this (Figure 1)
is how we achieve k that does not share many factors
with n.
It is tractable to work out the possibilities for the solo

case by hand, though apparently not while drinking [1].
These results were generated by a computer program,
which is probably necessary for p > 1. In the remainder
of the paper, I’ll describe several different approaches
for exploring this space, and generalizations of it, com-
putationally.

2 Two-player k/n Power-Hours

For more players, the number of possible configurations
explodes. Let’s make the following definitions to bound
the size:

• t = 4, the number of starting states (�, ∪, ∩, ∪)
• a = 2 × p × 3, the number of actions given a cup.
The player can drink or not drink, pass to any
player, and in 3 configurations (�, ∪, ∩)

3There are many variations, but this was the strategy used
many times in practice before being generalized to BMML.

Figure 1: State machine that achieves k = 31 in a solo
BMML Power Hour. + on an edge means the player
drinks. The disembodied incoming edge is the start
state. The player always passes to herself.

Then the number of configurations is bounded by (t ×
a3)p. For p = 1 this was just 864. For p = 2 it is
47,775,744; for p = 3 it’s 12,694,994,583,552, already
beyond the limits of straight enumeration.
However, this is just an upper bound. For one thing,

the base of the exponent is actually bounded by

t× a2 × afilled

where afilled = (p×3)+p (the actions that can be taken
on �, where if the player does not drink, then he must
pass the cup �).
The values for p ∈ {1, 2, 3} are still 576; 21,233,664;

3,761,479,876,608. There are a few other simplifications
possible. Many of these games are illegal because they
result in multiple cups being passed to the same player
in some turn. These are difficult to exclude analytically,
but there are some sufficient conditions; for example, if
two players pass to the same player no matter their in-
put state, and every player starts with a cup, then their
cups always collide. There are also many games that
are isomorphic. For one thing, ∪ and ∩ are not dis-
tinguished in the rules at all, so any two configurations
where these are simply swapped has the exact same out-
come. Likewise for permuting the players.
21 million configurations is no big deal for a modern

computer. A simple SML program computes all of the
configurations and runs them; ones that are found to be
illegal are rejected. (It implements the first simplifica-
tion having to do with � when generating the configura-

k start rules
0 ∪ ∪⇒?, ∩⇒?, �⇒?

1 ∪ ∪
+

⇒∩, ∩⇒∩, �⇒?

2 ∪ ∪
+

⇒�, ∩⇒∩, �
+

⇒∩
20 ∪ ∪⇒∩, ∩⇒�, �

+

⇒∪
29 ∪ ∪⇒∩, ∩⇒�, �

+

⇒∩
30 ∪ ∪

+

⇒∩, ∩⇒∪, �⇒?

31 ∪ ∪
+

⇒�, ∩⇒�, �
+

⇒∩
40 ∪ ∪

+

⇒∩, ∩⇒�, �
+

⇒∪
58 ∪ ∪⇒∩, ∩⇒�, �

+

⇒�
59 ∪ ∪⇒∩, ∩

+

⇒∩, �⇒?

60 ∪ ∪
+

⇒∪, ∩⇒?, �⇒?

Figure 2: All the possible k for a solo Power-Hour in
BMML. A superscript + means that the player drinks.
The symbol ? means that any cup state can be used
in that position. Note that 29 and 58 require wasting
a shot of beer (the game ends with the shotglass full);
all the others but 31 permit a variant where a shot is
wasted as well. We do not concern ourselves much in
this report with these leftover shots.

tions, since it can be done statically.) All of the possible
outcomes are shown as black squares in Figure 3.

Each cell represents a pair of 〈k1, k2〉 for the num-
ber of shots imbibed by players 1 and 2. 454 of the
612 = 3721 combinations are achievable. Note that col-
umn 0 represents the case where player 1 drinks noth-
ing. It dominates the matrix in the sense that if 〈k1, k2〉
is achievable, then 〈0, k2〉 is as well. Most of the time
it is easy to see how this is done: Take the configura-
tion that produces 〈k1, k2〉 and do the same, but player
1 simply performs her actions without drinking. This
works except for the case where player 1 receives a �
and passes it in a state other than �. The player can’t
simply not drink, as this is illegal (the beer must be
emptied, and BMML does not permit such messy reduc-
tions). It is curious that this does not affect the result;
I discuss this further in Section 7.2. Another interest-
ing column is the last one, which represents outcomes
of the form 〈60, k2〉, where the first player achieves a
full Power-Hour. This of course includes all of the k2

achievable solo (the players can just do their thing with-
out interacting). But some new k are now achievable:

Figure 3: All of the possible outcomes (k) for the two
players in a BMML Power-Hour. The matrix is sym-
metric, of course, since the players are interchangeable.

{3, 4, 15, 28, 32, 45, 56, 57}. Interacting with a player do-
ing a full Power-Hour still affords us a few additional
bits of information that can be used to attenuate the
other player’s consumption. The solution for 45 is in-
structive, and appears in Figure 4.
This is a useful result, but it may be the case that

someone wants to drink exactly 27 shots of beer, which
is not possible with just two players in BMML. There
are two avenues to explore: Adding more players, and
generalizing BMML. We begin with the three-player
case.

3 Three-player k/n Power-Hours

With 3.7 trillion possible configurations, enumeration
is not feasible. But as we observed before, many of
these combinations are illegal (they result in a player
recieving two cups), and many are isomorphic to one
another. By being clever about how we explore the con-
figurations, testing “all” the three-player configurations
becomes feasible.
Here is a one-player BMML configuration

that illustrates a particular kind of redundancy:

start ∪ ∪
+

⇒∪ �
+

⇒∩ ∩⇒�

Figure 4: State machine that achieves 〈k1 = 45, k2 =
60〉 in a two-player BMML Power Hour. The bottom
row of states are for player 1, who drinks 45, and the top
for player 2, who drinks 60. Clearly, player 2 must drink
at every step. The players always pass to each other,
with the two cups exchanging hands each turn. The
cycles for the two cups are disconnected; one alternates
between � in player 2’s hand and ∪ in player 1’s (cycle
of length 2), drinking on each turn. This cycle yields 30
drinks for each player. The other cycle is of length 4;
player 2 drinks on every step (as we know), and player
1 every 4th step, yielding 15 more drinks for a total of
45.

The cup starts empty, and at each step the player
fills it and drinks (traditional Power-Hour). The player
also has rules for the case that she observes a full or
overturned cup. It does not matter what these are
because they can never be used. This example is
trivial, but there are many ways that the execution
of a configuration can be indifferent to some of its
content. Another is a two player configuration like

player 1 start ∪ ∪
+

⇒∩@1 �
+

⇒∩@2 ∩⇒�@1

player 2 start ∪ ∪⇒∪@1 �
+

⇒∩@1 ∩
+

⇒�@2

where the @n notation means to pass the cup in that
state to player n. In this case, the first thing the
players do is to pass both of their cups to player 1,
which is illegal and ends the game. Again, none of the
other rules are ever used.
In order to explore what is possible in three-player

games, we exploit this redundancy with a technique like
abstract interpretation [2]. The start state is always
used, so we begin by enumerating all assignments of
start states to players. There are only 4p. Every other
rule starts out undetermined, maybe written like this:

start ∪ ∪
?

⇒? �
?

⇒? ∩
?

⇒?
Now we execute programs as before, and hope that

we never encounter a situation where we depend on a
rule. If we finish without ever using one of the ? rules,
we evaluated a potentially large group of configurations
all at once. During the execution of a configuration, if
we need to use a rule that is currently marked ?, we
explore all of the possibilities for that spot. This is
accomplished by a loop that looks like the following (in
Pseudo SML):

val queue = (* all abstract configurations *)
val results = (* map from (k_1, k_2)

to example *)

fun loop nil = (* done *)
| loop (h :: t) =

let
val res = evaluate h

in
insert (results, res);
loop t

end handle Expand l => loop (l @ t)

fun evaluate config =
(* ... *)
case rulefor cup of

QuestionMark =>
raise Expand expandedconfigs

| (* ... *)

val () = loop queue

The key trick here for keeping the code under control
is to iteratively evaluate the configurations as usual, but
if we find a ?, then we abort the current simulation with
an exception that carries along the set of configurations
that expand the current one in just that position. This
wastes some work (and we often need to restart multiple
times per abstract configuration), but not much: If a
rule is used at all, it is usually used in one of the first
few rounds.
With this technique, we can simulate all possible two-

player games with just 15,744,259 game-minutes simu-
lated (with naive enumeration it would be 1.2 billion)
in less than 2 seconds on a crappy old computer.

Figure 5: Outcomes possible for the first two players in
all different 3-player power hours (black), overlayed by
all possible outcomes outcomes for 2-player power hours
(red). Mainly included because it looks pretty sweet.
The outcomes that are possible with three players are a
superset of those with two, which is intuitive: We can
add a third player to any game who just does nothing.

It is also feasible overnight to enumerate all three-
player games. The results are three-dimensional, of
course, but we can display the outcomes for two of the
players in the familiar presentation (Figure 5). Note
that 〈k1, k2, k3〉 is achievable for any k1 ∈ {0 . . . 60},
k2 ∈ {0, 1, 2}, and some unknown k3 (projected out
of this display). This is a significant improvement over
what was achievable in BMML with two players. It sug-
gests that with enough friends willing to follow a pro-
gram, some set of people are likely to be able to achieve
any amount of drinks between them (if they have the
ability to construct the right rule set!); see Section 7.2.

The sheer number of configurations for 4 or more
players makes these exact enumeration techniques in-
feasible. However, we have other avenues for general-
ization (and exploration), which are investigated in the
next chapter.

4 Generalized BMML

Like any drinking game, there are several arbitrary
things about BMML. While we will not tamper with its
essence (for example, allowing beer to be spilled from a
cup without drinking it), there are some other variables
to adjust. The most naturally flexible is the number of
cup states. We will always have �, a cup with beer in
it. In BMML we also have ∪ and ∩. But why not ⊃
(cup turned on its side, facing west) or

∧∪ (an upright
cup with a cocktail umbrella on it)?
We define BMsL, where s is the number of distinct

cup states. By convention, the 0th cup state will be the
filled cup � since it has special rules. The remainder
will be ∪i for i ∈ {1, . . . , s− 1}. BMML is BM3L where
we’ve just renamed ∪ to ∪1 , and ∩ to ∪2 .
Clearly, more cups give us more expressive power,

and should allow us to reach more outcomes. To il-
lustrate, recall the construction of k = 31 in the solo
BM3L game (Figure 1). It has a length-2 cycle alter-
nating between two cup states, where the player drinks
on every other turn. The third state is just used once as
a drinking lead-in to make the total 31 rather than 30.
With an additional cup state, we can straightforwardly
transform this into a game with an outcome of k = 32
by extending the prelude with another state where the
player drinks. Of course, the expressive power is not just
limited to such extensions; we now can create cycles of
new lengths, admit the possibility of more disconnected
cycles, and so on.
It is easy to enumerate the 1-player BMsL games.

These appear in Figure 6. The interesting range for s
is {1 . . . 8}.4 At 8 cup states, the player can achieve any
amount in a solo game. Importantly, this extends to
any number of players in BM8L, because the players
can pass to themselves and not even interact.
The two-player case is much more interesting. We’ve

already enumerated all the possible outcomes for BM3L
(Figure 3). It is computationally tractable to enumerate
them for s < 6. The set of achievable outcomes in BMsL
is always contained within BM(s+1)L, because we can
embed a game from the former into the latter by just
never producing the additional cup state and having any
arbitrary rule for it. Therefore, we show these results
in a composite grid where more and more states are
reachable as we increase s (Figure 7).
In order to efficiently enumerate BM5L, I improved

4It’s not clear that BM0L should be considered legal as the
rules speak of a 0th cup, but it is degenerate anyway.

Cu
p

st
at

es

Figure 6: Possible outcomes for BMsL with a single
player. The vertical axis shows an increasing number of
cup states, and the horizontal axis shows the achievable
values of k drinks. With no cup states, it is only possible
to drink nothing. By convention, the 0th cup is the
special “filled” state, so it is only possible to drink on
every turn (60) or never (0). As we add more cup states,
the number of achievable states strictly increases; with
8 cup states we can drink any amount. 7 and 53 drinks
are the most elusive, and can only be done with 8 cup
states.

Figure 7: What’s achievable for two players in a gen-
eralized BMsL game, with s ranging from 1 cup state
(darkest) to 5 (lightest).

the algorithm again. Observe that the “drink” action
associated with a rule usually does not affect anything
but the final outcome. The only exception is that in the
rule for �, the player must drink if passing in a state
other than �. Putting this aside for a moment, note that
we can just count the number of times each rule was
executed for each player, producing an s-dimensional
vector [d1, . . . , ds] for each player. That player is able
to achieve many different drink totals, specifically, d1×
r1 + . . . + ds × rs where ri is 1 if the player should
drink on that rule and 0 if not. Simulating a game this
way is even more like abstract interpretation (we leave a
concrete value free and compute a formula rather than
an integer), and allows us to evaluate many concrete
games at once. At the end, we simply plug in every
legal value for ri for each player and insert those games
into the database. This last step is where we must tend
to the exception around �. We may not set r0 to 0
if the player ever passes � in a non-full state. A very
close approximation would be to insist that r0 = 1 if the
rule in the � position does not output as �, but this is
inexact, as that rule may never be executed.5 Instead,
during simulation we keep track of whether each player
ever actually passed a non-full cup from the � state. If
so, then we force r0 = 1, which attends to this special
case.
Although this makes earlier enumerations extremely

fast and BM5L quite quick, 2-player BM6L ran 26 bil-
lion concrete states overnight and made only modest
progress. In the absence of fancier techniques for reduc-
ing the state space, we must resort to different, inexact
approaches.

5 Sampling games

To establish a result like “BM5L cannot achieve
〈47, 27〉” we really need to enumerate all the BM5L
games. (Or make some ad hoc proof of the fact, which
seems quite difficult.) However, to prove an existence
result like “BM7L can achieve 〈33, 49〉” we only need
to have a single example configuration that produces
that result. Therefore, we may be able to improve our
bounds on what is possible (or generate conjectures) by
sampling random configurations.
Sampling is actually much easier than enumeration.

There is no need to leave rules abstract. It is also easy to

5We may be able to argue that in that case, there always exists
another game that does not violate this condition. But I think it
is simpler to just implement the rules.

stop and restart because there is no state other than the
matrix of what we’ve found. I use the SML textformat
library [3] to serialize and deserialize the matrix (which
then makes it easy to generate these graphics in a sep-
arate program). There are a handful of interesting as-
pects:

Generating a random configuration. To generate
a random game, we can just fill in all of the slots (des-
tination and cup state for each rule, starting cup state)
uniformly at random. Many of these will be illegal, but
they fail very quickly at runtime; a lazy and pragmatic
way to “filter” to legal game. It is not simply a matter
of generating all the permutations on p×s nodes, by the
way. Multiple cups can pass through the same player on
cycles of different periods, as long as they do not collide
within the 60 steps, and acyclic preludes (Figure 1) are
important and useful. For a uniformly random 2-player
BM7L configuration, 29.23% (measured empirically) are
legal. However, we will see later that we do not want to
spend so much time exploring configurations where one
or both players start without a cup; these are very lim-
ited. Therefore, the configuration generator is biased
towards producing a cup in the starting states most of
the time.

Symmetry. We can get more bang for the buck by
considering some obvious symmetries. When a simula-
tion finishes and we have an outcome 〈k1, . . . , kp〉, it is
clear that any permutation of k1 . . . kp is also achievable.
We insert every permutation of the drink counts into the
database, along with the permuted example configura-
tion. Better still would be to only store the outcomes in
some normalized form (e.g. require that k1 ≤ . . . ≤ kp).
We already have exact results for two players in

BM5L, so the next uncharted territory is BM6L. The
result after apparent convergence appears in Figure 8.
The sampling procedure runs for many hours before
plateauing overnight with 95.65% of the matrix filled.
This suggests that BM6L is not universal for two play-
ers, or else the configurations for the missing cells are
extremely rare.6

This approach scales much better than enumeration
and is efficient for all sorts of generalizations (it works
best when the dimensionality is low—i.e., two players—
and the expressiveness is high—i.e., many cup states).

6This is definitely a possibility, as new cells were still appearing
after exploring tens of billions of samples. However, the gap here
seems quite large.

Figure 8: 37.1 billion samples of legal two-player BM6L
configurations. Darker cells represent outcomes that oc-
cur more often; cells that are pure white never occurred
and are likely to be unattainable. Note that the inten-
sity represents the rank of occurrence, not the magni-
tude; in actuality, outcomes like 〈0, 0〉 occur much more
often than others. 95.65% of the cells are filled.

Since we already know BM8L is universal, the remaining
open problem is BM7L, whose results are in Figure 9.
Indeed, after more than 30 billion samples the matrix is
completely filled in; we have found an example configu-
ration that achieves every outcome. Some of these were
extremely rare, such as the solution for 〈11, 53〉 (Fig-
ure 10). In BM7L, two players can drink any amount.

6 The fractal geometry of k/n
Power-Hours

Note that all of the two-dimensional figures resemble
one another even though they are fundamentally dif-
ferent (adding players, adding states, adding random
trials). Even samples from BMML with three players
(3D projected to 2D), which is shown in Figure 11, pro-
duces a similar pattern. This suggests that the combi-
natorial problem (“what outcomes are reachable from
finite state machines that look kind of like this?”) has
some geometric structure.
Some of the patterns are easy to explain. The top-

Figure 9: 30.7 billion samples of legal two-player BM7L
configurations. Fewer configurations were sampled than
in Figure 8 because they take somewhat longer than 6-
state games to simulate, and a smaller proportion of
random games are legal. Moreover, we stop after find-
ing a solution for every cell, proving that BM7L is com-
plete! The last cells found—an earlier version of this
paper held these as open problems!—were permutations
of 〈11, 53〉 (Figure 10) and 〈49, 53〉. Note that 53 drinks
was also unattainable in a solo BM7L power-hour; this
may in some sense be the “hardest” number of shots to
drink in BMsL.

left half of the matrix is more populous than the bottom
right, for example. This is because we can bound the to-
tal number of drinks by 60×c, where c is the number of
cups active in the game (same as the number of cups in
the starting states). The top-left half is the region where
this sum is less than or equal to 60; in two player games,
both players must start with a cup in order to get an
outcome in the bottom-right half. We also see distinct
clumps around 0, 15, 30, 45, 60; these correspond to
simple fractions (“drink every other time”; “drink three
of four times”) of 60. This is intuitive because the ex-
pressive power of BMML comes from the ability to form
cycles of cup states and drink on some fraction of them.
Clumps are formed around these values because of the
possibility of preludes leading into the cycles (Figures 1,
10) that either drink (adding to the total) or don’t (sub-
tracting from it). Minor clumps form as echoes between

0

1

2

3

5

4

6

4

0

3

2

5

6

1

+

+

+

++

+

+

+

+

+

+

Figure 10: A solution for the elusive 〈11, 53〉 two-player
BM7L power hour! This one was found after 30.7 bil-
lion outcomes sampled, making it the most rare. By the
end of the game, the two players are just passing back
and forth two cups in state 5. A long lead-in beginning
on the left-player’s state 2 spans 12 different configura-
tions (the 6 cup states for the two players) before en-
tering the length-two cycle. Both cups travel along this
lead-in, with one three steps ahead of the other. The
right player drinks on every step until reaching the cy-
cle (and then never again) for 11; the left player drinks
during the cycle plus a little extra during the lead-in for
53. This configuration is quite flexible because the two
players can make fine adjustments to their drink total
by drinking or not drinking on the lead-in rules, which
are executed just once or twice.

the major ones, because a player may participate in two
cycles of different length (Figure 4).
Of course, discretization effects compound and so the

exact values of cells are not neatly predictable. More-
over, clumps interfere by overlapping; there are many
different strategies for achieving 〈33, 33〉. One way to

Figure 11: 490 million samples of three-player BMML
Power Hours. The cube is rotated 15 ◦ along each axis,
the top-left corner is 〈0, 0, 0〉, and the bottom right is
〈60, 60, 60〉.

make the basic structure more visible is to extend the
number of minutes that the game is played for. Fig-
ure 12 shows the utterly unhealthy three-player Power
Day (BM3L). In it, the clumps become tiny dots, but
some relationship among them along lines is clear. Inte-
rior points can probably be found as linear combinations
of two of these lines; we exploit that exact structure in
Section 4, in fact.
The less extreme k/n Power-Three-Hours appears in

Figure 13.

7 Conclusion

This section summarizes the known bounds for BMsL,
and states some conjectures, before concluding.

7.1 Known results

1. With one player, we have exact bounds on what
is possible in the generalized case. With 8 cup
states, a single player can drink 0–60 shots. Since
each player can just play independently, this result
extends to any number of players in BM8L. With

Figure 12: All possible outcomes for the first two play-
ers in 3-player power days. These are the same games as
the 3-player power hours, but at this scale makes it clear
the groupings and their sparsity in the limit. Lines plot-
ted from 〈0, 0〉 to 〈60, k2〉 and 〈k1, 60〉 show significant
structure, but don’t explain some of the interior points.
These are probably games where a player participates
in two cycles of different periods.

Figure 13: 6,456,764,116 samples of two-player BM7L
Power Three-Hours.

fewer than 8 cup states, not every k can be achieved
alone.

2. With two players in BM3L or BM4L, it is not pos-
sible for one of the players to drink every k even if
the other player helps her out.

3. With two players, we know that BM5L does al-
low one player to drink any k1 if the other player
assists. In fact we can achieve any 〈k1, k2〉 where
k2 ∈ {0, 1}. No other k2 can be used universally,
though of course many other combinations are pos-
sible (Figure 7). Many pairs 〈k1, k2〉 are known to
be unattainable; this was established by exhaus-
tively testing all possible configurations.

4. Open: Can BM6L achieve all 〈k1, k2〉? Seems un-
likely, given that random exploration plateaus with
about 95.65% of the grid filled.

5. BM7L can achieve all 〈k1, k2〉. This was established
by sampling random games until we found an ex-
ample for every 〈k1, k2〉.

6. With three players in BM3L, one player can drink
any number of shots if the other two players help.

7.2 Conjectures

Freedom: With two friends, you can drink any
amount. We know that in a three-player game of
BM3L, one of the three players can drink the k of her
choice. This straightforwardly extends to 3 × p-player
BM3L games. The Freedom conjecture is that with
p+2 players in BM3L, p of them may have their choice
of k1 . . . kn drinks. If this conjecture fails, it probably
fails for 4 players, which might have a feasible enumer-
ation strategy.

Teetotaller: Someone can drink nothing. When
〈k1, . . . , ki, . . . , kp〉 is achievable in BMsL, so is
〈k1, . . . , 0, . . . , kp〉. This conjecture would be trivial if
not for the rule that requires us to drink the contents of
a full cup if we want to pass it in a different state. This
conjecture is true for all the graphics presented in this
paper;7 we can see that cells in the 0 column are always
filled when some other cell in that row is filled. If this

7Actually, it is not established for (only) 11 minutes in Fig-
ure 13, but this is not a proper BMsL game as it takes place over
180 minutes. There should be solutions for 11, like in Figure 10;
this is just a sample.

conjecture fails, it probably fails for BM1L or BM2L
which have the least freedom per player.

In this paper I presented some new results in k/n
Power-Hour theory, as well as correct the historical
record of some inebriated missteps. We saw that
stochastic simulation, abstract interpration, and sam-
pling are powerful tools for solving combinatorial drink-
ing problems. We established some firm results for the
classic game and some bounds for generalizations, as
well as informally looked at some visualizations of its ge-
ometric structure. However, there are still several open
problems in this field that demand further study.

References

[1] Ben Blum, Chris Martens, William Lovas, and Tom
Murphy, VII. Algorithms for k/n Power-Hours.
SIGBOVIK 2012, pages 29–33, April 2012.

[2] P. Cousot and R. Cousot. Abstract interpretation: a
unified lattice model for static analysis of programs
by construction or approximation of fixpoints. 4th
POPL, pages 238–252.

[3] TomMurphy, VII. The textformat library for Stan-
dard ML. http://sourceforge.net/p/tom7misc/
svn/HEAD/tree/trunk/sml-lib/textformat/,
2013.

SIGBOVIK 2014 Paper Review
Paper 1: New Results in k/n Power-Hours

Robert Marsh, King Under the Mountain
Rating: 3 (weak accept)
Confidence: 2/4

Man, figure 5 does look really sweet. like whoa. you could take that and trim the edges off and

use it as a boss in some kind of diagonal-scrolling space shoot-em-up. no really, that’s blowing my

mind. you could, like make an entire space invaders galaga thingy out of these charts. it would be

rad as all get out.

On the other hand, one must consider the broader implications of research of this sort. In particular,

should this conference encourage an attempt at a k/n power hour for any k, even a difficult-to-reach

one like 〈11, 53〉? Let us first note that the finer things in life should be savored. However, there

is such a thing as Beer 30 Light, and people are going to attempt such things whether we help

them or not, so we might as well ensure they have the tools they need for slightly more responsible

drinking.

In sum, this paper’s significant contributions to cool fractally things seems to outweigh its potential

harm to society.

SIGBOVIK 2014 Paper Review
Paper 21: Linear Logic Free

Review #1
dabestcoq, gmail.com
Rating: 0 (strong reject)
Confidence: 4/4

this paper SUX i spent like $50 on a premise but wen i used it to prove an implicaton the premise

was GONE WUT A RIPOFF!!!!!!! DO NOT USE THIS LOGIC!!!1! propazitonal logic is WAY

better

Review #2
idbangthattype, gmail.com
Rating: 4 (strong acccept)
Confidence: 4/4

Reviewer 1 you idiot that’s the point of linear logic. The paper is far from perfect. I for one

wish the cut rule was included in the free version but I gave it a 4 to make up for all the dumbass

reviewers.

Review #3
obamaisasocialist, gmail.com
Rating: 0 (strong reject)
Confidence: 4/4

ummmmmm reviewer 2 maybe we all dont want u buttin in. u no hu else told ppl wut 2 think?

hitler

It still seems that black has hope in these extremely unfair variants of

chess

Dr. Tom Murphy VII Ph.D. Ben Blum
Jim McCann, in italics oh! nervous laughter no, that’s not part of the name still. I stopped sa

1 April 2014

Abstract

CHECKMATE.

Introduction

Chess is an old-timey game that you already know.
One problem with Chess is that it is hard; both play-
ers may struggle mightily in a game, expending their
brain-sugars, and it is not clear who the winner will
be. Another problem with Chess is that it isn’t other
games, and we’re pretty much over it. In this paper
we attempt to address both problems, with limited suc-
cess. We show how to combine Chess with several other
board games, in order to make it more predictable.

As usual for a Tom 7 SIGBOVIK joint, the results
herein are real. The source code that was used to solve
the games or prove that no winning strategy exists up
to some depth can be found on the inter-net.1

1 Chesstego

Chesstego is a combination of the games Chess and
Stratego. You already should know that every game
in this paper is a combination of Chess and something,
but I wanted to emphasize the portmanteau. All of the
games will be named with portmanteau, and some of
the names will be achingly bad.

In Stratego, each player begins the game by arrang-
ing his or her Stratego-pieces in a secret fashion on the
board. In the world of Stratego, civilization is ruled by a
leader known as Flag. The player’s goal is to assassinate

∗Copyright c© 2014 the Regents of the Wikiplia Foundation.
Appears in SIGBOVIK 2014 with the undivided attention of the
Association for Computational Heresy; IEEEEEE! press, Verlag-
Verlag volume no. 0x40-2A. $0.00

1In the Subversion repository at: https://sourceforge.net/

p/tom7misc/svn/HEAD/tree/trunk/chesstego/

the opponent Flag, using a member of his or her army.
However, which piece represents Flag is unknown!

There are many ways we might apply the Stratego
system of governance to Chess.

Chesstego variation I. In this variation, each player
decides in secret, before the game begins, which of his or
her pieces is the actual King, that is, Flag. If this piece
is checkmated, the game is lost. There are two sub-
variations: I(a), where a player must announce Check!
when Flag is under attack, and all of the normal rules
about moving into (or castling through) check must be
obeyed. In subvariation I(b), which I prefer, the piece
that is Flag may slip silently into and out of check, and
the game only ends when that piece is captured.2

Chesstego variation I is a reasonable if slightly silly
game, and it is difficult. It may even be more difficult
than Chess due to the psychological mind-games that
are possible. It can be hard to tell which player is win-
ning, let alone which player will win. In this paper we
are interested in variants of Chess that both are other
games and are predictable. We’d like to give one of the
players a clear strategy for winning.

Chesstego variation II. In this variation, each
player decides in secret, before the game, which of her
opponent’s pieces is Flag. Same as before, if this piece
is captured, the game ends instantly. But now, players
don’t even know which of their own pieces is their glori-
ous ruler, Flag. This can be very exciting or titillating.

Unfortunately, there is no known winning strategy for
White, and there are no winning strategies with fewer
than 6 moves. This was proved by computer program.
In fact, it was proved for a stronger case:

2In Chess proper, these formulations are nearly equivalent—
except for rules like castling through check and some corner
cases—but it is deemed important for movie drama that play-
ers be able to announce Check! and Checkmate! at times.

Chesstego variation III. In this variation, the first
player, known as White, chooses in secret both the iden-
tity of Flag for his own populace, as well as the identity
of Flag for his opponent. Even in this very unfair setup,
Black can always survive for at least 6 moves.

This will not do! Black just has so many options
with all those pieces. Perhaps if he were handicapped
somewhat?

Chesstego variation IV. In this variation, White
chooses the identity of both Flags again, in secret with-
out telling her opponent, and also Black does not get
any good pieces, just pawns. Like this:

8 0Z0ZkZ0Z
7 opopopop
6 0Z0Z0Z0Z
5 Z0Z0Z0Z0
4 0Z0Z0Z0Z
3 Z0Z0Z0Z0
2 POPOPOPO
1 SNAQJBMR

a b c d e f g h

Lo! This version is finally satisfactory. In this
version we need not equivocate over who shall win.
White picks one of her very safe pieces (e.g., one of
the rooks) as Flag, and chooses Black’s b7 pawn as
Black Flag. White’s winning move is c2c4 and then
Qb3, with Black Flag unable to escape the B file (Fig-
ure 1). Choosing the f7 pawn works as well.

Chesstego variation V. This variation is just like IV
but White gets super good pieces everywhere instead of
having some dumb ones, and Black still gets bupkiss:

8 0Z0ZkZ0Z
7 opopopop
6 0Z0Z0Z0Z
5 Z0Z0Z0Z0
4 0Z0Z0Z0Z
3 Z0Z0Z0Z0
2 NMNABMNM
1 LQLQJQLQ

a b c d e f g h

8 0Z0Z0j0Z
7 o0opopop
6 0Z0Z0Z0Z
5 ZPZ0Z0Z0
4 0Z0Z0Z0Z
3 ZQZ0Z0Z0
2 PO0OPOPO
1 SNA0JBMR

a b c d e f g h

Figure 1: Example hopeless match: 1. c4 Kf8 2. Qb3
b5 3. xb5 1–0

Now there are many more winning strategies, but the
one from IV works as well.

Other variations. Incidentally, my on-line version of
Chess called SICO3—where you just play a single move
in a random game—has for about six years had vari-
ations called “center wall” and “barricades”[1] which
were inspired by the layout of the Stratego board. How-
ever, these cannot be considered worthy of portman-
teau, as the rules are basically just Chess rules.

2 Cluess

This game, known as Chuessdo in the United Kingdom,
is a cross between Chess and Clue. In this version, the
player called White is known as Mrs. White, and the
player called Black is known as Professor Plum.

3 Chess Who?

The board game Guess Who? disappointed millions of
children with its delightful television commercial that
far outstripped the capabilities of the actual game. This
required them to add a disclaimer to the commercial,
“Game cards do not actually talk.” In Guess Who?,
players take turns trying to guess the identity of the
opponent, among a fixed set of personalities with traits
like curly hair, straight hair, brown hair, short hair,

3On the internet at: http://snoot.org/toys/sico/

bangs, long hair, blonde hair, red hair, or glasses. One
player asks, “Do you have curly hair?” and the other
says “Yes” or “No” and then the first player can elimi-
nate all the remaining personalities that don’t have the
trait. It’s basically binary search, but for kids.

In Chess Who?, which is the chess version, players
have two different options on each turn. They can either
move a piece like normal, or ask a question of their
opponent. The question must be about the physical
characteristics of the pieces, for example, “Does your
piece have curly hair?” No pieces have curly hair, so
nothing happens. The opponent might ask a different
question, on the next turn, like “Does your piece have
straight hair?” No pieces have straight hair, so nothing
happens. On the next turn, suppose the player asks,
“Does your piece have brown hair?” No pieces have
brown hair, nor any hair at all, and no pieces have any
brown parts at all either. Stop asking. Next, Black asks,
“Does your piece have crenellations?” Both of White’s
rooks have crenellations, so they are eliminated from
the board (Figure 2).

8 rmblkans
7 opopopop
6 0Z0Z0Z0Z
5 Z0Z0Z0Z0
4 0Z0Z0Z0Z
3 Z0Z0Z0Z0
2 POPOPOPO
1 ZNAQJBM0

a b c d e f g h

Figure 2: The board after 1. Does your piece have curly
hair? . . . Does your piece have straight hair? 2. Does
your piece have brown hair? . . . Does your piece have
crenellations?

Next, White might ask, “Does your piece have a cross
on his hat?” This matches both Bishops and the King,
but Black responds “Check!” because it is illegal to ask
a question that would eliminate the King.

This variation produces draws easily. An example
Nash Equilibrium: White begins by asking, “Does your
piece have three lobes like a truncated snowman, or

crenellations, or horse ears, or two weird long shoulder-
ribbons that I don’t know what they are, or five pointy
tines on her crown?” This matches all of Black’s pieces
except his king, so he removes them all. But then Black
asks: “Does your piece not have a lumpy crown?” which
matches all of White’s pieces except his king. So all
we have left is the two kings, which is known to be a
draw [2].

4 Chessy Crush Saga

Chessy Crush Saga is a hybrid of Chess and the popular
and lucrative phone-game Candy Crush Saga. In this
game, the regular moves of chess are allowed, but it is
also possible to crush chess pieces into candies. Chessy
Crush v1 follows the rules of Candy Crush closely:
When a piece moves such that three pieces of the same
color are in a row (either horizontally or vertically),
those pieces are all removed. Usually this is a tacti-
cal misstep in Chess, as three of one’s own pieces are
destroyed for nothing. However, as in Candy Crush, re-
wards are given when more than three like pieces are
destroyed at once. The simplest is to award the player
with a Candy Rook at the place where the moved piece
ended up. A Candy Rook moves like a rook, but if it is
crushed, it destroys all of the opponent’s pieces on the
file (column) it currently occupies.4

As another simplification, we remove all of the proper
pieces from the black files, except for the King, in honor
of the software company that makes Candy Crush,
“King.” A densely packed board with pieces that can
move backward is dangerous, for it is easy to destroy
one’s own king by moving out of and then back into the
back file, crushing the whole thing (Figure 3).

With just pawns, it seems that the best way to gain
advantage for White is to crush four pawns to create
a Candy Rook before Black does, then menace Black
with it. Unfortunately, moving four pawns into forma-
tion before black can interfere is not possible; Black can
react to White’s first move and advance one of his own
pawns towards the construction (Figure 4). Moreover, if
he does, and trades for one of White’s pawns (or better,
the resulting candy), then Black is probably in a supe-
rior position, White having crapified his pawn structure
in pursuit of candy. Worse still, crushing a successful
Candy Rook is not that menacing, since Black can sim-

4In formal Candy Crush, this is the vertical striped candy,
which is awarded when the piece was moved vertically. To keep
this variant simple, we always award a “vertically striped” Candy
Rook, since it seems with only pawns, only vertical moves are
likely. (This later turns out to be a bad assumption.)

8 rmblkans
7 Zpopopop
6 pZ0Z0Z0Z
5 Z0Z0Z0Z0
4 0Z0Z0Z0Z
3 Z0Z0Z0Z0
2 POPOPOPO
1 SNAQJBMR

a b c d e f g h

Figure 3: “Fool’s Mate” in the rejected Candy Crush
v0, played with normal pieces in the back ranks. White
self-mates in two moves, crushing all his own pieces e.g.
with: 1. Nc3 a6 2. Nb1 (??) 0–1

ply move his king out of the way.

To correct these problems with balance (i.e., that the
game may be balanced), we simplify the candying rules:
Any crush produces a Candy Rook, including ones of
length 3. This allows White to create a Candy Rook
before Blacks pawns can reach her. Furthermore, we
stipulate that the kings cannot move (they don’t have
legs anyway, this is plain to see, so let’s be realistic).
In v2, the Candy Rook is extremely powerful, since not
only does it destroy an entire file (the e file being the
likely target, since it contains the immovable King), but
when it is used (by crushing) it is also replaced, since
a crush always yields candy. Therefore, White’s most
straightforward strategy is to quickly create a Candy
Rook, then crush it in the e file, which wins. This
should be a line where White’s tempo advantage makes
it mostly immune from interference, since even a check
is answered by destroying the opponent’s king.

The idea behind White’s Omega Weapon is to cre-
ate a triplet of pawns on rank 3, either c3–e3 or e3–g3.
White begins by moving her king’s pawn to e3. Black
can interfere with one side of the triplet (Figure 5), but
only one. After 1. e3, if . . . f5 or h5, then White will
continue creating the triplet in c3–e3. Otherwise, she
is safe to create it in e3–g3. Once the Omega Weapon
is constructed, she need only move it to e2 (which is
free due to the first move, and will be adjacent to at
least two pawns). This destroys the Black king, which

8 0Z0ZkZ0Z
7 Zpopopop
6 0Z0Z0Z0Z
5 Z0Z0Z0Z0
4 0Z0Z0Z0Z
3 ZpZPO0Z0
2 PZPZ0OPO
1 Z0Z0J0Z0

a b c d e f g h

Figure 4: Black interfering with White’s Omega
Weapon main line: b3, d3, e3, c3 (making candy), Rc2,
Re2++. Black can progress pawns fast enough to cap-
ture White’s. She can also move her King, making the
candied rook less devastating. Ultimately, White’s one-
tempo advantage is not obviously winning.

cannot have moved, due to the rules. Unfortunately,
this strategy can be foiled by Black with a clever5 mu-
tual suicide, as shown in Figure 6. This strategy is not
easily defended against, nor is it straightforward to fix
the rules of the game,6 so it seems Chessy Crush Saga
v2 also retains hope for Black, even though the odds
initially seemed stacked against her.

5 Future work and conclusions

Many other games can be combined with Chess to ruin
Chess. For example, consider Chess Tac Toe, Chesslers
of Catan, Chesstris, and Hungry Hungry Hipposchess.
Combining Chess and Sokoban is impossible, obviously.
The combination of Chess and Battleship is Battlechess,
published in 1988 by Interplay.

5This strategy was discovered by computer, like most clever
things these days.

6It seems perhaps we can eliminate Black’s draw strategy by
restoring the idea of horizontally striped Candy Rooks (see foot-
note above). I implemented this. Unfortunately, although the
move that ends the game in a draw is a horizontal move, the move
that creates the Candy Rook is a vertical one. Therefore, Black’s
Candy Rook is vertically striped, and can successfully destroy the
White king (though it is then replaced with a horizontally striped
Candy Rook to observe the empty thrones).

8 0Z0ZkZ0Z
7 opo0opop
6 0Z0Z0Z0Z
5 Z0Z0Z0Z0
4 0Z0o0Z0Z
3 Z0OPZ0Z0
2 PO0ZPOPO
1 Z0Z0J0Z0

a b c d e f g h

Figure 5: White may not use a fixed strategy to con-
struct her Omega Weapon. The position shown is after
1. c3 d5 2. d3 d4. If 3. e3 (making candy) then . . . xe3,
obviously. White can make candy with 3. b3, but now
e2 is not clear to crush the Candy Rook here and destroy
the Black king.

In conclusion, San Dimas High School Footchess
rules!

References

[1] Tom Murphy, VII. SICO chess variations, April
2008. http://snoot.org/toys/sico/variations.
html.

[2] John Nunn. Secrets of pawnless endings. Gambit
publications, 2nd edition, May 2002.

8 0Z0ZkZ0Z
7 Z0Zpopop
6 0s0Z0Z0Z
5 Z0Z0Z0Z0
4 0Z0Z0Z0Z
3 Z0S0Z0Z0
2 PO0Z0OPO
1 Z0Z0J0Z0

a b c d e f g h
(a)

8 0Z0ZkZ0Z
7 Z0Zpopop
6 0Z0ZrZ0Z
5 Z0Z0Z0Z0
4 0Z0Z0Z0Z
3 Z0Z0Z0Z0
2 0ZRZ0OPO
1 Z0Z0J0Z0

a b c d e f g h
(b)

Figure 6: Black’s surprising draw strategy in Chessy
Crush v2. White begins her Omega Weapon: 1. e3 c6
2. d3 a6 3. c3 (making candy) b6 (making candy) we
have the board in (a). It seems that Black is stuck after
4. Rc2 (making candy), since 5. Re2 (making candy)
will crush White’s candy rook and destroy the entire
e file, including Black’s king. Black defending with 4.
. . . Re6 initially seems pointless (White will destroy the
rook as well so the check is irrelevant—this indeed re-
futes 4. . . . Rb1) but Re6 actually creates a vertical
three-piece crush, sacrificing Black’s king to destroy the
e file first, which also destroys White’s king! Such mu-
tual destruction is not possible in traditional chess, but
it seems appropriate to consider it a draw in Chessy
Crush Saga v2. It appears that White can head off this
line with 4. Rc8++, a totally vanilla back-rank mate,
but this is not actually mate with the same 4. . . . Re6
(making candy) escaping to a draw.

��
��))

�������	�� 2��
� �
	��

%� �'��!'" ��'��&�!�� 4% �)'�0� ��))&� �4 ��) %'&+"�5 4% ��) �)""4�
&4"")
) 4% �&!)�&)�

&���� %	�	�����

*�������. ����$ �
�� ������$ ������� � ��	�����

&� '�	����� �� ���)���$�� �� �6��	���	� "	�� &����� ����# '�������� ��	('���#
	 ��	/������	/���� +�6	� '�����	� &��(�������

��$���	� %�	�	

*�������. ���������$ �
����$ �����-

1� 5�� '������ '����$	���� �� 4� ��� ��$���3�

&������ %�	�$�� 	�� ��$���	� %�	�	

*�������. ������3	��$ ����	��� �
����� ����	��$ ����� ��
�� ��	/�

(� ���	�� ���0� "�� 4��� ���� ������� ��� +��/����

-��� "	�������

*�������. ���� �����$ ��������	�� � ��	 ����$ ����	�� �
��

Analysis of the Effects of Substantial Lane Closure During

Afternoon Peak Along a Heavily-Traveled Urban Arterial

Choke-Point

Nicholas Fudala

February 24, 2014

1 Introduction

We have been advised to begin by clarifying that,
yes, we are the traffic engineers responsible for
the study at the heart of “Bridgegate” and that
Governor Chris Christie “had no knowledge of
this—of the planning, the execution, or anything
about it.”1 With that out of the way, we’d like
to thank the media for the unexpected interest
in our work. While we once struggled to re-
ceive approval or even acknowledgment for the
legitimacy of our research interests, that being
our queue length prediction system, we now find
ourselves overwhelmed with inquiries seeking the
answer to “what exactly is this traffic study all
about?”

2 Background

Traffic congestion is an unavoidable fact of mod-
ern life. Sometimes you approach a line of
red tail lights and have no idea how long it
stretches ahead of you. So one day, in 1986,
while stuck in such a predicament, we devised
such a method to calculate queue length and
report its findings to each subscriber’s one-way
pager. Though offering no congestion-free alter-

natives, the system would offer peace of mind in
knowing exactly how long the subscriber would
remain stuck in the queue, away from friends and
family, after a long day at work. Nineteen years
later, while still working out the bugs, an up-
start search engine named Google released their
“Google Maps” and its traffic observation fea-
ture, effectively duplicating our effort for non-
pager devices. Therefore, we seek to provide an
alternative to Google and subsequent traffic ob-
servation websites, apps, and local news broad-
casts.

3 Methodology

We were approached one day, to our complete
surprise, by the Transportation Commissioner
of the State of New Jersey to conduct a traffic
study on the George Washington Bridge, con-
necting Fort Lee, NJ and New York City. In-
spired by the original cause of the congestion
that would spark the idea for our queue length
prediction system we decided to simulate a mat-
tress on the freeway situation by closing two of
the three travel lanes from the bridge to Fort
Lee. Our proprietary algorithm relied on public-

use roadway sensors and cameras and converted
all necessary data into a text message provided
to subscribers (which, of course, there were none
in this beta testing stage). Information was in-
stead unintentionally encrypted and placed in a
password-protected file.

4 Results and Future Research

Research is still ongoing as the authors are con-
tinually attempting to guess the password pro-
tecting all relevant data and information from
the one-day traffic study. We are confident, as
evidenced by the unexpected outpouring of me-
dia and worldwide interest, that we will find sup-
port in further study of our system. In fact,
Governor Christie has been quoted saying “Go
ahead.”2 We believe it necessary to investi-
gate worst-case scenario mattress-on-freeway sit-
uations and propose research on complete lane
closure during afternoon peak as well as travel
access restricted to one 8-foot shoulder during
an ice storm. We appreciate the continued sup-
port of the Governor, who agrees that “we need
to fix this problem, because I’m the boss.”3

5 Acknowledgments

Special thanks to the Transportation Commis-
sioner of the State of New Jersey, the Port Au-
thority of New York and New Jersey, and the
Governor’s Office of New Jersey for providing
unprecedented access with virtually no notice to
such a vital bottleneck.

References

1Kate Zernike. Christie linked to knowledge of
shut lanes. http://www.nytimes.com/2014/

02/01/nyregion/christie-bridge.html,
January 31, 2014.

2The Washington Post. Full transcript:
N.J. Gov. Chris Christies Jan. 9 news
conference on George Washington Bridge
scandal. http://www.washingtonpost.com/

politics/transcript-chris-christies-

news-conference-on-george-washington-

bridge-scandal/2014/01/09/d0f4711c-

7944-11e3-8963-b4b654bcc9b2_story.

html, January 9, 2014.

3CNN Political Tracker. Chris Christie: ‘If I
was in the Senate right now, I’d kill myself’.
http://politicalticker.blogs.cnn.com/

2013/10/11/chris-christie-if-i-was-in-

the-senate-right-now-id-kill-myself/,
October 11, 2013. CNN Political Tracker.

Yet Another Application of Our Pet Technique

Chester Francis Nicholas Fudala

February 25, 2014

Abstract

Traffic lights are the worst. In most cities, their
timing is probably just random guessing by some
hillbilly local who can’t count past ten, and we’re
unaware of more advanced techniques in the lit-
erature. We apply the extensively tested and oc-
casionally accepted Francis-Fudala technique to
the optimization of a simple two-phase isolated
traffic signal, and discuss some selected benefits.

1 Introduction

Traffic lights, also referred to as traffic sig-
nals, traffic lamps, signal lights, stop lights and
robots [1], are defined as “a road signal for
directing vehicular traffic by means of colored
lights” [2]. See Figure 1.

They were first introduced in 1868 in Lon-
don [1]. When you wait at a red light, you waste
time, and your car wastes gas, so it’s bad for
both you and the environment. To our knowl-
edge, there is no known way to improve upon
random guessing for green time distribution, ei-
ther in the literature or in practice [1, p. 1].

2 Our Approach

A potentially wildly successful and robust tech-
nique for optimal decision-making is the Francis-

Figure 1: A traffic light.

Fudala technique [3, 4]. A non-linear, multi-
objective, Bayesian procedure utilizing dynamic
programming, neural networks, and various data
mining approaches comprising several of the
leading optimization techniques in sequence, and
occasionally produces results superior to when
used individually.

The algorithm uses a multi-step process to
output a single value of 1 or 0 (change or hold
current phase) based on an input of vehicles
on each link, geometric mean of vehicle loca-
tions, median of time-to-intersection, time since
last phase change, current time in MATLAB
(nanoseconds since January 0, 0), friction of road
surface (in simulation assumed to be 1), vehi-
cle (RGB), mean engine displacement (cc), min-

imum recommended tire inflation (psi), and var-
ious barometer readings.

Inputs are first computed using a symbolic re-
gression tool very similar to, but definitely not,
Cornell University’s Eureqa [5], for a minimum
of five days of simulation on a Pentium 4 Quad
Core. These outputs are then analyzed with a
stochastic artificial neural network that is not
unlike, but also unlike, the one available in MAT-
LAB’s neural network package. The third step
is a proprietary combination of Google Translate
German to English (but not) and WinZip.

In case you can’t tell, this is really complicated
and therefore better.

The last digit of the WinZip file size in bytes is
utilized in the next step, unless that digit is nei-
ther zero nor one, in which case the technique is
repeated until an acceptable value is outputted.
The boolean output undergoes the final step, one
that is so shocking and brilliant that articulat-
ing it in this paper could destabilize all of science
(for an even more cryptic explanation, see [6]).
Rest assured it is so amazing and brilliant that it
completely guarantees success and is in no way
possible to improve or even understand, as evi-
denced by the US Patent Office refusing to even
acknowledge our many applications.

2.1 Past Performance

The Francis-Fudala technique has been applied
with various degrees of success and non-success
to a wide array of problems in the fields of
botany [7], psychology [8], paranormal psychol-
ogy [9], stock-picking [10], lock-picking [11], off-
track betting [12], on-track betting [13], guilt
predictions on episodes of Dateline NBC [14],
automated tweet scheduling [15], alcohol con-
tent per unit currency [16], number of M&M’s
in a cylindrical container [17], the Aanderaa-

Karp-Rosenberg conjecture [18], and number of
Skittles in a cubical container [19]. The algo-
rithm has routinely placed in the top 80% of sub-
missions in multiple data mining competitions
hosted on Kaggle.com, and has been nominated
multiple times for the Nobel Peace Prize (the
Prize in Economic Sciences surprisingly restricts
self-nomination).

2.2 Traffic Signal Application

Our technique was applied to a common two-
phase traffic signal at a theoretical intersec-
tion. Modeling driver behavior proved particu-
larly difficult, due to the complete lack of vehicle
dynamic models found in an extensive search of
the literature that were either free, in front of
paywalls, or without lots of math. In this ap-
plication, the intersection was modeled in Net-
Logo [20], assuming cubic vehicles with point-
mass properties, accelerations of [inf, -inf], using
the car-following model employed in FroggerTM.
A visualization of our network is shown in Fig-
ure 2.

Figure 2: Traffic signal application.

2.3 Results

Analysis was abbreviated due to the excessively
long computational requirements of our algo-
rithm. Each second of simulation required be-
tween 4 and 6 hours of computational time, so
that a simulation of one hour of evening peak
period traffic required 33 days of computation.
Significance was therefore not calculated due to
the low sample size of n = 3. Results are shown
in Table 1.

Technique Delay (s/veh) Stops

Random Guessing 56.7 421
Näıve 54.5 450

Francis-Fudala 54.2!!! 3452

Table 1: Performance of the Francis-Fudala
Technique compared with benchmarks. Note the
improved performance in delay. It’s in the mid-
dle bottom of the table.

3 Future Research

Although our testing conclusively demonstrated
the vast superiority of the Francis-Fudala tech-
nique, there remain a few areas for further re-
search. Potential topics include the perfor-
mance of the Francis-Fudala technique on a
three-phase intersection, four-phase intersection,
five-phase intersection, six-phase intersection,
seven-phase intersection, eight-phase intersec-
tion, nine-phase intersection, ten-phase inter-
section, eleven-phase intersection, twelve-phase
intersection, two-legged signalized roundabout,
three-legged signalized roundabout, four-legged
signalized roundabout, five-legged signalized
roundabout, six-legged signalized roundabout,
seven-legged signalized roundabout, short-ramp

meters, long-ramp meters, on-ramp meters, off-
ramp meters, interchange ramp meters, diamond
interchanges, diverging diamond interchanges,
and theorized autonomous vehicle intersection
with individualized lights for each vehicle. Test-
ing on each of these signal configurations would
be incomplete without further testing of the ef-
fects of standing snow, falling snow, falling snow
blowing sideways, unexpected snow, expected
snow, ice, rain, icy-rain or sleet, hail, wind, glare,
earthquakes, solar eclipses, lunar eclipses, pro-
portion of trucks, proportion of bicyclists, pres-
ence of pedestrians, presence of particularly dis-
tracting pedestrians, sensor failures, police so-
briety checkpoints, recurring congestion, non-
recurring congestion, and random traffic light
bulb burnouts. Obviously each of these com-
binations requires its own paper, and probably
book.

References

[1] Wikipedia. Traffic light. http://en.

wikipedia.org/wiki/Traffic_light.

[2] The Free Dictionary by Farlex. Traffic
light. http://www.thefreedictionary.

com/traffic+light.

[3] Chester Francis. Artificial Complexity. PhD
thesis, University of Burgundy, submitted.

[4] Nicholas Fudala. Universal Complexity.
PhD thesis, University of Burgundy, sub-
mitted.

[5] Michael Schmidt and Hod Lipson. Distill-
ing free-form natural laws from experimen-
tal data. Science, 234(5923):81–85, April
2009.

[6] Chester Francis and Nicholas Fudala. An
Even Newer Kind of Science. Publisher:
Author, 1st edition, January 2003.

[7] Chester Francis and Nicholas Fudala. To-
wards predictive coloration of the Eastern
Maple. Journal of Botany Enthusiasts, sub-
mitted.

[8] Chester Francis and Nicholas Fudala. Ap-
proaching an understanding of the bias ef-
fect in handicapping of equine racing. Jour-
nal of Sports Psychology, submitted.

[9] Chester Francis and Nicholas Fudala. Ap-
proaching an understanding of the bias ef-
fect in handicapping of equine racing in the
presence of ghosts. Journal of Paranormal
Psychology, submitted.

[10] Chester Francis and Nicholas Fudala. En
route to PENNY STOCKS ARE THE
IPHONE OF INVESTING! The Motely
Fool, submitted.

[11] Chester Francis and Nicholas Fudala. In the
vicinity of a predictive approach to fasten-
ing device liberation: a quasi-philosophical
perspective. Journal of Speculative Re-
search, submitted.

[12] Chester Francis and Nicholas Fudala. Ap-
proaching an understanding of the bias ef-
fect in handicapping of equine racing. Daily
Racing Form, submitted.

[13] Chester Francis and Nicholas Fudala. A
novel stereoscopic camera object identifica-
tion test case: classification of discarded
ticket status at Yonkers Raceway. IEEE
Transactions on Entrepreneurship, submit-
ted.

[14] Chester Francis and Nicholas Fudala. It’s
often the married man. Journal of Media
Studies, submitted.

[15] Chester Francis and Nicholas Fudala. Hash-
tag: profit. Harvard Business Review, sub-
mitted.

[16] Chester Francis and Nicholas Fudala. Al-
cohol dependence and poverty, but not the
way you think. Journal of Substance Abuse,
submitted.

[17] Chester Francis and Nicholas Fudala. Step
right up! How to beat a carnie at his own
game, and impress your friends. Topics in
Social Sciences: Special Issue on Carnival
Culture, submitted.

[18] Chester Francis and Nicholas Fudala. To-
wards preliminary understanding of the sig-
nificance, magnitude, and difficulty of the
Aanderaa-Karp-Rosenberg conjecture: ini-
tial thoughts. Nature, submitted.

[19] Chester Francis and Nicholas Fudala. Step
right up: Particle-count prediction in a lin-
ear, equaliteral non-spherical environment.
Proceedings of the National Academy of Sci-
ences, submitted.

[20] Uri Wilensky. Netlogo. http://ccl.

northwestern.edu/netlogo/.

SIGBOVIK 2014 Paper Review
Paper 5: Yet Another Application of Our Pet Techn

Robert Marsh, King Under the Mountain
Rating: 1 (strong reject)
Confidence: absolute/4

There are several problems with this paper. The modeling of vehicles is rather poor - at the very

least their acceleration in the road’s reference frame is limited by relativistic effects. Furthermore,

modern vehicles are curvy, not dumb and boxy (except the Nissan Cube, which isdumb, boxy,

and curvy, truly a marvel of modern engineering) and thus would be best modeled as spheres. In

addition, the alternatives they test against don’t include the current industry standard dime-an-hour

hick, suggesting that they were cherrypicked to appear more favorable. And besides, they didn’t

cite anything I did, so I don’t see why I should let them get published.

SIGBOVIK • March MMXIV

Please Don’t Let Open House Destroy
the Universe

Jenn Landefeld∗

Carnegie Mellon University
jennsbl@cs.cmu.edu

Abstract

Exploration of the multi-dimensional space-time rift potentials [1] created through appointment scheduling
containing m admitted students crossed with n faculty crossed with y current graduate students willing to
speak with each other within two eight-hour sets of 30 minute meeting slots. The two day meeting period
is also sprinkled with a series of events that interfere with multiple potential 30 minute meeting times
causing admitted students, current students and faculty to not be able to meet with those they preferred to
meet with. Events also allow chance meetings which will generate emails requesting additional meetings
or changes to schedules that will cause ripple effects across the entire appointment structure.

I. Introduction

In this paper we explore the relatively un-
documented practice of inviting multiple
students admitted to a Computer Science

Ph.D. Program to descend upon a given uni-
versity to attempt to glean information from
faculty and current Ph.D. students in an ef-
fort to determine whether said university and
its faculty are a suitable fit for their research
interests. Through this exploration we will
determine if there is a real potential for the
creation of a multi-dimensional space-time rift
that could be catastrophic in proportion.

II. Methods

For examining this dilemma we will assume
the following defined variables are in play:

Table 1: Number of People Needing Appointments

Faculty Admit Current Ph.D.

n =105 m =59 y =49

To accomplish the appointment schedule
for matching m (where m is those who are able
to travel to visit the given University at the
set schedule time) across n and y we need to
optimize the schedules to get as many m into
the offices of n they requested to meet while
also optimizing the schedules to accommodate
the availability provided by n, cross-referenced
with their level of willingness to actually meet
with a given m.

When this optimization[2] fails, a second
round attempt will be made to provide any
faculty interaction in a given area of research
before cross-checking the list of current Ph.D.
student availability to match admitted students
to with current students whose advisor might
potentially be one of the faculty the admitted
student requested to meet with.

Faculty and current students are contacted
in advance of the student visits to assess their
availability for 30 minute meeting slots during
morning and afternoon daylight work hours
on two standard university workdays compris-
ing a total of 5-6.5 hours of meeting slots each
day.

∗Thanks to Rob Simmons for a much more concise title than this paper began with. Articles with short titles are cited
more often.[3] Thanks also to Martha Clarke for years of dedication to making this process work for the Computer Science
Department and without whose retirement I wouldn’t have had the privilege of taking on the daunting task explored in
this paper. There are so many more I could thank, but I don’t want to make them feel uncomfortable by pointing out their
contributions to the added complexity of the dilemma.

SIGBOVIK • March MMXIV

Appealing to the "What’s in it for me factor"

• Get me students to spend funding on
– so funding isn’t taken back by (a) de-
partment, (b) school, (c) university, (d)
benefactor (usually government funding
with spending timeline/strings attached)

• Get me students to advance the research
(more bodies on the problem)

• Get me students so I can write more
grants to get more funding to fund the
students I’m recruiting.

Appealing to the Rock Star factor
• You can have you name on even more

submitted papers?
• If you are tired of traveling and talking to

people about the research you can send a
student.

• Get more students here to work with
other faculty to keep those faculty busy
and to stop bugging you to do things.

Appealing to the "Okay there’s food I guess I will
attend that" factor

• We all know faculty and students in com-
puter science departments like to eat -
provide food!

Research we didn’t have time to fully define or
apply findings from1

• Managing the Absent Minded Professor
• Managing the Rock Star factor
• Mitigating the Curmudgeon factor
• Mitigating the Procrastinator
• Managing unrealistic expectations of

who will get to speak to whom (this can

be admit or faculty based)

III. Conclusions and Future
Research

Obvious conclusions (Duh)

• Admitted students are perfectly happy to
visit to talk and eat. It’s not clear how to
get them to understand the complexity
and they will not get to speak to every
professor they requested a meeting with.

• Faculty like to eat, talk to some students
they want to and don’t get to talk to some
students they wanted to, and ask to meet
with students who don’t visit.

• Current students get little done on their
theses, get to eat and talk a lot to students
who may have really wanted to talk to
their advisor or may have no common
research interest at all.

• Faculty who are not in the Computer Sci-
ence Department proper generally have
little vested interest in meeting with a
student during your Open House and
may or may not offer time to do so, thus
increasing the complexity factor by the
number faculty requested by admits from
departments outside yours.

• Some faculty who are not in the Com-
puter Science Department proper may
be more accommodating with their time
than faculty in your own department,
thus increasing the complexity factor by
the number faculty requested by admits
from departments outside yours.

• Current students are helpful and a
tremendous benefit to have on hand

1We didn’t have time to explore these in detail and apply them to our optimization processes due to the following
factors: (1) faculty making their own appointments caused an additional time sink and domino affect on scheduling that
had to be handled before (2) applying the requests of admitted students after they arrived and wanted additional faculty
added to their schedules while (3) adding faculty who were suggested by other faculty to admitted students schedules
while (4) changing counts for events that students would now not be attending due to additional appointments added to
their schedule while (5) simultaneously sending email to multiple admitted students and faculty to confirm changed or
additional appointments while (6) updating, printing and distributing physical schedules and (7) contacting the current
students to either move appointments with an admit or (8) emailing current students to cancel appointments entirely then
(8) repeat the process when faculty decided at the end of day one that they did actually want to speak to another student
on day two of the event even though they originally said they had no available time on day two while (9) contacting admits
to cancel appointments with faculty unable to return to campus due to travel issues while (10) redoing schedules for any
admitted students who had travel issues.

SIGBOVIK • March MMXIV

for the events and appointments and
scheduling couldn’t truly be accom-
plished without their willingness to fill in
for busier, distracted, or missing faculty.

• Some faculty need to learn how to say
"No".

• Some faculty need to learn how to say
"Yes".

While the research is not at all conclusive
about the best optimization methods to apply
to the herding of cats2, it is apparent that more
research is needed so admissions coordinators
can optimize the scheduling (if there is time
and if there is funding leftover from the food
and admitted student travel budgets).

Without the possibility of applying opti-
mization for this process, each incremental in-
crease in the number of admits attempting visit,
crossed with the number of faculty and depart-
ments engaged in the open house process will
steadily head toward rift creation. With the
addition of each request to meet with a faculty
member outside the hosting department cou-
pled with the admits expectations crossed with
the amount of time actually available to accom-
plish concurrent tasks the potential escalates.

Questions we have not yet answered satisfacto-
rily and might be suitable for future research
are:

• Should we give the admitted students
t-shirts? Everybody wants another t-
shirt! Our research leads us to believe
we should – perhaps to keep up with the
"Joneses"3(you know, those other schools
that think they are top-tier and just may
have handed out t-shirts when we did
not) or to add something else neat to the
gift bags.

• Should we build a water park with a
huge beach as a recruiting tool, closer to
campus than Sandcastle, of course. (ev-
eryone wants to be closer to more water

than just 3 rivers and there should be lots
of sand, right - Sandcastle is just too far
away - seriously!)?

• Should we build a solar dome to enable
suntanning in the winter months to com-
pete with the West Coast schools?

• Should we somehow encourage the devel-
opment (or build one ourselves) of more
ski areas within driving distance to take
advantage of the fact we seem to be drift-
ing north as far as weather patterns are
concerned? (Look out East Coast schools
north of us - we are about to seriously
compete with your horrible weather!)

• How much email was actually sent and
received by the admissions coordinator
during the time period of notifying stu-
dents they were admitted, their Open
House travel planning, attendance and
reimbursements and the decision dead-
line?

• Determining if coffee consumption is a
valid method to sustain the process and
stave off the pending multidimensional
space-time rift.

IV. Discussion

Other than a few long and many hurried meet-
ings with the one person who created this pro-
cess, there has not been any discussion about
the overall dilemma regarding our potential to
cause a multi-dimensional space-time rift. In-
put would be welcome regarding methodology.
Not that I would apply any of them to future
research, but it might be a fun discussion none-
the-less.

It is hoped that discussion will not be ter-
ribly serious, as this research was done with a
lighthearted spirit. Data is still coming in and
the processes the are ongoing. I look forward
to the next round of applications, admissions
meetings and Open House as sources of con-
tinued research. ;-)

2This is a classic dilemma that surfaces repeatedly and is almost lovingly referred to by ad-
ministrators across academia[4] see also: http://chronicle.com/blognetwork/researchcentered/2011/09/23/
advanced-faculty-wrangling-techniques/

3Wikipedia definition http://en.wikipedia.org/wiki/Keeping_up_with_the_Joneses

SIGBOVIK • March MMXIV

References

[1] P. Bar-Joseph, Space-time discontinuous
finite element approximations for multi-
dimensional nonlinear hyperbolic systems.

Computational Mechanics, Volume 5, Issue
2-3, 145–160, Springer-Verlag, 1989

[2] Vincent Conitzer, Tuomas Sandholm, Com-
pute the Optimal Strategy to Commit to.

EC ’06 Proceedings of the 7th ACM con-
ference on Electronic commerce, 82–90,
ACM 2006

[3] Carlos Eduardo Paiva, Joao Paulo da
Silveira, Nogueira Lima, and Bianca
Sakamoto Ribeiro Paiva Articles with short
titles describing the results are cited more of-
ten.

Clinics (Sao Paulo) v.67(5); May 2012

[4] Marietta Del Favero, Nathaniel J. Bray
Ph.D., M.Ed., Herding Cats and Big Dogs:
Tensions in the Faculty-Administrator Rela-
tionship

Higher Education: Handbook of Theory
and Research, 477-54, Springer Nether-
lands, 2010

��
��)))

4�� �������	�
� ��������	 ��

%� ���������� ���� ������7
' ������� �� ��� ��	������	� %���	����� �� �	����	��$�

����	� &�	��� 	�� �	� 5�	#��

*�������. ���������� ���� ������$ 	����	�� ����$ ������ � �3�����	��
3	��

&� ��� �����# "���	 � '�������# ��#�	����

�	��� �	���	

*�������. ������
�	��
� ��
������$ ���
� �
���
���$ ���� 5����

1� ��	�����$	� 1	�$� 4�����8	����

���$� ������

*�������. 6
���$ �����$ �	��$ ����
�	�	��$ ��
�	��	��

(� ' ������ &	��#������������$ +������	����# �� &	��#������������$ ��	#�	��

����	� �����

*�������. �
������$ �	
��
�$ ������$ �	
��
� �	
��
�

Heterotopy Type Theory: A defense of
the traditional foundations of mathematics

Thomas Cramer (R-TX)

United States Senate

Sam Yeager

Arizona State Senate

Abstract
A major focus of interest in type theory has been the treat-

ment of identity types, a subject that recently underwent a

major revision under homotopy type theory [4]. Researchers

in the field have historically ignored the beliefs of a large

segment of the population that wishes to preserve the tradi-

tional meaning of identity types. Many authors mistakenly

refer to these types, even informally, as “proofs of equality.”

This is not about equality. It is about our freedom to practice

type theory as we see fit, and we will defend this freedom

against any onslaught of political, or mathematical, correct-

ness. This paper takes a firm stand against the liberal attack

on identity, instead offering a pure account of identity types,

called heterotopy type theory, which reaffirms their original

intent. We hope this document will be enshrined as a part of

the Constitution of the Association for Computing Machin-

ery [1], to protect the august institution of identity against

future attacks.

1. Introduction
Much prior work in type theory has dealt with the ways in

which type theories handle identity types IdA(m,n), where

A is a type and m and n are terms of that type. With the

recent introduction of homotopy type theory [4], the discus-

sion of these identity types has gained renewed interest, lead-

ing to a total redefinition of the meaning of identity. Under

this disturbing philosophy, terms of identity type are thought

of as paths in the space representing the type A. Elements of

the iterated identity type IdIdA(m,n)(p, q) where p and q are

paths between m and n may be thought of as homotopies be-

tween these two paths. But it is not for us to redefine identity.

Identity is a concept that has been steeped in tradition since

the beginning of our field, and is granted a unique status in

the ancient books of mathematics. It may not be lightly al-

tered to fit every passing trend, however fervent the support-

ers of this trend may be.

2. Traditional identity types
The primary problem with new definitions of identity is the

so-called identity introduction rule.

Id-I-UNNATURAL

Γ � m : A

Γ � reflA(m) : IdA(m,m)

This rule embodies the natural and logical conclusion of

the slippery slope on which type theory finds itself: if two

things of similar nature are allowed to form an identity, then

why not allow a term to enter into an identity with itself? The

identity “proof” reflA represents all that is dangerous about

modern type theory, and we should not allow ourselves to

tend in that direction. We, of course, do not allow such a

rule within our type theory. Instead, we propose an alternate

identity introduction form, which we call original identifi-
cation and notate idoFA(m,n). To make sure that this form

cannot be twisted to allow instances of refl, it requires a wit-

ness, F : A → bool, which asserts that m and n are eligible

to be identified by mapping one to tt and one to ff.1

Id-I

Γ � m : A Γ � n : A F (m) = tt F (n) = ff

Γ � idoFA(m,n) : IdA(m,n)

This is what one would expect as the natural definition

of identity. After all, it was Adam and Eve, not Adam and

λx. Adam x. Unfortunately, removing reflexivity in favor of

our traditional introduction form is not sufficient to restore

traditional identity. The depravity of modern type theory

continues to such an extent that the following term is actually

definable within the type theory:

trans : IdA(l,m) → IdA(m,n) → IdA(l, n)

While some would have us believe that trans is a perfectly

natural and wholesome property, we will see where this

leads: having entered into a solemn identity with l, m is

immediately allowed to enter into an identity with n as well.

Were this not enough, trans has the audacity to suggest that

l and n are now identified! Clearly we cannot allow such an

1 Many types actually require two witnesses, but we present only one here

for simplicity.

abomination to enter into our system. The root of this danger

is identity elimination, the so-called J rule.

Id-E-UNNATURAL

Γ � p : IdA(M,N)
Γ, x : A, y : A, z : IdA(x, y) � C type
Γ, x : A � Q : [x, x, reflA(x)/x, y, z]C

Γ � J[x.y.z.C](p, x.Q) : [M,N, p/x, y, z]C

This rule demonstrates the unbounded audacity of propo-

nents of this unnatural and dangerous type theory. It is not

enough for them that a concept like refl be introduced into

the theory, but they must impose it on all type theorists by

asserting an elimination form that treats all self-respecting

identities as if they were refl! As we did with identity intro-

duction, we must present a proper identity elimination form,

which we call H after incisive social commentator Sean Han-

nity. This rule states that once an identity p between x and y
has been sanctified by any witness, we may use it in any con-

text C requiring identified elements without knowing what

witness was used. In particular, we may do this as long as

we can form a term Q that is typed with C assuming that x
and y were identified by a witness that assigns tt to x and ff
to all other elements of A.

Id-E

Γ � p : IdA(M,N)
Γ, x : A, y : A, z : IdA(x, y) � C type

Γ, x : A, y : A � Q : [x, y, ido
1{x}
A (x, y)/x, y, z]C

Γ � H[x.y.z.C](p, x.y.Q) : [M,N, p/x, y, z]C

where 1{x} is an indicator function

1{x}(z) =
{

tt : z = x
ff : z �= x

Homotopy type theorists might, at this point, display their

inner doubt with the system they have created by attempt-

ing to justify their inference rules with a “local soundness

proof.” We will not do this here, as our faith in the goodness

of traditional identity types is complete and no other proof is

required.

Lest we leave the reader without hope, we should note

that one tenet of our philosophy remains uncorrupted by

the forces against which we struggle. The term sym :
IdA(x, y) → IdA(y, x), which recognizes the mutual com-

mitment to the bond of identification, continues to have a

place in modern type theory. Of course, sym is definable in

our theory as well.

sym x y p := H[x, y, .IdA(y, x)](p, x.y.ido
1{y}
A (y, x))

3. Functoriality
Our efforts to correct the ills of type theory are thwarted once

again by the functorial action ap. Suppose we have a map

F : A → B, and two elements x, y such that Γ � x : A
and Γ � y : A. Define apF to be the action on paths of

F . Activist type theorists would like us to blindly assign to

apF the type IdA(x, y) → IdB(F x, F y). But suppose that

some corrupting influence causes it to be the case that F x =
F y. Even if we have an honest-to-goodness identity p :
IdA(x, y), such as one formed by ido and a proper witness,

apF p will be typed by the immoral and unnatural type

Ida(F x, F x). But all is not lost. If F is injective, we can

be sure that the type B will not diminish the identification of

x and y by allowing their F -mapped counterparts to live in

refl. Therefore, when identifications are mapped across types

by functorial actions, it is important that we only continue to

accept the identification if the map in question is a good,

injective map. Recent work by Kennedy, et al. [5] suggests

that the action on paths of non-injective maps might be

recognized at a higher universe encompassing both A and

B, but we do not accept the validity of this work.

4. Higher inductive types
Identities hold such an exalted role within our society that it

seems natural to allow them to be defined directly as part of

inductive types. For example, the following is a definition of

the type bool, which not only defines the two elements, tt
and ff, but allows them to enter into a natural, traditional,

identity that reaffirms their commitment to be partners in

their membership of the type bool:

tt : bool
ff : bool
p : Idbool(tt,ff)

Non-believers might not accept such a definition that

asserts an identity without what they would call “proof.” Yet

it is a fundamental facet of heterotopy type theory that we

must take certain definitions on faith; this is why they are

called Higher inductive definitions.

5. Freedom of Expression Axiom
On the other hand, it is sometimes the case that we will

be presented with an alleged identification that must not be

considered valid, as to do so would conflict with our most

deeply-held beliefs. To make sure that others cannot infringe

upon our rights by forcing us to accept improper identifica-

tions, we introduce the Freedom of Expression Axiom. This

axiom provides a term feaA(x, y) for x, y of type A, which

contradicts such a destructive identification.

FEA
Γ � x : A Γ � y : A

Γ � feaA(x, y) : ¬IdA(x, y)

6. Related Work
The most closely related work to this paper in its free, natural

approach to type theory is Angiuli’s work on unintentional

type theory [2]. However, we resent that Angiuli, who has

previously embraced socialist policies [3], would refer to

this type theory as “unintentional” when it is clearly part of

a larger, Intelligently Designed type theory.

References
[1] Constitution of the ACM. http://www.acm.org/about/

constitution, 2014.

[2] C. Angiuli. The (∞, 1)-accidentopos model of unintentional

type theory. In Proceedings of the 7th annual intercalary robot
dance party in celebtration of workshop on symposium about
Harry Q. Bovik’s 26th birthday (SIGBOVIK ’13). ACH, Apr.

2013.

[3] K. Angiuli and F. Engels. Redistributive version control sys-

tems. In Proceedings of the 7th annual intercalary robot dance
party in celebtration of workshop on symposium about Harry
Q. Bovik’s 26th birthday (SIGBOVIK ’13). ACH, Apr. 2013.

[4] I. for Advanced Study. Homotopy Type Theory: Univalent
Foundations of Mathematics. The Univalent Foundations Pro-

gram, 2013. http://homotopytypetheory.org/book/.

[5] A. Kennedy et al. United States v. Windsor. 570 U.S. 12
(Docket No. 12-307), 2013.

The Dumping Lemma
Assessing Regularity

Naomi Saphra

Abstract

In the field of computational scatology, there has long stood a question of
how one might approach the question of a language’s regularity. It is widely
acknowledged as desirable that a language should be regular, as this eases
the generation of outputs as well as the digestion of inputs. However, it is
often not obvious whether a given language is, in fact, regular or tractable.
Here we describe the use of the Dumping Lemma to prove the regularity
of a language.

1 Introduction

Because computational scatology is
primarily concerned with outputs, the
most popular models in the field tend
to be generative. Since the field’s
humble beginnings, our concern with
the taxonomy of output languages and
sets according to the automata that
might have generated them has been
paramount. Once “Father of Compu-
tational Scatology” Anal Püring first
proposed the taxonomy that would
bear his name of Püring-computable
and -complete languages, we devel-
oped vocabulary to describe further
demarcations of language categories.
Among our family of automata are
the relatively simple models that can
generate or recognize the regular lan-
guages, Fecal State Automata (FSA)
(as well as their relatives, the Fecal
State Transpoocers, beyond the scope
of this paper).

Unfortunately, the coprocom-
putability community has struggled
to consistently classify a given output
set as regular or not. Thus we present
a new rule that can be employed in
proving a regularity claim.

2 The High-Fiber Hy-
pothesis

In our work with FSAs, we have en-
countered a pattern of high-fiber in-
puts to a recognizing automaton. This
leads us to the conclusion that regular
languages must have a high-fiber seg-
ment, that is:
A regular input longer than length k
must have a segment of fiber that can
be expanded arbitrarily and the input is
still accepted by an FSA.

This is the claim that we will call
the Dumping Lemma.

Proof In Figure 1 are images of
regular inputs sets that somehow we
consider tantamount to a constructive
proof. The fecoinformatic implications
of the evidence are obvious and left as
an exercise to the reader.

3 Future Work

We believe there to be a possible
similar lemma for the higher-order
category of Context Pee Languages
(CPLs). Though their context is pee,
they share many qualities with RLs, as

Figure 1: Regularizers

they can be generated by Fecal Tree
Automata. Because a feces tree has
never been observed in the wild or im-
plemented in practice, we cannot con-
firm these suspicions, but do present it
as a possible path to a higher citation

count. It is worth noting that trees are
widely considered to metabolize by ex-
creting oxygen and water, posing a fur-
ther challenge for any attempt to prove
a Context Pee variant of the Dumping
Lemma.

Statistical Watch Optimization
Bryce Summers

whowatchesthe@mailman.cmu.edu
SIG BOVIK Conference, April 1, 2014

March 7, 2014

Disclaimer

This research was made possible in part by generous funding from 1 - 800 - JUNK and the Com-
binatorics, Linear Optimization, and Cool Kinematics research foundations. All information can be
corroborated by Father Time and therefore no source need be cited.

Abstract

In this paper we will be demonstrating applications of statistics and probability theory to the reduction
of mechanical energy used by the clocks and watches that inhabit our world. We have found that we
can yield as much as 100 percent reductions in energy usage by breaking all of the watches and that
their functionality will not be affected.

Broken Watches are Optimal.

We must initially prove some complicated lemmas, and only then will we be able to get to the intuitive
proof.

Lemma 1 : Watches are either working or broken

There has been much debate over the years as an exact classification of watches. Some watches perform
full double pi radian oscillatory movement, whereas others display dynamically induced interrupt
functionality. The watches that display distortion within their homogeneity fields may have different
magnitudes to their temporal displacement vectors. While fully broken watches display fully disrupted
behavior, mongrels of the partial broken category may still provide oscillatory movement that is not at
ease with classical harmonic rhythms expected from themodern day busy intellectual. For our purposes
we will simplify our analysis to those watches that display full and nonexistent disruptive behavior,
where we will call the non-disrupted watches working and the fully disrupted watches broken

Lemma 2 : Working watches maintain a constant have a constant error ε in their temporal
lookup provider functionality.

We need to show that working watches have a non-zero error from real time and that they retain this
error until the end of time.

First of all we know that watches are set through mechanical machines or human hands and that they
will not be set to the exact correct positions due to the vibrations of the temporal setting apparatus.

Second of all, since we are considering theoretical lambertian watch faces, the light scattering on the
watches’ temporal lookup oscillators can be safely ignored and we can assume that working watches
will maintain a constant ε error from the real time specified by the temporal laws of our forefathers
since the dawn of time.

We can prove this second part via induction:

Base Case: The claim holds now.
Induction Hypothesis: The claim holds before now’.
Induction Step: Since the nature of time is subjective, and nothing really happens in an infinitely
small amount of time, the claim must hold now’.

Lemma 3 : Broken Watches are correct two times a day.

Due to the closure of the real numbers mapped radians under the theoretically correct movement
operation of a perfect watch oscillatory component, every point on the watch must be hit twice through
the span on 1 day. Since a broken watch must exhibit 1 constant state throughout the day, it must
exactly match the correct state precisely two times in every day.

Lemma 4: Errors in time are signed values.

Humans naturally discuss errors in time using signed values. For instance, 4:01 pm would be said to
be 1 minute after 4 instead of 59 minutes before 5. Such a distinction of the two signed categories of
“after” and “before” is a natural convention in the understanding of numerical time.

Lemma 5 : AM and PM are identical on mechanical watches

Watches providing movement of lack thereof through mechanical means are assumed to provide the
same user experience in the first half of the day as the second.

Lemma 6 : Broken Watches need less energy to operate than Working Watches.

Due to the abscense of movement in Broken Watches, they can be implemented without the use of
any mechanical motor, whereas Working watches need to have energy sources installed to facilitate
the movement of their temporal reading components. Therefore, Broken Watches consume less energy
than working watches.

Broken Watch Optimality:

Many people are under the impression that Working Watches are more useful for telling time than
Broken Watches. We will attempt to examine potential why people might come to this fallacious
reasoning and attempt to help these lost souls see the virtues of Broken Watch utilization.

Fallacy 1: Correctness.
Many rational people believe that Working watches are more correct than broken watches. This is
simply not the case. Lemma 2 shows that Working watches have a finite error at every time during
the day, so they are correct 0 times in every day. Lemma 3 shows that Broken Watches are correct
two times a day.

Fallacy 1: Expected Error.
A perceptive person would probably state that the relative minuteness of the size of errors in a tem-
poral information provider is much more important that absolute correctness. Such as person would
cite lemma 2 to show that Working watches have an expected error of ε. They would then in their
hubris neglect to examine the case for broken watches, believing they have proved the optimality of
Working watches. If such a narrow-minded individual were to actually compute the expected value of
the average error for a Broken watch they would learn the expected error of their ways.

By Lemma 4, A broken watch goes linearly from being 0 hours off to 12 hours off to - 12 hours off to

0 hours off during the course of a day. Therefore we can compute the expected error as follows:

E[Broken Error] =

∫ 12
0 tdt +

∫ 12
0 −tdt

24
= 0

As witnessed by the impressive calculus, the Broken watch is expected to on average be exactly correct.
Thus, the Broken watch is on average less erroneous than a working watch.

Fallacy 1: Military Time Expected Error.
An astute observer may object to our logical use of signed time and demand that we hand error more
precisely with less room for creative interpretation.

In this case, we must yield to their demands and analyze the expected error under military time, the
most rigorous of time demains.

In this domain the error of the Working watch will still be ε by lemma 2.

The Broken watch’s error would vary uniformly from 0 hours to 24 hours. Thus we compute the
expected error as follows:

E[Broken Error] =

∫ 24
0 tdt

24
= 12

So by the groovy calculus, the expected error for the Broken Watch is 12 hours. By lemma 5, we can
conclude that a rational individual should expect the watch to be exactly correct.

Thus, under the strict standards of military time Broken Watches still exhibit optimality over their
working counterparts.

Energy Savings:

By lemma 6, transforming all of the working watches in this world into broken watches, will lead
to savings of 4 · π radians of mechanical energy per watch per day and thereby help reduce the
worlds’ energy consumption, while providing users with devices that have superior correctness and
error reduction.

Conclusion:

As our mathematics demonstrates, the current reliance of stressed out individuals on concepts such
as time, productivity, and watches may be profoundly misguided and that many of the fallacious
institutions that we take for granted should be reexamined and optimized using proper probabilistic
methods.

SIGBOVIK 2014 Paper Review
Paper 8: Statistical Watch Optimization

Ben Blum, Light Cone Sedentarian
Rating: 3 (weak accept)
Confidence: 4/4

The author presents an innovative new method for maintaining watch accuracy that requires un-

precedentedly low amounts of maintenance energy. However, I must note two major flaws with

this work:

1. The author fails to survey related work, most importantly, the seminal publication in the field

“Mustard Watches”, published well in advance of this very conference’s founding.

2. The author’s treatment does not account for the effects of relativity on broken watches. In

modern times, time-travellers will have been breaking causality left and right, and it is of

paramount importance for average citizens to be able to communicate with them if one is

wearing a broken watch and the other is not.

Nevertheless, this is an important theoretical advancement in the field of Watch Theory, and opens

several promising directions for future and past work. Weak accept.

A Simple Category-Theoretic Understanding
of Category-Theoretic Diagrams

Stefan Muller

Carnegie Mellon University

smuller@cs.cmu.edu

Abstract
Textbooks and other introductions to topics in category the-

ory often use the commutative diagram as a convenient tool

to explain new ideas. Unfortunately, for the uninitiated, these

diagrams can cause more confusion than enlightenment. In

this paper, we seek to give a gentle introduction to the use

of commutative diagrams. To simply and clearly explain this

important concept, we frame the discussion in terms of sim-

ple category theory itself and use a convenient tool for un-

derstanding new ideas in category theory: commutative dia-

grams.

1. Introduction
Many discussions of category theory graphically represent

the objects and morphisms of a category using diagrams. In

a diagram, objects of a category are represented using one

or more glyphs, typically a single uppercase letter of the Ro-

man alphabet. A morphism between objects is represented

using a straight or, in rare instances where it is required for

clear planar presentation of the diagram, curved, line also

labelled with one or more glyphs, typically a single low-

ercase letter of the Roman alphabet. Relationships between

two paths between objects are indicated by the commutativ-

ity of the diagram. While to the trained category theorist, a

commutative diagram can convey a great deal of informa-

tion about an unfamiliar category under discussion, students

and those in other fields often have trouble understanding

the relationships implied by a commuting diagram. It is of-

ten possible to explain an individual diagram in prose, but

this defeats the purpose of the simple graphical representa-

tion. This paper instead aims to explain diagrams in gen-

eral by presenting these diagrams as functors. It is known

that a diagram of a category C may be viewed as a func-

tor F : D → C where D is a small category (e.g. [1]), but

this paper chooses an alternate presentation that we believe

is unique in its clarity and concision.

2. Diagrams as a Functor
Let C be a small finite category. We define a functor D from

C to diagrams of C. For an object A ∈ C, D(C) is the

diagram

A B
f

Figure 1. The diagram D(f) of the morphism f .

A B E
f g

Figure 2. Composition of the morphism diagrams D(f)
and D(g).

A

For objects A,B ∈ C, we can take the diagram of a

morphism f : A → B. D(f) is shown in Figure 1.

If A,B,E ∈ C and there are two morphisms f : A → B
and g : B → E, the diagrams D(f) and D(g) may be

composed by merging them together at their common nodes,

in this case, B. D(g) ◦D(f) is shown in figure 2.

We now show that D is a functor. Let A ∈ C, and idA be

the identity morphism on A. D(idA) is shown below.

A

It is obvious from the definition of morphism diagram

composition that this is the identity morphism on D(A). We

must next check that, for A,B,E ∈ C, f : A → B and

g : B → E, we have D(g ◦ f) = D(g) ◦D(f). This fact is

clear from the commutativity of the diagram in Figure 3.

3. Morphisms on Diagrams
We now observe that, for a category C, D(C) forms a

category of diagrams on C. Let C be a category. We define

an object in D(C), A:

A

B C

f
g◦f

g

Figure 3. D preserves composition.

A B

C D
A B

C D

Figure 4. The morphism ↓.

A B

C D

AB

CD

Figure 5. The morphism ←.

A B

C D
A B

C D

AB

CD

AB

CD

Figure 6. Commutativity of ↓ and ←.

A B

C D

g

f

g′

f ′

One morphism ↓ is shown in Figure 4. Another simple

morphism, ←, is shown in Figure 5. ← ◦ ↓=↓ ◦ ←, as

shown by the commutativity of Figure 6.

4. The Functor �
We now describe a functor � on the category D(C) for any

small category C. � (A) is defined to be the diagram in

Figure 6. We refer to � (D(C)) as the category of diagram
diagrams on C. Since diagram diagrams are also diagrams,

A A

A A
A A

A A

AA

AA

AA

AA

B B

B B
B B

B B

BB

BB

BB

BB

E E

E E
E E

E E

EE

EE

EE

EE

Figure 7. � respects composition.

the same morphisms apply. For instance, � (←) =← and

� (↓) =↓. We also have that, for any A ∈ D(C), �
(idA) = id�(A). It now remains to check that if we have

A,B, E ∈ D(C), f : A → B and g : B → E , then �
(g ◦ f) =� (g)◦ � (f). This is shown by the commutativity

of the diagram in Figure 7. We may now demonstrate for

� all of the standard properties of functors, one of which is

shown in Figure 8.

5. Future Work
We hypothesize, but have not yet shown, that the functor

� can be nested arbitrarily deeply, resulting in a family

of functors �i. A conception of �4 is shown in Figure 9.

Understanding of the limit of this process, notated �∞, will

provide a fuller understanding and newfound clarity to the

device of commutative diagrams.

6. Conclusion
This paper has shown by example that it is simple to gain

a thorough understanding of an unfamiliar topic in category

theory through its presentation in terms of commutative di-

agrams. We hope that this work will be useful in the future

to beginning students of category theory and related fields

of study. While commutative diagrams are just one path to a

full understanding of any concept, they are equivalent to any

other such path. We hypothesize that this fact can be demon-

strated using a commutative diagram.

References
[1] J. P. May. A Concise Course in Algebraic Topology. The

University of Chicago Press, Chicago, 1999.

A B

C D
A B

C D

AB

CD

AB

CD

A B

C D
A B

C D

AB

CD

AB

CD

A B

C D
A B

C D

AB

CD

AB

CD

AB

CD

AB

CD

A B

C D
A B

C D

AB

CD

AB

CD

A B

C D
A B

C D

A B

C D
A B

C D

AB

CD

AB

CD

A B

C D

A B

C D
A B

C D

AB

CD

AB

CD

A B

C D

Figure 8. A trivial property of the functor �.

A B

C D
A B

C D

AB

CD

AB

CD

A B

C D
A B

C D

AB

CD

AB

CD

AB

CD

AB

CD

A B

C D
A B

C D

AB

CD

AB

CD

A B

C D
A B

C D

A B

C D
A B

C D

AB

CD

AB

CD

A B

C D
A B

C D

AB

CD

AB

CD

AB

CD

AB

CD

A B

C D
A B

C D

AB

CD

AB

CD

A B

C D
A B

C D

AB

CD

AB

CD

A B

C D
A B

C D

AB

CD

AB

CD

A B

C D
A B

C D

A B

C D
A B

C D

AB

CD

AB

CD

A B

C D
A B

C D

AB

CD

AB

CD

AB

CD

AB

CD

A B

C D
A B

C D

AB

CD

AB

CD

A B

C D
A B

C D

A B

C D
A B

C D

AB

CD

AB

CD

A B

C D
A B

C D

AB

CD

AB

CD

A B

C D
A B

C D

AB

CD

AB

CD

A B

C D
A B

C D

AB

CD

AB

CD

AB

CD

AB

CD

A B

C D
A B

C D

AB

CD

AB

CD

A B

C D
A B

C D

A B

C D
A B

C D

AB

CD

AB

CD

A B

C D
A B

C D

AB

CD

AB

CD

AB

CD

AB

CD

A B

C D
A B

C D

AB

CD

AB

CD

A B

C D
A B

C D

AB

CD

AB

CD

A B

C D
A B

C D

AB

CD

AB

CD

A B

C D
A B

C D

A B

C D
A B

C D

AB

CD

AB

CD

A B

C D
A B

C D

AB

CD

AB

CD

AB

CD

AB

CD

A B

C D
A B

C D

AB

CD

AB

CD

A B

C D
A B

C D

A B

C D
A B

C D

AB

CD

AB

CD

A B

C D
A B

C D

AB

CD

AB

CD

AB

CD

AB

CD

A B

C D
A B

C D

AB

CD

AB

CD

A B

C D
A B

C D

A B

C D
A B

C D

AB

CD

AB

CD

A B

C D
A B

C D

AB

CD

AB

CD

AB

CD

AB

CD

A B

C D
A B

C D

AB

CD

AB

CD

A B

C D
A B

C D

A B

C D
A B

C D

AB

CD

AB

CD

A B

C D
A B

C D

AB

CD

AB

CD

A B

C D
A B

C D

AB

CD

AB

CD

A B

C D
A B

C D

AB

CD

AB

CD

AB

CD

AB

CD

A B

C D
A B

C D

AB

CD

AB

CD

A B

C D
A B

C D

A B

C D
A B

C D

AB

CD

AB

CD

A B

C D
A B

C D

AB

CD

AB

CD

AB

CD

AB

CD

A B

C D
A B

C D

AB

CD

AB

CD

A B

C D
A B

C D

AB

CD

AB

CD

A B

C D
A B

C D

AB

CD

AB

CD

A B

C D
A B

C D

A B

C D
A B

C D

AB

CD

AB

CD

A B

C D
A B

C D

AB

CD

AB

CD

AB

CD

AB

CD

A B

C D
A B

C D

AB

CD

AB

CD

A B

C D
A B

C D

A B

C D
A B

C D

AB

CD

AB

CD

A B

C D
A B

C D

AB

CD

AB

CD

A B

C D
A B

C D

AB

CD

AB

CD

A B

C D
A B

C D

AB

CD

AB

CD

AB

CD

AB

CD

A B

C D
A B

C D

AB

CD

AB

CD

A B

C D
A B

C D

A B

C D
A B

C D

AB

CD

AB

CD

A B

C D
A B

C D

AB

CD

AB

CD

AB

CD

AB

CD

A B

C D
A B

C D

AB

CD

AB

CD

A B

C D
A B

C D

Figure 9. A conjecture as to the structure of �4.

SIGBOVIK 2014 Paper Review
Paper 9: A Simple Category-Theoretic ...

Reviewed by: Ed Morehouse (Carnegie Mellon University)

“A Simple Category-Theoretic Understanding of Category-Theoretic Diagrams” by “Stefan Muller”

is a work of incomprehensible abstract nonsense, and as such, constitutes a valuable contribution

to the field of category theory.

The article seems to be about understanding category theory through the graphical language of

commutative diagrams. I say, “seems to be”, because after gleaning this much from the abstract,

I decided to test (what I assume to be) the article’s central thesis by attempting to understand the

article itself by just looking at the pictures.

I infer that the article begins by describing the basic properties of morphisms in a category under

composition and identity – although it could be talking about something else entirely, it’s kind of

hard to say. The next bit seems like it might be about constructing a category whose objects are

themselves commutative diagrams and whose morphisms are affine transformations of such1.

The paper ends by constructing the “Morehouse-Sierpinski ω-category of commuting squares”

(let’s call it). Although “Muller” has (for all I know) now solved a long-standing open problem in

higher dimensional category theory by giving a finitary, constructive presentation of this important

category, there is still currently no type-theoretic interpretation (that I could think of in 5 min-

utes), nor are current LATEX diagram-description packages adequate for drawing ω-dimensional

commutative diagrams. I’ll just assume that “Muller” leaves these issues for future work.

Rating: I give this article the terminal rating in the co-op of the bicategory of journal reviews.

Confidence: What am I supposed to put here?

Why are the instructions not presented in picture-form, like the ones for assembling my bookshelf:

1note to self: ask “Muller” what the paper is really about, then reject it and steal his idea.

��
��)$)))

7�
� 7
� +�� �����

%� &�����#�	���$	�������� -�(��

-�� �$&	��

*�������. 5����$ ��
$ ��8

&� ����	�&���7 ' &�����$����$� ���� �������������	�

�	���$(-� 9�	

*�������. ��������������$ �	���	�$ ����
��$ �	���$ �
����
����$ �	�����$
������$ ���������$ �������$ �
���
�

1� ���	��� 	 &��������� '������� ���$��

��$���	� %�	�	 	�� &������ %�	�$��

*�������. �
	�$ ����	��$ �����
�	��

Cryptographically-sound Jokes

Jim McCann∗

TCHOW llc

What do you call a predatory fish endorsed by the NIST and NSA?

– A 6265a4a07968a7c1df16a61004fb7191177cafd4†!

Did you hear that the NSA is going into manufacturing collision-resistant form-molding undergar-
ments?

– Yeah, and they are changing their acronym to “NDA” for New

d4193f19ed359e122dbf51cc81e94145ca017bc8‡ Associates.

How do you tell a member of the cryptographic elite from the plebes?

– Ask them to pronounce b43c9a57aaf61f43e5021d305146d21473bded99§!

Why did the drug user choose 9b4e473e4de7949c4ab8e441a7faa5e2b295b469¶

over 4a82715423d654d61838e81060a4cdf1‖?

– Because they always take the bag with the strongest hash.

What do you call an strongly mixed certifcate of ownership?

– c387c982a132d05cbd5f88840aef2c8157740049∗∗, of course!

∗e-mail: ix@tchow.com
†SHA(‘rk’)
‡SHA(‘pewear’)
§SHA(‘bboleth’)
¶SHA(‘bag’)
‖MD5(‘bag’)

∗∗SHA(‘re’)

SIGBOVIK 2014 Paper Review
Paper 2: Cryptographically-sound Jokes

Emily Forney, The Humanities in General
Rating: 88 (strong accept)
Confidence: 1/4

I really enjoy that the answers are little and at the bottom. If they were larger and more noticeable

it might have spoiled the jokes which I totally figured out on my own. They also had really cute

little symbols to denote which joke they match up with. Not that I needed that.

I strongly accepted this as a collection of jokes that are both about cryptography and also written

in cryptography, you know, the language. That is completely in line with the title.

My confidence reflects my understanding of the topic: a 1, as in the best level of understanding

possible. Which is what I have.

We share jokes, we are friends now.

DOLLARCOIN: A CRYPTOCURRENCY WITH PROOF-OF-DOLLAR

PATRICK J. XIA

Abstract. We introduce DollarCoin, a cryptocurrency that uses a novel scheme, proof-
of-dollar, to achieve a consistent and secure blockchain. Security of the currency does not
require energy consumption or useless “make work” hash computations, as with extant proof-
of-work schemes, nor is the scheme vulnerable to verification monopolies by early adopters,
as is the case with proof-of-stake schemes. Security of the blockchain is instead regulated
by the relative scarcity of the United States Dollar. DollarCoin is the first cryptocurrency
that directly satisfies all three properties of currency: it is a medium of exchange, a unit of
account, and a store of value.

Keywords. cryptocurrency, bitcoin, dollars, bills, gamechanger, disrupt, awesome, super-
cool, thebest, hashtag

1. Introduction

Modern cryptocurrencies use a disincentive-based system to make changing the network
consensus economically difficult. In the case of Bitcoin, the specific scheme used is the
computation of a partial hash inversion. Since there are, to date, no breaks in the SHA-
256 cryptographic hash system, the best way to compute such a partial hash inversion is
by brute-forcing until one gets lucky and finds a difficult “proof of work”; specifically, a
extremely small (and therefore unlikely) output hash value. This secures the blockchain as
long as nobody controls a large share of the computation power of the network, but at the
cost of an arms race as people attempt to compute hashes as quickly as possible to increase
the chance of finding a “block.” Such Bitcoin “mining,” as it is called, requires a great deal
of energy expenditure to keep the network secure.
We propose skipping the middleman and providing direct proof-of-dollar with a blockchain

that consists of videos of burning US $1 notes. Each video will be unique as the hash of
every block header is required to be written on the dollar bill to be burnt; the block header
includes the previous block’s hash, which means that each block is forced to build on every
previous block, forming a valid blockchain.

2. Implementation

DollarCoin is implemented identically to Bitcoin with the exception of block format, as no
nonce or difficulty adjustment is required. The transaction format remains the exact same
so that people may use extant code to manually generate transactions for the DollarCoin
blockchain. The same system of double-SHA-256 hashes ensures cryptographic integrity of
the blockchain. A block contains these fields:

Thanks to Harry Quetzalcoatl Bovik.

Field Description Size (octets)

Magic Number Value always 0xD9B4BF00 (one more than Bitcoin) 4

Block size Number of bytes until end of block 4

Block header Consists of block header, described below 72

Transaction counter Variable length positive integer (Bitcoin VarInt) 1 - 9

Video link length Number of bytes required for the video link 2

Video link A (possibly transient) link to a video ?

Transactions The list of transactions ?

and the block header is specified as so:

Field Description Size (octets)

Version Block version information 4

Previous block Previous block’s hash value 32

Merkle root The hash of the Merkle tree of the transactions 32

Timestamp Timestamp recording when this block was created 4

All hashes are the double SHA-256 scheme as specified in Bitcoin. Block header hashes
are independent from the video link, allowing for video links to be changed in peer to peer
communications so that they are always up to date. Clients should (where “should” is defined
as the same as SHOULD in RFC 2119) cache videos locally to allow for videos to be served
on demand in case of inability to reach the original video link (which is probably hosted on
YouTube or something).

3. Test plan

We intend on writing the code correctly the first time.

4. “Challenges”, or: why our system is better

4.1. The 50% attack. One of the technological challenges that plagues Bitcoin is the 50%
attack: if one entity controls over 50% of hashpower, then this entity is able to subvert the
security of the blockchain by forcing double-spends through. For this sort of attack to work
with DollarCoin, one entity must control over 50% of circulating US $1 notes (or, probabilis-
tically speaking, a significant share thereof). This is surely impossible. Furthermore, the
difficulty of mining bitcoin incentivizes individual participants to conglomerate together in
mining collectives known as “mining pools” in order to mitigate the variance of the otherwise
random process of mining.
As of this writing, the top three Bitcoin mining collectives (one of which is simply an

organization with its own custom mining hardware) control over 50% of hashrate, which
means the security of the Bitcoin blockchain can be compromised by only three actors.
With DollarCoin, there is no randomness in generation. Its security is derived from $1 notes

accessible to every individual, eliminating the need for conglomeration and making it far less
susceptible to this sort of attack.

4.2. Orphan blocks. DollarCoin has no difficulty adjustment scheme because dollar bills
are the only totally useless piece of currency with an extant alternative (dollar coins). One
might surmise that the lack of difficulty adjustment could create a problem, as numerous
simultaneous contributions to the blockchain result in many orphan blocks (blocks that no
other blocks build upon).
This is not a problem. High numbers of orphan blocks will increase the relative scarcity

of DollarCoin and cause its value to go to the moon.

4.3. Transaction commitment times. If your merchant requires more confirmations of a
transaction than are currently present in the blockchain, simply burn more dollar bills.

4.4. Exchange from traditional currencies. DollarCoin has a built-in exchange in which
users essentially deposit their cash via smartphone. This is currently a one-way exchange,
but in the future we imagine banks will be happy to exchange your DollarCoin for dollar
coins.

4.5. Symbol for the currency.

5. Launch

The genesis block will be mined at SIGBOVIK 2014.

Towards a Completely Autonomous Vehicle

Nicholas Fudala Chester Francis

February 25, 2014

Abstract

Much progress has been made in fully-
autonomous road vehicles. Yet even the most
advanced self-driving cars must rely on a human
to manually select a destination, as well as mon-
itor the system in a support role. So needy. To
address these shortcomings, we propose a com-
pletely autonomous vehicle with two novel fea-
tures: (1) the ability to predict and enforce its
destination based on a passenger’s Web activity,
and (2) the trait of self-actualization and emo-
tional autonomy based on Maslow’s hierarchy of
needs. In theoretical testing, unexpected and oc-
casionally embarrassing results were observed.

1 Introduction

The field of road vehicle automation has gained
much attention with high-profile prototypes
from Google [1], Nissan [2], and others. Al-
though vehicles automation of throttle, brak-
ing, and steering are often referred to as “au-
tonomous vehicles”, others have argued that
the term is a misnomer, as these vehicles re-
quire a human to input a destination [3]. For
many, destination selection and input is a frus-
trating and unnecessary task, particularly given
the extensive location-desired data available for
any user. Beyond destination-selection, today’s

fully-autonomous vehicles remain heavily reliant
on human interaction. An operator must mon-
itor the system in the event of failure, provide
fuel, and perform basic maintenance. With an
autonomous vehicle’s delicate sensors and com-
plex software, these duties can only be described
as “high maintenance.” The vehicle itself can be
described as “needy” or “bitchy.”

In addition to the National Highway Safety
Administration (NHTSA) levels of road vehicle
automation [4], we propose additional require-
ments based on Maslow’s hierarchy of needs [5].
As shown in Table 1, they both have five lev-
els, which is nice. In this paper, we propose a
vehicle that meets the fourth level requirements
of both NHTSA (full self-driving) and Maslow
(self-actualization).

Level NHTSA [4] Maslow [5]

0 None Physiological
1 Function-specific Safety
2 Combined function Love/belonging
3 Limited self-driving Esteem
4 Full self-driving Self-actualization

Table 1: Levels of autonomy.

Destination Frequency

AVN Awards Show, Las Vegas, Nevada 57%
Cat Fanciers’ Association World Championship Cat Show, Novi, Michigan 25%
Google, Mountain View, California 10%
Continuous 2-4 mile circumference of user’s residence1 8%
1 In search of discreet local singles looking to f*ck.

Table 2: Projected destination frequency based on analysis of user (authors’) Web activity.

2 Automatic Destination Selec-
tion and Enforcement

We seek to remove this human decision-event
step through our destination prediction algo-
rithm, utilizing the most proprietary, embarrass-
ing, and presumably truly revealing aspects of a
user’s financial, location-based service, and In-
ternet browsing history, with weighted emphasis
on web browser privacy mode activity. The de-
tails of the algorithm are both conceptual, non-
existent, and far too complicated for this audi-
ence. See the results in Table 2 using the au-
thors’ joint data as test cases.

As we could never claim to be completely per-
fect, we have programmed an override function
that will allow the human to express their opin-
ion of where they want to go, no matter how
wrong and feeble-minded they may be. Time
lost due to manually over-riding the vehicle’s se-
lection will be discussed in the appendix of a
different, unrelated study.

The potential time savings from the Auto-
matic Intuitive Destination Selection System
(AIDSS) cannot be underestimated. Wait, I
mean, should not be overestimated. Look, we
estimate a savings of 3 seconds per person per
year (3000000 μs/per/yr), so don’t estimate any
higher or lower than that. Using motorist value-

of-time measurements of $21.46/hour in 2005 [6],
our algorithm should yield potential savings of
$0.017 per person per year.2

3 Emotional Autonomy

An important component of a completely au-
tonomous vehicle is emotional autonomy and
self-actualization. We believe that our com-
pletely autonomous vehicle, through advanced
emotional independence, will in fact yield the
most authentic human-vehicle relationship ever
devised. While this is obviously completely and
totally beneficial over the long-term, we have ex-
perienced many barriers to implementation dur-
ing initial testing. For example, the vehicle
seemed, for lack of a better term, rarely in the
“mood” for refueling, regardless of actual fuel
level status. Some progress was made through
compliments, outright flattery, and promises of
windshield wiper replacement. The vehicle also
refused all but expensive, premium fuel, this is
spite of manufacturer’s recommendation of 87
octane rating, and the researchers’ repeated in-
sistence that premium fuel is totally a scam. As
these arguments are clearly independent from
fact, they can be classified as nothing other than

2In 2005. Who knows how much that could be worth
now!

excessive emotion, insofar as an artificial agent
may experience. The vehicle’s occasional vague
suggestions of its potential to “do better” and
desire to backpack Europe confirms its strong
emotional autonomy. As such, we predict that
there could be some trivial, inconsequential ini-
tial complications during beta testing that we’re
sure to have figured out right after publication,
or Valentine’s Day.

Additional concerns have also arisen about
whether some vehicles may become too attached
to their occupants while others expressed appre-
hension that the vehicles may want to move on
and see other, more interesting, attractive, and
open-minded occupants with improved senses of
humor. We are developing, through early test-
ing, a system that allows the vehicle to go on
a nice drive—alone—through the hills so that
it can defragment and ensure a happy, healthy
vehicle-occupant relationship (VOR).

4 Conclusions

Early market research suggests deep penetra-
tion levels3 for AIDSS among all age groups
with exceptionally high demand found in the
lucrative male age 18-49 bracket. We fore-
see such great time savings per person per
decision-event based on AIDSS DEPPA that
the resulting VORs may become VORRs
(vehicle-occupant-romantic-relationships) and,
if widespread enough, the authors might finally
stop being ostracized in their communities.

References

[1] Burkhard Bilger. Auto correct: Has the self-
driving car at last arrived? The New Yorker,

3A real thing.

November 25, 2013.

[2] Alan Ohnsman. Nissan sets goal of introduc-
ing first self-driving cars by 2020. Bloomberg,
August 27, 2013.

[3] Steven Shladover. Using vehicle automa-
tion on freeways. 93rd Annual Meeting of
the Transportation Research Board, Wash-
ington, DC, January 2014.

[4] National Highway Traffic Safety Administra-
tion. Preliminary statement of policy con-
cerning automated vehicles. Technical Re-
port NHTSA 14-13, National Highway Traf-
fic Safety Administration, Washington DC,
May 2013.

[5] Abraham Maslow. A theory of human moti-
vation. Psychological Review, 50(4), 1943.

[6] Kenneth A. Small, Clifford Winston, and Jia
Yan. Uncovering the distribution of mo-
torists’ preferences for travel time and reli-
ability. Econometrica, 73(4):1367–1382, July
2005.

��
��))$)))

9
�	��$ ������$,
����$ 7������� ����
��� "���������	��

%� ����������	����# !������$�

'��* �����	�� 	�� -��8� 1��$8���(

*�������. ��	����
�	 � �	���	����$ ��
�	��	��$ ���
��
������$ ����	�	 � �	����
���$ 	�������

&� �������� �� "�� "��� '$$��� �� 4$$�� &������#

�	�:	 ������(�

*�������. ��� �	���$ ������ ������	��$ �	��
���	� ��	 ���	��$ 	���
��	�� �	��3 ��
 ��
� �
����$ ��
�	�� ���

1� ��	����# 5�� P�����7 ����������# ��� "�(� 	 ���6	6����� ������6���� 	
�/��
�	����	��$	� 46:�$� !�

-��� �� "��#����

*�������. ������� ������$ ����
�	�	��$ ��
�	��	��

(� 	 $�	����$	���� �� ���������#�

�	/�� �����	�

*�������. �	� ��� ��
�$ ��
��� 	����
� ��$ ��� �� �� ������� �	��

8� 1�	�, !� '������#, ��)������2

��� ��� ����� !! �����

*�������. ������
�	��
�
���
������$ ���	���$ ���0��
��
�� ���	��0��
�� �������

SIGBOVIK 2014

BELIEF-SUSTAINING INFERENCE∗

By Alex Reinhart and Jerzy Wieczorek

Department of Statistics, Carnegie Mellon University

Two major paradigms dominate modern statistics: frequentist inference,

which uses a likelihood function to objectively draw inferences about the

data; and Bayesian methods, which combine the likelihood function with a

prior distribution representing the user’s personal beliefs. Besides myriad

philosophical disputes, neither method accurately describes how ordinary

humans make inferences about data. Personal beliefs clearly color decision-

making, contrary to the prescription of frequentism, but many closely-held

beliefs do not meet the strict coherence requirements of Bayesian inference.

To remedy this problem, we propose belief-sustaining (BS) inference, which

makes no use of the data whatsoever, in order to satisfy what we call “the

principle of least embarrassment.” This is a much more accurate description

of human behavior. We believe this method should replace Bayesian and

frequentist inference for economic and public health reasons.

1. Introduction. Modern statistics is at a crossroads. Frequentist inference, the

original foundation of statistical inference, is under attack from many angles due

to the low quality of work making use of it (e.g. Ioannidis, 2005, 2008) and its

perceived philosophical paradoxes (Meehl, 1967). Using the likelihood function,

frequentist inference attempts to infer parameters from the data objectively and

with no reference to personal beliefs or subjectivity, making it very scientifically

appealing but practically error-prone.

On the other hand, Bayesian inference is presented as a comprehensive system

for the updating of personal beliefs on the basis of data. A rational Bayesian holds

a coherent system of beliefs and systematically updates them as new data arrives.

Computational difficulties rendered this method impractical until computers be-

came sufficiently powerful, and it is now a hot area of research in statistics despite

controversy about the appropriateness of subjectivity in science.

However, we believe that neither paradigm accurately represents how humans

reason about their beliefs. As demonstrated by Kahneman, Slovic and Tversky (1982),

most people do not hold coherent beliefs or update them as a Bayesian should, and the

mere existence of subjective prior beliefs rules out frequentism as an accurate model.

∗The authors acknowledge the funding and support of the Department of Statistics. The views
expressed are those of the authors and will probably upset the Department when they find out they

paid for this research.

MSC 2010 subject classifications: 62A01
Keywords and phrases: uninformative likelihood, embarrassment, cognitive dissonance, minimax

A. REINHART AND J. WIECZOREK

We believe both approaches are misguided. Rather than attempting to minimize

error, as in frequentism, or attempting to maintain a coherent set of subjective beliefs,

most people attempt to minimize embarrassment.
This insight leads to a new class of estimators we refer to as belief-sustaining

inference, or BS inference, which we shall discuss in the following sections. An im-
portant discovery is that embarrassment is minimized by ignoring the data altogether.

We also show that this approach has important public health benefits.

2. Quantifying embarrassment. The principle of minimum embarrassment

may be explained in terms of the theory of cognitive dissonance (Festinger, Riecken

and Schachter, 1956). The arrival of new data causes a conflict in the mind of the

scientist: he would like to believe he is a rational, intelligent person who holds correct

prior beliefs, but the data suggests he is wrong. This dissonance causes psychological

distress and can only be resolved by jettisoning one of the contradictory beliefs,

such as one’s self-esteem. Overwhelming or unimpeachable evidence can thus cause

severe embarrassment and psychological breakdown.

To minimize embarrassment, it is first necessary to define the mathematical

concept of embarrassment in terms of the change in a personal prior after data is

collected.

Definition 2.1. Let X be a random variable distributed according to some dis-
tribution function f (x; θ), where θ is an unknown parameter, π(θ) a personal belief
about that parameter, and π(θ |x) the estimate based on the data. The embarrassment
E is the distance between π(θ) and π(θ |x), as measured by the Kullback-Leibler
divergence:

(1) E =
∫

log

(
π(θ)

π(θ |x)

)
π(θ) dθ.

In Bayesian inference, the data (in the form of the likelihood p(x |θ)) is combined
with the prior π(θ) to produce a new best estimate of the parameter, using Bayes’

famous theorem:

(2) π(θ |x) =
p(x |θ) π(θ)∫
p(x |θ) π(θ) dθ

.

Many approaches are taken to choose the appropriate prior distribution, and a great

deal of literature deals with the elicitation of priors from subject-matter experts.

Other work attempts to eliminate subjectivity by choosing an “uninformative” or

“flat” prior (e.g. a constant function) which places no special importance on any
specific value of the parameter, letting the data decide instead.

In frequentist inference, the posterior estimate does not depend on π(θ), and can

be a point or interval estimate solely based on p(x |θ) (e.g. the value of θ which

BELIEF-SUSTAINING INFERENCE

maximizes p(x |θ)). The estimate usually has an asymptotic normal distribution.
But if we wish to minimize embarrassment, both approaches are wrong-headed, as

demonstrated by the following theorem.

Theorem 2.2. In Bayesian inference, the embarrassment E is minimized by
choosing an uninformative likelihood, also known as a flat likelihood.

Proof. Let p(x |θ) = 1. (p(x |θ) may differ on zero-measure sets in θ, with respect
to the Lebesgue measure.) Using eq. (2) and the fact that the probability density

π(θ) integrates to 1, we find that π(θ |x) = π(θ).

Substituting into eq. (1), we determine that

(3) E =
∫

log

(
π(θ)

π(θ)

)
π(θ) dθ = 0.

The Kullback-Leibler divergence is always nonnegative, so this embarrassment

is minimal. We leave the proof that this solution is unique as an exercise for the

reader. �

That is, we should not allow the data to place special importance on any specific

value of the parameter, as the data will not feel obligated to support the value most

beneficial to the scientist. It may even prove embarrassing, and this must not be

allowed. Belief-sustaining inference requires that we ignore the data instead of taking

this risk.

(Some readers may prefer to think of this in the minimax framework. Instead of

aiming for the minimax risk, we aim for the minimax embarrassment. The maximum

embarrassment would be a final parameter value entirely contrary to the prior, and

this embarrassment is minimized by never allowing the parameter estimates to

deviate from the prior.)

3. Belief-sustaining inference. Ordinarily, we would use this section to discuss

the benefits of belief-sustaining inference and properties of the data-free estimator.

However, any attempt to derive these properties could prove embarrassing.

Nonetheless, we will point out several important features of belief-sustaining

inference. Because the belief-sustaining estimator has zero variance, it gives narrower

confidence intervals than any other technique, and similarly is maximally efficient.

Statistical power calculations, usually so complex as to merit entire textbooks on the

subject, are made simple: the most cost-effective number of samples is always zero.

Computer clusters previously wasted obtaining Bayesian Markov Chain Monte Carlo

estimates can be put to more productive uses, for BS inference is computationally

efficient.

A. REINHART AND J. WIECZOREK

We must also recognize an important public health benefit of the method of

least embarrassment. Bayesian and frequentist inference would have us constantly

change our beliefs, subjecting us to cognitive dissonance and causing a great deal of

stress. This stress can lead to heart attacks, strokes, and other unpleasant outcomes:

according to the American Institute of Stress, stress costs Americans over $300

billion annually in medical, legal and productivity costs. Hence frequentist and

Bayesian inference impose a $1,000 per person tax on Americans who are already

economically struggling, while the adoption of embarrassment-free inference would

give an immediate 2% boost to the recovering American economy.

Considerable evidence thus suggests that evidence should be ignored altogether.

4. Conclusions. We have demonstrated that rational actors following the prin-

ciple of least embarrassment will rightly ignore new data, for fear it might cause

an embarrassing change of position. Ample sociological evidence demonstrates the

accuracy of this model; for a particularly high-profile series of experiments, watch

any Presidential debate or political talk show. The foundations of Bayesian and

frequentist inference are hence falsified, and public health concerns suggest they

should be banned entirely.

This work has impact on many questions of current interest. For example, sci-

entific publishing is currently under attack by open-access advocates who would

have us make publicly-funded research freely available to anyone who wishes to

read it, regardless of the risk of embarrassment and cognitive dissonance to the

unsophisticated reader. While professional scientists have spent years developing

defensive mechanisms to protect themselves from embarrassing results, the unsus-

pecting reader might be unintentionally exposed to an idea contradictory to their

naïve and unscientific beliefs. Our developments in embarrassment theory clearly

demonstrate the foolishness of such proposals.

Additionally, BS inference has important applications in many fields of study.

Economists, for instance, will be heartened by the requirement to never test theories

against empirical data. Previously computationally-intractable problems in other

fields are rendered trivial.

Further research is merited on several questions. For example, is it possible for

the weight of evidence to be so strong that not changing one’s opinion is more
embarrassing? Researchers are encouraged to send us their results, although we will

of course ignore them.

ACKNOWLEDGMENTS

We thank the anonymous reviewers for their undoubtedly insightful comments,

which of course we did not read.

BELIEF-SUSTAINING INFERENCE

REFERENCES

Festinger, L., Riecken, H. and Schachter, S. (1956). When Prophecy Fails: A Social and Psycho-
logical Study of a Modern Group That Predicted the Destruction of the World. Harper-Torchbooks.

Ioannidis, J. P. A. (2005). Why Most Published Research Findings Are False. PLOS Medicine 2 e124.
Ioannidis, J. P. A. (2008). Why Most Discovered True Associations Are Inflated. Epidemiology 19

640–648.

Kahneman, D., Slovic, P. and Tversky, A. (1982). Judgment under Uncertainty: Heuristics and
Biases. Cambridge University Press.

Meehl, P. E. (1967). Theory-testing in psychology and physics: A methodological paradox. Philosophy
of Science 34 103–115.

E-mail: areinhar@stat.cmu.edu

Solutions to Ley Line Access in Occult
Computing

Maija Mednieks

Carnegie Mellon Department of Occult Computing
mmednieks@gmail.com

Abstract

As the field of occult computing has developed, practitioners have run up against problems of power
consumption in the local aether. In the initial stages of this field, programs were simple enough to run off of
local aetherial energy; however, anything beyond the simplest computations require more mystical energy
to run efficiently. While it is possible to construct a program to perform every conjuration sequentially,
this increases running time exponentially,For better performance, ceremonies should be performed in more
energized areas, that being ley lines and intersections of ley lines. The problem arises that many established
centers of occult computing do not have easy access to ley lines. In retrospect this was a huge oversight.
This paper explores three possible solutions to this problem.

I. Lyne: Your friend with a Dead
Badger

The simplest solution, other than travelling to
a ley line oneself, has been to locate someone
claiming to be experienced in incantations, and
request that they execute your program, and
compensate them for their time and any mate-
rials required. This has been plagued by frauds
and charlatans, who either will not perform the
ritual required, or will use sub-standard com-
ponents. This lack of regulation has limited the
number of new enthusiasts of occult comput-
ing, either due to stories of these conmen, or
being taken in by one. Lyne, a startup founded
at one of the major intersections, Salt Lake City,
has decided to tackle the lack of accountability
in outsourcing incantations. One simply down-
loads their app, and send the specifications of
the rite they want performed to one of Lyne’s
experienced occult computing practitioners. To
ensure a program is cast properly, two crowd-
sourced thaumaturges are on hand to oversee
chanting, and anyone intentionally botching
a rite is promptly removed from their list of
employees. This is an excellent solution for
anyone starting out in the field, as it allows for
reliable, relatively inexpensive executions of
occult programs. The price increases sharply

as the length of a chant extends past seventy-
seven minutes, requires more than four dead
languages, involves or precisely three animal
sacrifices, so for more complicated ceremonies
this is not an ideal solution.

II. Occult Supercomputing

For those working with an academic institu-
tion, University of Amsterdam is opening an
occult supercomputing center. As the first in-
stallation of its kind, it is located at a major
European ley line nexus, and will have new,
state of the art computers with aethernet com-
ponents fully integrated with the computer. Its
opening next week will show how the univer-
sity is planning to handle components that are
consumed during computational rituals will
be handled, particularly during non-business
hours; however if this is seen as a success, simi-
lar centers are slated to open in North Carolina,
Hawaii, Australia, and Siberia. Accessing the
power contained in one of these centers is lim-
ited to members of registered occult computing
circles, and so is not a good solution to those
who are working in secret, or are currently

banished from the AOCM.1

III. Straight Up Playing God

Finally, researchers at Miskatonic University
are exploring ley line creation. This appears
promising as it would make access a simple
matter, even for hobbyists. Unfortunately this
is an entirely new undertaking, and after the
disappearance of Bolton, the neighboring fac-
tory town, many are protesting further re-

search in this matter. This has not deterred
Miskatonic’s researchers, if anything they are
frantically working to create an artificial ley
line before legal action is taken against their oc-
cult computing department. It is unclear what
effects a manmade ley line will have on the
global, or local, aetherial environment, as the
precise interactions of occult computation and
ley lines is still under investigation, and so it
will take observations of the ley line once cre-
ated to determine the side effects of toying with
forces we can barely begin to comprehend.

1The University of Amsterdam subscribes to the idea that time exists, even if this conflicts with indivual personal
beliefs, or reality itself.

SIGBOVIK 2014 Paper Review
Paper 13: Solutions to Ley Line Access in Occult

Emily Forney, Food Acquisition Department
Rating: 666 (weak accept)
Confidence: 3/4

This paper offers three fairly good solutions to the problem of not much key lime access in occult

computing. I underderstand that accessing key lime is not easy as occult computing becomes more

demanding of resources. But the paper has some good ideas, given the difficulty of the situation.

It suggests working with a startup which puts you in contact with a key lime baker (hopefully no

dead badger is called for in the recipe), collaborating with a university, or in fact making your own

key lime. However, the key lime is an ancient and well-kept recipe, so making your own seems

like the most dangerous option.

Measuring Your P-ness: determining how like a probability
distribution a given mathematical object is

John T. Longwood∗

Unemploy(ed|able)

Abstract

It is common in certain machine learning scenarios to hal-

lucinate a probability distribution from data using ad-hoc

methods. These distributions often do not actually need to

be true probability distributions but, rather, can simply ap-

proximate them to a degree suitable for the application at

hand. In this paper, I introduce a measure to quantify the

probability-likeness (hereafter, “P-ness”) of such ad-hoc ob-

jects. Among other advantages, being able to directly mea-

sure an object’s P-ness should allow for less guesswork and

speculation in procedure design.

CR Categories: . . [Blank]: Blankings—Blank

Keywords: lowbrow humour, probability, statistics, penis,

dong, stiffy, dick, tadger, prick, willy, john thomas, one-eyed

trouser snake, piece of pork, wife’s best friend, percy, cock,

oblique monty python references

1 Introduction

Probability distributions describe how random variables

vary. To wit, we say random variable X takes values in S
distributed in accord with distribution D (“X ∼ D”) if the

probability that X falls into a given subset s ⊆ S is given by

D(s)1.

X ∼ D ⇒ P(X ∈ s) = D(s) (1)

Of course, for this equation to make sense, D : 2S → R

must obey some simple principles:

2. When applied to an empty set, D should return zero,

and when applied to the whole of S, D should return

1 – because any random variable must take some value

(and can’t take no value)2.

3. D should never produce a value less than zero or larger

than one – those aren’t probabilities3.

4. When applied to disjoint sets, the sum of the values D
produces should be equivalent to that produced by ap-

∗ix@tchow.com
1In this paper, I will conflate the notion of a distribution and a probability

density/mass function. If this worries you, maybe you shouldn’t be reading

the proceedings SIGBOVIK. Seriously, can’t a person get a break here?
2Discussion of nullable probability and the “X ∼ D throw” syntax are

both beyond the scope of this document.
3Discussion of exceptional (im)probabilitiy is beyond the scope of this

document.

plying D to their union – since the probability of dis-

joint outcomes sums4.

Or, in plain English:

D(∅) = 0,D(S) = 1 (2)

∀s ⊆ 2S : D(s) ∈ [0, 1] (3)

∀s ⊆ 2S , t ⊆ 2S−s : D(s ∪ t) = D(s) +D(t) (4)

2 Background

The strict conditions on probability distributions are as old

as the science of gambling [Vegas 1502]. However, only

recently has it become faddish to relax these conditions.

In fact, my work appears concurrently with another, diver-

gent derivation of P-ness [Lax and Silly 2014]. Given their

weaker conditions, I suggest that Lax and Silly’s definition

be styled “soft P-ness”, in contrast to my “hard P-ness”.

However, for the remainder of this paper I will simply use

the term “P-ness”, as I think my hard P-ness is really the

only thing worth talking about.

3 Showing Off Our P-ness

My notion of probability-likeness is arrived at by transform-

ing each of the terms of the traditional definition presented

above (at the start of the paper (in the introduction (Sec-

tion 1))) into a term in an overall energy function. These

constituent terms are each normalized to range from 0-3000,
allowing the overall power level to reach 9000 (see [Kaje-

tokun 2006] for a fuller treatment).

Thus, my P-ness – designated σ5 – has three main attributes:

σ(D) ≡ σL(D) + σG(D) + σR(D) (5)

These constituent properties – Length, Girth, and Rigidity –

are described in more detail in the following subsections.

4Discussion of discordant probability and the field of over-unity statis-
tics is beyond the scope of this document.

5“... for obvious anatomical reasons that Waterhouse finds amusing at

this stage of his emotional development” – Neal Stephenson.

3.1 Length

Length measures how much D accords with principle (4) of

distributions by penalizing6 any failure in summation:

σL(D) ≡ 3000

1 +
∑

s∈2S ,t∈2S−s |D(s) +D(t)−D(s ∪ t)|
(6)

3.2 Girth

My P-ness’s girth is structured to reflect principle (3):

σG(D) ≡ max

(
0, 3000−

∑
s

−min(0,D(s)) + max(0,D(s)− 1)

)
(7)

(With apologies to the readers for any discomfort caused by

my substantial girth – it has been difficult finding LATEX to

appropriately contain it.)

3.3 Rigidity

Finally, rigidity reflects adherence to the most stringent prin-

ciple – (2):

σR(D) ≡
{

3000 if D follows principle (2)

0 otherwise
(8)

4 Examples

Having defined our measure, we think it is instructive

to more closely examine the P-nesses of several example

(pseudo-)distributions.

4.1 Example: An actual, totally 100% real,
probability distribution

As a first example, let us introduce this friendly little distri-

bution:

P(X = x) ≡
{

1 if x = 1
0 otherwise

Our friend is a simple distribution indeed, and it is clear that

the true properties that hold true of a true distribution truely

hold of it in truth.

We can represent this distribution by U , tabulated over 2{0,1}

as follows:

U(∅) ≡ 0
U({0}) ≡ 0
U({1}) ≡ 1

U({0, 1}) ≡ 1

6Hur hur hur. “Penal.” Hur hur hur hur.

Let’s get to know our friend a bit better by measuring the size

of their P-ness:

σL(U) = 3000

1 + 0
= 3000

σG(U) = 3000− 0 = 3000

σR(U) = 3000

Therefore:

σ(U) = 3000 + 3000 + 3000 = 9000

As expected, our friend has an impressive P-ness. I’m sure

we could do quite a lot with it.

4.2 Example: A Pseudo-Distribution

Now, consider the following somewhat flawed distribution

(also over {0, 1}):

F(∅) ≡ 0
F({0}) ≡ 0
F({1}) ≡ 0.5

F({0, 1}) ≡ −1.0

It disobeys every rule of probability distributions; but what

does it’s P-ness look like?

σL(F) =
3000

1 + 1.5 + 1.5
= 750

σG(F) = 3000− 1 = 2999

σR(F) = 0

Thus:

σ(F) = 750 + 2999 + 0 ≈ 0 +O(1)

This pseudo-distribution’s P-ness appears tragically flaccid.

4.3 Example: Time-varying distribution

My measure of probability-likeness is also suitable for the

summarization of the changes in pseudo-distributions over

time. For instance, in Figure 1 I show a picture of the P-ness

of a distribution during a recent evening’s experimentation.

As you can see, the probability-likeness of the pseudo-

distribution being measured reaches a climax around t = 3.0
after which its P-ness slowly deflates – during what I term

the “refractory period” – before building to a second climax

around t = 22.0 and deflating to quiescence.

Figure 1: “Clearly linear”7

5 P-ness Extensions

Intuitively, it seems like it shouldn’t so much be the size of

the P-ness that matters, but – rather – how you intend to use

the distribution being measured.

However, if situations arise in which this is not the case, it

might be worthwhile for researchers to investigate normal-

ization, canonicalization, and other methods of P-ness en-

largement.

It is also worth noting that my P-ness is a tool for practical –

rather than theoretical – statistics. Thus, a distribution with

a large P-ness may not necessarily be more fun to reason

about, e.g., in bed.

6 Conclusions

In the weeks and months and days and years and decades

and fortnights and minutes and seconds leading up to the

publication of this paper, I have found immense pleasure in

playing with my notion of probability-likeness. I hope that

you will derive as much enjoyment when inserting it into

your own research.

Acknowledgements

I’d like to thank my close collaborators, who – having had

the opportunity to play with various versions of my P-ness

in meetings, at presentations, and during lunches – urged me

to display it to the rest of the research community. Without

their hands-on attitude, my P-ness would not be nearly the

measure it is today.

7Yep, that’s an “in” joke. I figure it’s actually raising the level of the

humor in this paper, as pretty much everything else is either a dick joke or

self-deprecation.

References

KAJETOKUN, 2006. 9000!! NINE THOUSAAAAANDD!

https://www.youtube.com/watch?v=TBtpyeLxVkI.

LAX, L., AND SILLY, S. 2014. A weak notion of the

probability-like-ness of mathematical objects. Proceed-
ings of ACH SIGBOVIK. (fake).

VEGAS, L., 1502. Gambling. Nevada.

a clarification of terminology

David Renshaw

Figure 1: flow control

Figure 2: control floe

SIGBOVIK 2014 Paper Review
Paper 20: a clarification of terminology

Henrik Svensson, Svalbard University
Rating: 3 (accept)
Confidence: 2/4

This paper addresses an important point of terminological confusion. However, it ignores the issue

of floe control, the global reduction in ice championed by climate change deniers.

What, if anything, is epsilon?

Dr. Tom Murphy VII Ph.D.∗

1 April 2014

Abstract

We present a sample of the values of the programming
constant epsilon as found on the internet, for several
different programming languages and with a variety of
visualizations.

Keywords: computational archaeology, epsilon, very-small

and medium-small numbers

Introduction

Epsilon, the all-spelled-out version of ε, although prop-
erly “epsilon” because it’s the lowercase Greek letter,
though it’s not like I’m going to start my paper with a
lowercase letter even if it’s technically correct, since I
like to wait at least until the second or third letter of
the paper before the reader starts doubting that I can
write or spell or have shift-keys on my keyboard, any-
way epsilon is a mathematical symbol denoting a very
small number.

In mathematics, ε usually refers to the ε–δ formula-
tion of limits. This is pretty simple and a reminder
appears in Figure 1. This paper is not about that kind
of math.

In computing, ε is used in a much more general sense
to just mean some small number or error bound. For
example, two numbers are often considered equal if their
absolute difference is less than ε.

In IEEE-754 floating-point [2], the standard way that
computers represent “real numbers,” there is a specific
formal value called “machine epsilon”, or “unit round-
off”. It is the maximum (relative) amount of error from
a single rounding operation. This number is useful if
you want to do numerical programming and be careful
about what you’re doing.

∗Copyright c© 2013 the Regents of the Wikiplia Foundation.
Appears in SIGBOVIK 2013 with the careless accounting of the
Association for Computational Heresy; IEEEEEE! press, Verlag-
Verlag volume no. 0x40-2A. �0.00

Most programmers find this subject too tedious and
simply pick a number that seems pretty small. Thus in
practice, ε is an application-specific choice. Of well-
known “constants,” ε may be the least agreed-upon,
with values seen in the wild spanning more than 300
orders of magnitude. This paper explores the practical
values of ε in real software.

Figure 1: The curvy line is the function sin x
x , which is

undefined at 0. However, its limit as x approaches 0 is 1.
The ε–δ formulation of the limit is this: For any positive

choice of ε, there exists some δ such that sin(0+δ)
0+δ is less

than 1+ ε. In other words, for an arbirarily small error
(your choice), I can produce a delta from 0 (my choice)
that brings the result within the error of the limit. This
has nothing to do with the subject of the paper.

1 Methodology

Github. Github is the hub that contains all gits, ap-
proximately 10 million of them, as of the beginning of

2014. The site has search functionality, which “allowed”
me to scrape one hundred pages of results for queries
like "const double epsilon =" for various languages,
as long as I didn’t do it too fast. I scraped the program-
ming languages C, C++, C�, JavaScript, and Objec-
tive C. Each language has its own idiosyncracies about
how constants are defined, so I used one (or several) ap-
propriate to each language. For example, in JavaScript,
I looked for "var epsilon =". From these HTML files
I extracted all of the right-hand-side expressions, man-
ually excluded the ones that could not be evaluated (for
example because they depended on other symbols; see
Figure 2 for some examples), and then computed the
actual values for the rest. The source code to do the
scraping, extract the expressions, and tally the results
is available online.1

0.5/ELEC_REST_ENERGY

alpha/beta

4 / MULT32

exact_epsilon(true)

fmass_Epsilon * EPS_EXTRA

((Lj_Parameters*) parameters)->

scalar_traits<

EpsArray[prec]

hfwfn_->

fl.net_.opt_.epsilon

Tolerance

Figure 2: Other uninterpretable values of const

double epsilon in C. Who knows what these are sup-
posed to be?

SPEC benchmarks. Did you know that the SPEC
benchmarks [1] cost $800? Like they literally expect
me to pay them money to download the source code
so that I could grep for const double epsilon or test
my compiler out on that. Many are even based on open-
source software like Sphinx and POV-Ray. Ridiculous.
I refuse. Values of epsilon for the SPEC benchmarks do
not appear in Figure 3.

2 Results

The results of the analysis appear in several figures
which are interspersed haphazardly with this text. Each
figure presents the data in a different way, since this di-
versity in presentation should maximize the chance that

1In the Subversion repository at: https://sourceforge.net/

p/tom7misc/svn/HEAD/tree/trunk/epsilon/

Figure 3: $800? Fuck that!

one of the charts makes sense to you. The C program-
ming language has two numeric types that could rea-
sonably be used to represent ε: float and double. The
results for double appear in Figure 4 and for float in
Figure 5. C++ has those same two types, but I decided
arbitrarily to only look at double, which is in Figure 6.
Programmers in C� are very creative; their results are
presented in Figure 7. Objective C proved unpopular
for use of ε, its sparse data are in Figure 8. Finally, the
ineffable JavaScript has its results in Figure 9.

Figure 4: Values for const double epsilon in the C
programming language. In this chart, the blue (lower)
bars are the distinct values of epsilon seen. The verti-
cally aligned red (upper) bar is its count. Epsilon val-
ues are plotted on a logarithmic scale, where the mini-
mum observed value log(−708) is 303× 10−308, and the
largest log(1.609) is 5. Notes: One programmer used the
value -1e10, which is -10,000,000,000, probably mean-
ing 1e-10. This value was excluded because it has no
real logarithm.

Figure 5: Values for const float epsilon in the C
programming language. An x–y scatter plot where the
y coordinate is the count of the number of times that
specific value occurred, and the x coordinate is the log
of the value. Values take on a less extreme range than
with type double, naturally, ranging “only” 31 orders
of magnitude from 3.9× 10−31 to 0.

References

[1] John L. Henning. Spec cpu2006 benchmark descrip-
tions. SIGARCH Comput. Archit. News, 34(4):1–17,
September 2006.

[2] IEEE Task P754. ANSI/IEEE 754-1985, Standard
for Binary Floating-Point Arithmetic. IEEE, New
York, NY, USA, August 1985. Revised 1990.

Figure 6: Values for const double epsilon and
constexpr double epsilon in the C++ programming
language. The constexpr qualifier, a new feature of
C++11, is used very rarely (less than 1% of the time).
Notes: Five times, the programmer used 0.0 for epsilon,
which is possibly the only unjustifiable value. The value
pow(10,-13) is annotated in German “Genauigkeit-
sziel bei der Nullstellensuche,” or “Accuracy goal in the
search for zeros.”

Figure 7: Values for const double epsilon in the
C� programming language. In this chart, the left edge
of greyscale blocks on the left-facing flag represent
the cumulative value of the logarithm of all values of
epsilon seen so far. The right edge of the block with the
exact same greyscale value on the bottom-right flag is
the cumulative count of all definitions of epsilon so far.
It is easy to see that there are 1,000 total definitions, as
expected. Notes: One programmer defined epsilon as
1.0-18, that is, -17, probably meaning 1.0e-18. Four
used literal 0 for epsilon. Another defined epsilon as 1
/ 100000, which uses integer division and results again
in 0. Owing to the strength and creativity of C� devel-
opers, here we saw our largest value of epsilon so far,
700, and the declaration with the most significant digits:
0.0000000000000002220446049250313080847263336181640625.

Figure 8: Results for the language Objective C for
const double epsilon. Perhaps because Objective C
programmers do not use this idiom for defining con-
stants, or because it is only used to make iPhone games
where epsilon is not a concept of interest, there were
only 8 distinct values of epsilon observed. This allows
us to present the data completely in the chart. The x
axis is sin(ε) and the y axis is cos(f) where f is the
total number of times that the given value occurred in
the code.

Figure 9: Finally, JavaScript, the official language of
the Internet. In this “radar” plot, the data are ar-
ranged around a circle, as tuples of 〈log(ε), ε, f〉 where f
is the frequency of the value being observed. Numbers
in boxes ascend along the 0 deg axis, displaying each of
the multiples of 5 between 0 and 100, inclusive. Boxes
stack so that only part of the number is visible, but you
know what’s under there if you’ve looked at numbers
before. A spider-web-like network of interlacing lines
ascribe some additional meaning to some of the points
on the clock face. The smallest nonzero value observed
was 10−32. Notes: JavaScript programmers have the
highest tolerance for error of all languages tested, with
over 1,000 using epsilon of 0.5 or higher. One program-
mer used ε = 1024, and another 6,000,000!

��
��)))$)))

:���
�	��� 	� 4
���
�
�� #��
���
� 2
���
���

%� !���;<=<��	��� &������#7 ��� +��	���� &����	����	� ����� �� ���	$�	$�

1����	�
����� 	�� ���	� ����

*�������. ����� ���	��
� ������
�	��$ �
3��$ ����	����$ ����
���
��

&� ���	��� %�����# 	�� %�����# ��� ��'7
��/����# ��� ��	�� �� ���#	��#�	���$ ���#�	����# "	�#	#��

1���#	�# ��$���� 	�� ��6:	�� ����	�

*�������. ����
����
���$ ������	� �����
��	�� �
���
��$ ������	�$ �����
��	�� �
���
���$ �����
�	��$ ��������
���$ ��	�

1� ��($�, �����	�, 	�� ����� ������*�$	� "	�#	#��

�	�	� '����, -���� ���#�, 	�� �����	� �����	�

*�������. �
���
� �
���
�� �������	��$ �����
� �
���
���$ ��
���
�	��

(� +����������	��� ���#�	����#

��#�� '́� "�$��́�

*�������. ��	� ����$
����
�	� ������������$ ���� ��
	�

IRS-1040–based computing:
The untapped computational power of bureaucracy

William Gunther Brian Kell

April 1, 2014

Abstract

As the computational needs of science and industry increase, it is necessary to seek out and develop new
forms of computation. Current research is actively ongoing in such fields as molecular computing, biological
computation, quantum computing, atomtronics, and optical computing.

However, there is a potential computational platform that so far has not been fully appreciated. A folklore
theorem states that there are but two certainties in life: death and taxes. Given this guarantee of perpetuity, it is
surprising that the tax system has not been investigated as a means for computation. Companies such as H&R
Block, JacksonHewitt, and LibertyTax Service employ over 165,000 tax preparers, but thework they do is primarily
done between February and mid-April. For the rest of the year, these tax preparers collect dust in various closets
all over the country, where they are largely forgotten. We see this as a clear waste of computational resources that
can and should be put to a useful purpose.

To this end, we propose the development of an IRS-1040–based architecture as a computational platform.
Fortunately, the complexity of the United States tax code provides a ready-made foundation for computation. Tax
preparers execute programs that are written in a rich machine language, organized as tax forms. We show that
this system is capable of expressing any computable function, which means that all computational problems of
interest to science and industry can be encoded as tax forms. Tax preparers can then be kept working year round
to the benefit of society.

Inorder to facilitate this goal, we have implemented aC compiler for this platform, called irscc. Wewill demon-
strate the use of this compiler and the effectiveness of this new computational platform. We hope that this will
inspire further research in this promising area.

SIGBOVIK 2014 Paper Review
Paper 14: IRS-1040-based computing: The untap

Alvin P. Worthington III, Internal Revenue Service
Rating: 1 (reject)
Confidence: 4/4

This work is promising, but IRS-1040 has a number of shortcomings as a computation platform

which I’m worried cannot be overcome. A notable one is that one would seem to be unable to

compile 64-bit programs, as 264 is considerably larger than the United States GDP, and 64-bit

ints would overflow the computational ability of tax preparers. Despite these concerns, I would

recommend the paper be accepted were it not for the following paperwork errors in the submission:

1. Title is not properly in Title Case [1].

2. Title is too long (as is made clear in the header of this review)

3. Paper must have five or six keywords, and has only four.

4. Abstract contains 303 words, violating strict limit of 300.

I recommend that this submission be published as an abstract only, both because of the above

concerns and because that is all that was submitted.

[1] http://blog.apastyle.org/apastyle/2012/03/title-case-and-sentence-case-capitalization-in-apa-style.html

Towards Fooling and Foiling the NSA:
Surveying the State of Steganographic Programming Languages

Wolfgang Richter and Debjani Biswas
Carnegie Mellon University

Abstract

Trust is non-existent in a post-Snowden world where our

worst fears have become reality. The Internet is now a

surveillance state and every action taken with a digital de-

vice is likely spied upon in some form. Nation-states are de-

liberately tampering with and weakening cryptographic sys-

tems making eavesdropping trivial. Eve is very real, and her

resources are virtually unlimited. With cryptosystems cur-

rently under attack, what can normal computer scientists do

to hide their activities? They must turn to a close cousin

of cryptography: steganography. In this paper, we explore

programming languages which have steganographic value.

1 Introduction

If you are a computer scientist and you wish to transmit ex-

ecutable information in a secret fashion, cryptography is the

natural choice. We have strong asymmetric- and symmetric-

key cryptosystems [20, 23]. We even have theoretically un-

breakable cryptosystems [22]. However, powerful nation-

states are actively working to reduce the strength of practi-

cal implementations of cryptography [17, 18, 21, 26]. Un-

fortunately, attackers always win given enough time and re-

sources. With the revelations of Edward Snowden [24], what

can we do to securely share our executable messages?

If we can not trust cryptography, we must use a different

methodology altogether. In this paper we explore the po-

tential of steganographically [25] communicating executable

content. Of course, we could use standard steganographic

techniques such as embedding inside an image. But, this

software is not widely available and furthermore it could be

tampered with to reduce its effectiveness. No, instead we

search for a programming language solution. We desire a

programming language that is inherently steganographic.

Luckily, programming languages research literature is rife

with languages suitable for steganography. The technical

term they use for such languages is ‘esoteric’ [7]. In this

paper we survey esoteric languages searching for a practi-

cal choice facilitating the steganographic exchange of exe-

cutable information. Along the way, we discover the surpris-

ing result that a language with high steganographic value is

already deployed on billions of devices around the world.

2 Steganographic Value
In order to rank potential programming languages for their

steganographic value, we need a quantitative measure to

compare them in the steganographic space. For the deriva-

tion of this metric we turned to the arcane science of measure

theory developing a measure we term SHIT (Steganographic

Human-embeddable Interchangability Transformability).

Languages earn points in the SHIT scale with a very pre-

cise point-based system represented by this closed-form

expression—for the astute, this is a non-elementary1 func-

tion:

SHIT(L) = (100π −N)︸ ︷︷ ︸
S(L)

+105 ×B(N)︸ ︷︷ ︸
H(L)

+G log2(D)︸ ︷︷ ︸
I(L)

+ IL(L)︸ ︷︷ ︸
T (L)

Where L is the mathematical object representing the lan-

guage in question. This expression is duck-typed with type

coercion, meaning the mathematical object L becomes what

we need it to become. N is the number of reserved tokens,

G is Gauss’2 constant, and D is the number of devices in the

world currently deploying the language. S(L) is a measure of

how steganographic the syntax of a language is. S(L) is com-

puted by taking the number of reserved tokens and subtract-

ing them from π3 ∗100. H(L) is a measure of how effortless

the syntax can be embedded in human-readable documents.

H(L) is computed as the Beta function between the num-

ber of reserved tokens in a given language, and the number of

least reserved tokens across all languages. Intuitively, H(L)
uses the most embeddable language as a benchmark for all

other languages. The Beta function is computed as,

B(x) =
(x−1)!(Y −1)!

(x+Y −1)!

Here, x is the number of reserved tokens in a given lan-

guage, and Y is a constant equal to the number of least re-

served tokens across all languages. We multiply this com-

puted value by 105 so that its magnitude is appropriate in the

SHITmetric. I(L) is a harder relation to quantify, as we need

1Or is it now? It used to involve the integral of eex
!

2Gauss was secretly a fan of steganographic programming languages.
3π is Wolf’s favorite number.

to know how easy it would be to exchange the executable

information and have it understood on the other side. We

compute I(L) as the logarithm of the number of devices in

the world currently deploying language L times G—Gauss’

constant. T (L) is a measure of how easily a language can

transform between a human-readable format and its stegano-

graphic format. This is represented by the Dirac measure,

IL(L) =

{
1 L ∈ A
0 L /∈ A

Here, set A is the set of languages which are easily trans-

formable.

Perhaps more interesting are the properties which the

SHIT metric does not capture! For example, progress and

preservation, two key properties necessary for a useful ex-

pression of logic, are missing from the definition of SHIT.

In addition, Turing-completeness is also absent from the

definition of SHIT. This is because none of these proper-

ties are desired from a candidate steganographic language.

Indeed, these properties actively hurt the steganographic-

worthiness of a contender, and instead of capturing them in

the SHIT metric, we just leave them out altogether. If your

language defies logic, or its specification is impossible to

specify with logical consistency, then it is a good candidate

for becoming a widely usable steganographic language.

3 The Steganographic Space

In this section we sample the rich space of esoteric program-

ming languages. We examine tradeoffs between using sev-

eral of the most illustrative languages, and finish with an

overall comparison of 12 esoteric languages, but note that

there are at least 853 documented esoteric languages [6].

3.1 Obfuscated C

Obfuscated C [2] has long been regarded as an unreadable,

unmaintanable mess, and fairly easy to produce. These days

competitions like the International Obfuscated C Competi-

tion, running for 23 years as of 2014, celebrates this “di-

alect” of C. Entire PC emulators, ray tracers, and pretty

much anything computational is a potential target for obfus-

cated C. C would not qualify as an esoteric language, but

obfuscated C certainly does.

main(t){for(;;t++)putchar(((t<<1)ˆ
((t<<1)+(t>>7)&t>>12))|
t>>(4-(1ˆ7&(t>>19)))|t>>7);}

Figure 1: Obfuscated C code, actually outputs audio
samples [19].

Obfuscated C can be generated by obfuscation engines,

thus it can originally be expressed in more readable C code

and transformed into its obfuscated version. This principle

can be applied to any language, and in modern form appears

as minified JavaScript [11] or CSS designed to speed up the

loading of websites. Figure 1 shows an example obfuscated

C program that outputs bytes suitable for sampling by an au-

dio card. Called a bytebeat [19], this small program show-

cases how information—in this case audio—can be hidden

within an obfuscated C program. Obfuscated C is not ideal,

however, because it would be hard to embed or hide this text

within another file.

3.2 JSFuck

JSFuck [12] is a special dialect of JavaScript using only 6

characters from the original language. It relies on weird type

coercions changing values into strings, indexing into them

to construct new source text, and evaluating the new text. A

poem could hide a JSFuck program with clever use of its 6

characters. In addition, JavaScript interpreters exist on prac-

tically every connected Internet device making this solution

simple to deploy.

[][(![]+[])[+[]]+([![]]+[][[]])[+!+[]+[+
[]]]+(![]+[])[!+[]+!+[]]+(!![]+[])[+[]]+
(!![]+[])[!+[]+!+[]+!+[]]+(!![]+[])[+!+[
]]][([][(![]+[])[+[]]+([![]]+[][[]])[+!+
[]+[+[]]]+(![]+[])[!+[]+!+[]]+(!![]+[])[
+[]]+(!![]+[])[!+[]+!+[]+!+[]]+(!![]+[])
[+!+[]]]+[])[!+[]+!+[]+!+[]]+(!![]+[][(!
[]+[])[+[]]+([![]]+[][[]])[+!+[]+[+[]]]+
(![]+[])[!+[]+!+[]]+(!![]+[])[+[]]+(!![]
+[])[!+[]+!+[]+!+[]]+(!![]+[])[+!+[]]])[
+!+[]+[+[]]]+([][[]]+[])[+!+[]]+(![]+[])
[!+[]+!+[]+!+[]]+(!![]+[])[+[]]+(!![]+[]
)[+!+[]]+([][[]]+[])[+[]]+([][(![]+[])[+
[]]+([![]]+[][[]])[+!+[]+[+[]]]+(![]+[])
[!+[]+!+[]]+(!![]+[])[+[]]+(!![]+[])[!+[
]+!+[]+!+[]]+(!![]+[])[+!+[]]]+[])[!+[]+
!+[]+!+[]]+(!![]+[])[+[]]+(!![]+[][(![]+
[])[+[]]+([![]]+[][[]])[+!+[]+[+[]]]+(![
]+[])[!+[]+!+[]]+(!![]+[])[+[]]+(!![]+[]
)[!+[]+!+[]+!+[]]+(!![]+[])[+!+[]]])[+!+

Figure 2: JSFuck code, first 20 lines excerpted.

However, as shown in Figure 2, JSFuck is very verbose.

It greatly expands program text. This makes it desirable to

use a prose generator, not unlike those used to generate fake

research papers, and then embed the program into the much

larger body of text.

3.3 Brainfuck
Brainfuck [5], which inspired the naming for JSFuck, is a

well known esoteric programming language with just 8 char-

acters forming the reserved set of tokens. Exactly like JS-

Fuck, Brainfuck would have to be embedded within text as

its punctuation.

++++++++[>++++[>++>+++>+++>+<<<<-]>+>+>-
>>+[<]<-]>>.>---.+++++++..+++.>>.<-.<.++
+.------.--------.>>+.>++.

Figure 3: Brainfuck “Hello World!” source.

An example of a Brainfuck program which prints out

“Hello World!” is shown in Figure 3. First, we notice it is

much more compact than a similar program in JSFuck. Sec-

ond, it is incredibly dense and difficult to follow. Its com-

pactness makes it a good candidate for steganography, but

its characters make it complicated to embed.

3.4 LOLCODE
LOLCODE [13] is a programming language born out of the

depths of the lolcat-filled Internet. Tied to memes and pop-

ular Internet culture, LOLCODE is difficult to read and ver-

bose. It also inherits lots of spelling mistakes from the Inter-

net denizens that birthed it.

HAI 1.2
CAN HAS STDIO?
VISIBLE "HAI WORLD!!!1!"

KTHXBYE

Figure 4: LOLCODE “HAI WORLD!!!1!” source.

An example “HAI WORLD!!!1!” program is shown in

Figure 4. As described, LOLCODE is more verbose than

an alternative like Brainfuck, but it could clearly be obfus-

cated within the depths of the lolcat-verse and hidden inside

online forum posts. The NSA has a lot more communities it

needs to comb through!

3.5 Doge
Popularized by the online website Reddit, Doge [15] as a

meme has come a long way including its own cryptocurrency

and programming language. Doge code is very similar to

LOLCODE, except it appears to be missing a formal specifi-

cation of the language only living within a source repository

maintained by Justin Meza.

The “hello world” program shown in Figure 5 shows

a body very similar to LOLCODE. However, this source

is tailored to the Doge community and would be suitable

for insertion into any Doge forum. This language, along

so main
such "hello world"
wow

Figure 5: Doge “hello world” source.

with LOLCODE, illustrates how it is possible to create

community-specific languages (CSLs) made out of the very

idioms and anachronisms of the communities within which

they implement steganography. Secret, executable programs

could, quite literally, be hiding anywhere in plain sight!

3.6 Unlambda
Functional programmers rejoice! You are not exempt

from the esoteric language wars. Here we consider Un-

lambda [14], a functional esoteric programming language.

Its compactness, reminiscent of Brainfuck, is rather read-

able for a functional programmer familiar with the Lambda

calculus.

‘r‘‘‘‘‘‘‘‘‘‘‘.H.e.l.l.o. .w.o.r.l.di

Figure 6: Unlambda “Hello world” source.

Unlambda has a clear functional style as shown in Fig-

ure 6. Unlambda could be easily hidden within normal prose,

or within functional programming literature. Honestly, any-

thing could be hidden in there, so we suggest the NSA just

steer clear. They’re too intelligent to be terrorists anyways,

let them play in their own world.

3.7 Befunge
The fungeoids are an interesting family of esoteric languages

with roots in Befunge [4]. The premise of Befunge is that

instead of a linear space with a single program counter, pro-

grams execute in a two-dimensional space with two “pro-

gram counters.” The general case of fungeoids extends this

notion to n-dimensional executable content.

> v
v ,,,,,"Hello"<
>48*, v
v,,,,,,"World!"<
>25*,@

Figure 7: Befunge “Hello World!” source.

Although generally not as easily embeddable, Befunge

code as shown in Figure 7 is compact. It is essentially a

more complicated Brainfuck with messages that can be hid-

den within its multi-dimensional execution space. Even if

partially reconstructed, it could be very difficult to interpret

its original meaning.

3.8 Whitespace
Whitespace [1] is the easiest language to embed within nor-

mal prose, as its tokens consist entirely of whitespace. For

example, a specially crafted poem with strange positioning

of the stanzas and lines could easily embed a Whitespace

program in its margins.

.
� � .
� � �.
� � � �.
� � � .
� � � � .
� � � �.
� � � � .
� � � .
� � � � � �.
� � � �.
� � � .
� � � � .
� .
� � � � �.
� � � � � �.
� � � .
� � � � � �.
� � � �.
� � � � .

Figure 8: Whitespace “Hello World!” source, first 20
lines excerpted (periods added for figure display).

Especially when in printed form, as Figure 8 shows,

Whitespace is generally undetectable executable code. Even

better, its interpreter and language specification ignore non-

whitespace characters. This means, unmodified, source doc-

uments such a poems can be interpreted by a Whitespace

interpreter! Of course, this leaves attacks against it easier—

just run every document through a Whitespace interpreter

first. However, an easy defense against this is to randomize

the positions of the Whitespace tokens within the document.

3.9 Piet
Piet [9] is an interesting language that doesn’t fit the

paradigm presented here so far. Piet is a visual program-

ming language. It follows contiguous blocks of color in an

image and executes instructions based on color.

Figure 9 shows an example “Hello World” Piet program.

This program could be embedded within the pixels of any

image. As long as the “entry” pixel is known, a Piet pro-

gram can start anywhere in an image, jump around, and the

Figure 9: Piet “Hello World” source.

instructions can be as wide as the embedder desires. Just

a handful of pixels could be used to implement Piet pro-

grams. If pixels exist already within an image, which could

be searched for, only the entry pixel may need modification.

Thus, Piet has very high steganographic value.

3.10 Malbolge
Malbolge [8] is named after the eighth level of hell in

Dante’s Inferno, and it is designed to be impossible to pro-

gram with. As it executes instructions, the program counter

jumps based on the content of the memory address pointed to

by the current program counter added to the current position

modulo 94. In addition, it encrypts every instruction it ran

before—thus, even returning to the same position in the code

yields different behavior (there is no built-in decryption).

(=<‘#9]˜6ZY32Vx/4Rs+0No-&Jk)"Fh}|Bcy?‘=*
z]Kw%oG4UUS0/@-ejc(:’8dc

Figure 10: Malbolge “Hello World” source.

An example Malbolge program is shown in Figure 10.

Malbolge code generally ranges over all byte values, al-

though when loaded each value must be one of 8 values

module 94. Malbolge can thus be embedded as long as a

program can be constructed within these constraints, which

is difficult—the first Malbolge program was created by a

search algorithm! Although incredibly difficult to work

with, an esoteric language designed like Malbolge allowing

any byte as input and not doing weird jumps and encryption

could become the ultimate steganographic language.

3.11 Chef
Chef [16] is a CSL which targets cooking. All executable

content is phrased in the form of a recipe, and individual

recipes can be “cooked” separately and combined (like func-

tion calls). The list of ingredients forms a list of variables

and their initial values.

Figure 11 shows a sample Chef program for “Hello

World!” Each ingredient encodes a Unicode character as its

Hello World Souffle.

This recipe prints the immortal words "H
ello world!", in a basically brute force
way. It also makes a lot of food for on

e person.

Ingredients.
72 g haricot beans
101 eggs
108 g lard
111 cups oil
32 zucchinis
119 ml water
114 g red salmon
100 g dijon mustard
33 potatoes

Method.
Put potatoes into the mixing bowl. Put d

Figure 11: Chef “Hello world!” source, first 20 lines ex-
cerpted.

value. Chef code could easily hide within real recipes. In

fact, one could end up with both a delicious meal and a

clandestine message with a Chef program! For the cooking

world, Chef is an ideal steganographic candidate.

3.12 Another Pi Language
Another Pi Language [3] leverages the conjectured normal-
ity of the mathematical constant Pi to express executable

content. If Pi is normal, as conjectured, then within its infi-

nite sequence of digits will lie every possible combination of

numbers. Essentially, all expressible programs in all source

languages should be hidden within Pi.

(389839504, 3)

Figure 12: Another Pi Language “CMU” string source.

Figure 12 shows how incredibly compact Another Pi Lan-

guage programs are—they are just two numbers! This is be-

cause the body of their executable content is hidden within

the digits of Pi itself. The numbers denote an index into Pi,

and a count of the number of bytes to interpret as program

source.

3.13 Steganographic Shootout
Figure 13 shows the results of evaluating 12 esoteric pro-

gramming languages with our SHIT metric. Figure 14 is a

bit easier to digest showing the overall SHIT score for each

Figure 13: Comparison of all 12 esoteric languages in the
4D-SHIT space.

Figure 14: Comparison of all 12 esoteric languages in the
1D-SHIT space.

language. We draw a horizontal line at 350 to distinguish be-

tween the candidate languages with SHIT scores reaching a

level we feel makes them usable in steganographic applica-

tions. We can see that the top 3 candidates for a stegano-

graphic language, in order, are: (1) Another Pi Language,

(2) Whitespace, and (3) JSFuck. They each scored high be-

cause of the ease with which they could be embedded within

other files and documents, and JSFuck was also boosted by

its interpreter already deployed worldwide. Other languages

have too esoteric syntax, or too many reserved keywords

making them only suitable for community-specific types of

documents. A language like Malbolge, fixing its difficult to

program nature, and enabling the use of more common char-

acters, could probably outscore even Whitespace. But, alas,

to our knowledge such a language does not exist (yet!).

4 Robustness and Future Work
Robustness: In the face of failing cryptosystems—whether

by accident, from malpractice, or by malicious intent—

the world must turn to new measures to defend from

government-sponsored advanced persistent threats [21, 26].

There is no one left to trust, indeed no thing left to trust.

Cryptography itself has become a target for government en-

tities hellbent on a quest for omniscience.

Steganography may be the only option left. If you never

let on that you are communicating secrets, you will never

be scrutinized. Even if you are, steganography protects the

messages by masking their existence. It has been used suc-

cessfully for millenia. The robustness of the techniques men-

tioned in this paper rely on the mechanisms of their use.

Properly used, executable messages could lie hidden within

forums. They can be customized and tailored to their specific

communities—for example by using LOLCODE, Doge, or

Chef. They can be embedded into the whitespace or punc-

tuation of documents—for example Whitespace, or JSFuck.

There are no limits to hiding executable content.

Future Work: However, their weakness lies in their de-

ployment. The sprinkling of executable content amongst

common text must appear normal within that text, and

should not follow patterns. Insight for how to construct

such tools comes from the Linux command-line utility

steghide [10]. If we follow the principles laid out in

that tool, executable messages will be robust against any at-

tacker. We propose that now is the time to construct such

tools, along with matching esoteric programming languages

designed for steganography. We look forward to future SIG-

BOVIK submissions advancing the state-of-the-art. It is time

to look beyond cryptography.

5 Conclusion
We are lucky to live in a world with a widely deployed lan-

guage that has high steganographic value. With the advent

of JSFuck, it is now trivial to hide messages with only 6

characters while still being valid JavaScript! JavaScript [11]

resides within practically every Internet-connected device

worldwide. There are billions of devices which can inter-

pret and execute JavaScript source. In addition, interpreters

for other esoteric languages are being created for JavaScript.

Not only is it now possible to send arbitrarily obfuscated

executable messages via any esoteric language one desires,

it is also reasonable to expect target devices to interpret these

messages without issue. All one has to do is feed them to a

JavaScript interpreter. Of course, this widespread availabil-

ity is also an Achille’s heel of sorts. Attackers could just

feed messages to JavaScript interpreters. Robust deploy-

ment methods masking the presence of executable content

within normal documents mitigates this risk. Although these

mechanisms need development, the future looks bright for

steganography, and SIGBOVIK.

References
[1] E. Brady. Whitespace, May 2004. URL http://compsoc.dur.

ac.uk/whitespace/.

[2] L. Broukhis, S. Cooper, and L. C. Noll. The international obfuscated

c code contest, March 2014. URL http://www.ioccc.org/
index.html.

[3] Esolang. Another pi language - esolang, March 2014. URL http:
//esolangs.org/wiki/Another_Pi_Language.

[4] Esolang. Befunge - esolang, March 2014. URL http://
esolangs.org/wiki/Befunge.

[5] Esolang. Brainfuck - esolang, March 2014. URL http://
esolangs.org/wiki/Brainfuck.

[6] Esolang. Language list - esolang, March 2014. URL http://
esolangs.org/wiki/Language_list.

[7] Esolang. Esoteric programming language, March 2014. URL

http://esolangs.org/wiki/Esoteric_programming_
language.

[8] Esolang. Malbolge - esolang, March 2014. URL http://
esolangs.org/wiki/Malbolge.

[9] Esolang. Piet - esolang, March 2014. URL http://esolangs.
org/wiki/Piet.

[10] S. Hetzl. Steghide, October 2003. URL http://steghide.
sourceforge.net/.

[11] E. International. Ecma-262: Ecmascript language specification. Tech-

nical report, Ecma International, http://goo.gl/yxipF, 2011.

[12] M. Kleppe. Jsfuck - write any javascript with 6 characters: []()!, Jan-

uary 2010. URL http://www.jsfuck.com/#.

[13] LOLCODE. Lolcode + lci, March 2014. URL http://lolcode.
org/.

[14] D. Madore. The unlambda programming language, August

2003. URL http://www.madore.org/˜david/programs/
unlambda/.

[15] J. J. Meza. justinmeza/doge, March 2014. URL https://
github.com/justinmeza/doge.

[16] D. Morgan-Mar. Dm’s esoteric programming languages - chef, March

2011. URL http://www.dangermouse.net/esoteric/
chef.html.

[17] B. Schneier. The nsa is breaking most encryption on the internet,

September 2013. URL https://www.schneier.com/blog/
archives/2013/09/the_nsa_is_brea.html.

[18] B. Schneier. The nsa’s cryptographic capabilities, Septem-

ber 2013. URL https://www.schneier.com/blog/
archives/2013/09/the_nsas_crypto_1.html.

[19] K. J. Sitaker. Bytebeat - kragen, March 2014. URL http://
canonical.org/˜kragen/bytebeat/.

[20] Wikipedia. Advanced encryption standard, March 2014.

URL http://en.wikipedia.org/wiki/Advanced_
Encryption_Standard.

[21] Wikipedia. Advanced persistent threat, March 2014.

URL http://en.wikipedia.org/wiki/Advanced_
persistent_threat.

[22] Wikipedia. One-time pad, March 2014. URL http://en.
wikipedia.org/wiki/One-time_pad.

[23] Wikipedia. Rsa (cryptosystem), March 2014. URL http://en.
wikipedia.org/wiki/RSA_(cryptosystem).

[24] Wikipedia. Edward snowden, March 2014. URL http://en.
wikipedia.org/wiki/Edward_Snowden#Revelations.

[25] Wikipedia. Steganography, March 2014. URL http://en.
wikipedia.org/wiki/Steganography.

[26] Wikipedia. Tailored access operations, March 2014. URL

http://en.wikipedia.org/wiki/Tailored_Access_
Operations.

Pikachu, Domosaur, and other Monolexical Languages

Sarah Allen, Jesse Dodge, Domosaur

March 2014

Abstract

Many complicated techniques have been introduced to aid in computer processing of natural lan-
guages. While this is generally considered to be a difficult task, many approaches have ignored the
prevalent class of monolexical languages, or languages that consist of a single word. Here we present
some desirable properties of such languages and apply techniques for common NLP tasks.

1 Introduction

Current natural language processing techniques address many problems in human-centric languages, but
the community as a whole has ignored the class of monolexical languages, of which there are many. Our
goal is to highlight some salient properties of these languages in hopes of expanding the capabilities
of modern NLP software. While traditional approaches have assumed high language complexity, we
show in Section 2 that this class of languages is in fact easily recognizable by a computer using existing
techniques. We also extend current techniques to include monolexical languages in Section 3. Finally, in
Section 4, we illustrate the experimental results of some techniques applied to these languages.

1.1 Motivation

Most NLP models are needlessly complicated, thus creating a headache for those who implement them.
While these overwrought techniques appear to yield good results for languages such as French, English,
and Chinese, the community has largely ignored the equally important class of monolexical languages.
Monolexical languages have been recognized in many natural settings. A few well known examples include
the languages spoken by Pokémon, Nyan Cat, and Timmy Burch of South Park, Colorado (see Figure 1).
In addition to their prevalence, monolexical languages have many desirable properties which we discuss
in subsequent sections.

(a) Pikachu (b) Nyan Cat (c) TIMMAY!!!!!!

Figure 1: Examples of creatures with monolexical languages

1.2 Definition of a Monolexical Language

A monolexical language is made up of sentences all using a single word only, which we call the basis
of the language. The sentences may contain punctuation characters, but we consider only terminal
punctuation, which is used to delimit the sentences. Depending on the language, the basis may appear
either capitalized or in all lowercase, but we also consider capitalization to be irrelevant, so all processing
is done by changing all strings to lowercase. Therefore, the formal definition of the set of all valid
sentences (without punctuation) is

∞⋃

i=0

{w(w)i},

where w is the basis of the language.

Figure 2: Domosaur in his natural habitat

In many cases, the basis of the language is eponymous with the creature that speaks it. One such
example is Domosaur, a language spoken by the creature Domosaur. Domosaur is a gentle creature who
was hatched from an egg, eats predominantly beef and potato stew, and is always seen in a dinosaur
costume. He is also known to become flatulent when he is nervous[1]. He currently resides in the Gates
building in Pittsburgh, PA. A photograph of Domosaur is depicted in Figure 2. His website can be found
at http://www.cs.cmu.edu/~srallen/domosaur.html.

2 Monolexical Languages are Regular

Many attempts have been made to characterize natural languages using formalisms such as context-free
grammars. For most traditional languages, these attempts have been largely unsuccessful due to the
complexity of the language. In this section, we demonstrate that monolexical languages are not only
context free, but also regular. From Section 1.2, it is clear that all text in a monolexical language with
basis string b can be expressed using the regular expression

(b(b)∗(. ∪ ! ∪ ?))
∗
(b(b)∗(. ∪ ! ∪ ?))

Now it remains to show that {b} is in fact regular. To illustrate this, we construct a deterministic
finite automaton for the basis of one example language, namely nyan. The DFA for {nyan} is shown
in Figure 3. The proof of its correctness is left as an exercise to the reader. This construction can be
trivially extended for other basis words.

q0start q1 q2 q3 q4

q5 q6 q7 q8

q10 q11 q12 q13

n

y

a

n

y

a

a

n

y
n

n

n, y, a

n, y

a

n, y, a

y a

n, y, a

n, y, a

n

y

a

y, a

y

n

a

n, y, a

Figure 3: DFA for the language {nyan}. An accepting path is shown in red.

3 Applying NLP Tools to Monolexical Languages

In this section, we cover the application of some common natural language processing (NLP) techniques
to problems arising in monolexical languages.

3.1 Machine Translation

A great success of modern NLP has been machine translation, the automatic translation from one lan-
guage to another. While previous work, such as Google translate, has been popular, we have found
that translating both to and from a language to be unnecessarily complicated. With a simple relaxation
of the problem, we have developed an algorithim for the holy grail of machine translation: Universal
translation.

3.1.1 One-Way Machine Translation

Our algorithm translates from any language to a given monolexical language. It follows a two-stage
approach, outlined below.

1. Word alignment All words in the source language translate to the basis word in the target. This
generates a sentence in the monolexical language, S. Unfortunately, it is very difficult to translate
from monolexical languages to more traditional languages, as many words in monolexical languages
have ambiguous meanings.

2. Reordering In monolexical languages, there is an observed phenomena that all sentences are ordered
lexicographically. Therefore, after generating S, we sort the tokens in S. Our approach is as follows:

(a) Generate all possible permutations of the set of strings in S.

(b) Score each generated permutation πi with the percentage of words in πi that appear in sorted
order

(c) Return argmax
πi∈Π

Score(πi)

Thus it is possible to perform one-way translation with 100% accuracy in O(n ·n!) time. Future work
could include improvement of the running time for this algorithm.

3.2 Sentiment Lexicon

The task of sentiment analysis is both vital and difficult. This well-studied problem has been the subject
of much research. For each monolexical language, and all possible sentiments, we present an algorithm
to generate a complete sentiment lexicon.

1. For each sentiment possible, add an entry to the lexicon mapping from the basis word to the
sentiment.

This generates a complete sentiment lexicon, which maps from each word in the language to its sentiment.

4 Experiments

4.1 Wordcloud

Wordclouds have become a popular way to represent the relative frequency of words in a set of strings.
They have also become a growing topic in computer visualization research. Using a large corpus of
available text, we have constructed a word cloud that represents the relative frequency of various words
in the language Domosaur. The word cloud is depicted in Figure 4

Figure 4: Word Cloud for Domosaur

4.2 Topic Model

Topic models have been used for a number of purposes in NLP, from text classification to semantic
analysis. In a typical setup, a topic model learns a set of topics, where a topic is a set of semantically
related words. Documents can be modeled as being generated from one or more topics. For example, a
document about Pokémon could be generated from a topic containing words such as catch and pokéball.
Learning a topic model can be somewhat involved, and takes a non-trivial amount of time. When dealing
with monolexical languages, however, a topic model becomes much simpler and loses much of its needless
complexity. In this work, we learned a topic model for an example monolexical language, and present
the topics in Figure 5.

TIMMY

Figure 5: A topic for the language TIMMY

5 Conclusion

In this paper we have described how an array of well-studied NLP tools can be adapted for this important
class of languages. It is our hope that the techniques and results introduced in this work will create a
foundation for many subsequent systems and improvements to existing NLP software. Future work for
this field includes extensions to similar languages, such as oligolexical languages and empty languages.

References

[1] Wikipedia. Domo(NHK). https://en.wikipedia.org/wiki/Domo_(NHK), 2014.

CHICKEN 2014 Chicken Chicken
Chicken 10: Chicken, Chicken, chicken

chicken Chicken Chicken

C. Chicken, Chicken Chicken Chicken
Chicken: 3 (chicken chicken)
Chicken: 4/4

Chicken chicken chicken chicken chicken chicken, chicken chicken chicken chicken chicken,

chicken chicken chicken chicken-chicken chicken chicken chicken chicken chicken chicken chicken

“chicken chicken chicken chicken chicken chicken chicken.” Chicken, chicken chicken chicken

chicken chicken chicken chicken chicken chicken chicken-chicken chicken chicken. Chicken

chicken chicken chicken chicken chicken? Chicken chicken chicken chicken chicken chicken

chicken chicken chicken chicken chicken chicken chicken, chicken chicken chicken chicken chicken

chicken chicken-chicken chicken chicken chicken chicken?

Chicken chicken chicken chicken, chicken chicken chicken chicken chicken chicken Chicken. 3;

chicken chicken chicken chicken chicken CHICKEN chicken {chicken}, chicken chicken chicken
chicken chicken chicken chicken chicken chicken chicken chicken �∈ {chicken}.

Unit-Test-Based Programming
Miguel Á. Lechón∗

April 1, 2014

Adding is when two plus two equals four.
Popular Saying

Abstract
This article introduces a new subparadigm of
Declarative Programming, in which code is
generated from a description of its intended
behavior, specified through unit tests. Yes,
for realsies1.

Some sensitive readers may be taken aback
by the conceptual flawlessness as well as by
the unbeatable simplicity of the method ex-
posed here. Please, stop reading now if you
are prone to emotional instability in the face
of plain, unadulterated beauty.

1 Introduction
Programmers automate stuff. Ambitious pro-
grammers dream of automating the automa-
tion of stuff. Many have tried; all have failed.
Until today.

∗e-mail: miguel.lechon+UTBP@gmail.com
1https://github.com/debiatan/utbp

In this article I will review how func-
tions can be represented using non-botanical
trees[1] and how non-botanical trees can be
enumerated[2], leading to the fact that func-
tions themselves can be enumerated in order
of increasing complexity.

Taking advantage of this result, it is possi-
ble to automatically generate functions that
satisfy arbitrary sets of restrictions, posed as
unit tests. By construction, these functions
fulfill several desirable properties, such as
minimal Kolmogorov Complexity and max-
imal Occam’s Razority.

2 Motivation
This year marks the sixtieth anniversary of
the birth of the field of Genetic Programming.
While successful as a pastime and as a mecha-
nism to spin Mendel in his grave, its promises
of automatic function generation have failed
to materialize.

Some researchers venture that exploration
on non-linear genotype-phenotype mappings
will lead the field to a second blossom-
ing, while other, perhaps more rational, re-
searchers realize the inadequacy of random

recombination as an exploration technique.
As Ernst and Sullivan famously stated in a
classic opinion piece[3] on the uses of stochas-
tic methods in the healthcare industry,

Parents are strangely reassured
when the predicted outcome of a
critical medical intervention is mea-
sured in units other than fractional
children alive.

2.1 Motivating example
Let us imagine a small language consisting
of a handful of primitives2 that operate on
natural numbers and lists of natural numbers.
Among them, we find to our disposal:

car: Given a list, returns its head.
cdr: Given a list, returns its tail.
succ: Returns the successor of a number.
if: Ternary conditional. It evaluates the

truth value associated to its first argument
and, if found true, it returns the result of
evaluating its second argument. Otherwise, it
returns the evaluation of its third argument.

Let us further imagine that we intend to
program the non-primitive function length,
that returns the number of elements of a list.
A possible definition in the Unit-Test-based
programming (UTBP) paradigm would be:

@UTBP
def length(l):

"""
length(()) == 0
length((2, 2, 2, 2, 2)) == 5
"""

2for more information, refer to section 3.3.

This version of UTBP is built on top of
Python, as a library, hence the syntax of the
example.

Notice the @UTPB Python decorator, indi-
cating that this function belongs to the Unit-
Test-based elite. Notice also how all function
logic has been replaced by a documentation
string listing assertions for the function to
satisfy. Calling this function with arguments
of different lengths dispels most doubts on its
correctness, but skeptical users may extract
some comfort from the examination of its un-
derlying implementation:

>>> print(length)

define
length
lambda

l
if

l
succ

length
cdr

l
0

Readers familiar with LISP-like languages
will recognize this as a recursive definition
of length in which parentheses have been
dumped in favor of a tree-like graphical rep-
resentation. This code states in unambiguous
terms that length of the empty list is 0 and
that length of any other list is 1 plus the
length of its tail.

The next section provides a more formal
treatment of the foundations of the UTBP
paradigm.

3 Materials and methods
UTBP is aimed at programmers who care
about results and eschew implementation de-
tails. If you count yourself among their num-
bers, you may skip this section.

3.1 NBTSASWs
Let us consider a tree with root r and two
branches b0 and b1, each of them with two
leaves (l0 and l1, l2 and l3). There are
three main ways of portraying this tree:

[a] [b] [c]
l0 l1 l2 l3 r r

b0
b0 b1 b0 b1 l0

l1
r l0 l1 l2 l3 b1

l2
l3

Tree a is drawn in a botanical fashion. Tree
b is clearly of a non-botanical kind, since
its root points upwards. Tree c is a non-
botanical tree struggling against strong winds.

Throughout the rest of the article, I will
use NBTSASWs exclusively because their as-
pect ratio suits two-column layouts best.

3.2 Tree enumeration
There is one tree of size one, one tree of size
two and two trees of size three.

[1] [2] [3]
r r r r

l b l0
l l1

There are five trees of size four.

[4]
r r r

b0 b0 b0
b1 l0 l0

l0 l1 l1
r r

b0 l0
b1 l1

l0 l2

The cardinalities for the rest of the sizes
are given by the sequence of Catalan num-
bers, just like all problem in combinatorics[4].
As a Catalan-born, I am very proud of that
sequence. It is a bit upsetting, however, that
Eugène C. Catalan turned out to be Belgian.

3.3 Primitive types, operations
and constants

The trees listed so far are just templates and
the labels on their nodes are but placeholders.
For a tree to represent a function, each of its
nodes has to be associated with either an op-
eration of cardinality matching the number of
descendants of that node or with a constant,
in case the node lacks progeny.

3.3.1 Types

The two only necessary types for this article
are nested lists and natural (non-negative)
numbers. Natural numbers are really not
that necessary, but I will spare them if only
to avoid writing 23 as:

(())

3.3.2 Arithmetic functions

The primitive arithmetic operations are succ
(successor) and pred (predecessor). They are
preferred over the more common nomencla-
ture increment and decrement, since this lat-
ter alternative implies the use of variables
and, once you start relying on mutation, you
may as well end statements with semicolons;

succ is a unary operation that returns the
natural number immediately following its ar-
gument.

succ -> 1 succ -> 2
0 succ

0

pred is also unary and returns the natural
number immediately preceding its argument.
pred of 0 is undefined because accepting the
mind-bending abstraction of negative quan-
tities ultimately leads to irrational and com-
plex thoughts.

pred -> 2 pred -> 0
3 succ

0

3.3.3 List functions

The three UTBP functions that operate on
lists are LISP’s classical cons, car and cdr.

cons takes two arguments. The first one
can be either a natural number or a list, while
the second one has to be a list. It returns a
list whose head is equal to the first argument
as whose tail matches the second argument.

cons -> (10 30) cons -> ((5) 23)
10 (5)
(30) (23)

car returns the head of the list provided as
argument. car of () is undefined.

car -> 30 car -> 5
(30) (5 23)

cdr returns the tail of the list provided as
argument.

cdr -> () cdr -> (23)
(30) (5 23)

3.3.4 Special forms

The special form if takes three arguments
of any type and evaluates the truth value as-
sociated with the first one. If it happens to
be true, it returns the result of evaluating its
second argument. Otherwise, it returns the
outcome of evaluating its third argument.

if -> 42 if -> 23
succ 0

0 42
42 23
23

3.3.5 Constants

UTBP’s two constants are 0 and (). They
are also the only values whose associated
truth value is false.

3.3.6 Recursion

Expressing iteration using trees, even if they
are NBTSASWs, feels unnatural. Iteration
also requires variables. Readers are welcome
to do whatever they please in the privacy of
their homes, but the public use of variables
carries a death sentence in many countries.

3.4 Functions as trees
As academics, we are supposed to derive
all possible interpretations and connotations
from the methods section by ourselves, but
this article is all about providing examples
for automatic inference, thus:

What is a proper tree representation of the
function that takes a list l and an index i as
arguments and returns the element in the ith
position of l?

0 define
1 index
2 lambda
3 l i
4 if
5 i
6 index
7 cdr
8 l
9 pred

10 i
11 car
12 l

Lines 0–3 specify the name of the function
(index) and of its arguments (l and i). The
if clause (line 5) tests whether i is 0 and if
so, makes sure that the zeroth element of the
list is returned (line 11). Otherwise, index is
called recursively with arguments cdr l (tail
of l) and pred i (i+1).

It is the responsibility of the caller to make
sure that the magnitude of argument i does
not exceed the length of list l. Fortunately
for the caller, we already reviewed an auto-
matic implementation of the length of a list
in section 2.1.

4 Properties
4.1 Seamless integration with

Python
This article presents a new programming
paradigm. Instead of introducing it in an ab-
stract manner, I have implemented it as an
extension of Python, a multiparadigm lan-
guage with a large user base (eighth most
popular language at TIOBE at the time of
writing[6]). In this way, I hope to decrease
the chance of my effort of many nights end-
ing in a drawer, collecting drawer smell.

We have already established how to define
the function that computes the length of a
list under the UTBP paradigm, and we have
also examined the NBTSASW associated to
the index function (section 3.4), but we still
need to provide its UTBP definition:

@UTBP
def index(l, a):

"""
index(((4, 7), 8), 0) == (4, 7)
index((4, 7, 8), 1) == 7
index((4, 7, 8), 2) == 8
"""

The attentive reader will notice how these
unit tests are carefully crafted to:

• Return different indices of the array. If
we always returned the first one, the easiest
implementation would be car l.

• Use nested lists. That way, we let the
UTBP framework infer the types of inputs
and outputs so as to provide a sufficiently
general implementation.

4.2 Low barrier to entry
Python code is often described as executable
pseudocode, so one could argue that its users
are not programmers that code, but pseudo-
programmers that pseudocode.

It is a trivial exercise to build a system that
generates code from preconditions and post-
conditions inside a well-behaved language
such as Scala[5], but it is a much harder task
to build a tool that does not rely on its users
knowing, or even caring, about preconditions
or fancy languages. Today’s world is in need
of dumber tools for careless people.

4.3 Conciseness
Novice programmers are usually required to
specify the desired behavior of a target func-
tion three times: first by documenting it,
then by providing examples of its use and
finally by actually implementing it. UTBP-
style definitions prey on that redundancy.

4.4 Guaranteed correctness
UTBP’s search routine will only stop evalu-
ating functions once it finds one that passes
all provided unit tests. If a know-it-all were
to try the following definition:
@UTBP
def impossible(a):

"""
impossible(0) == 0
impossible(1) == 0
"""

the UTBP routine would never stop, avoid-
ing the generation of an incorrect answer.

4.5 Minimal Kolmogorov Com-
plexity

The solutions generated under the UTBP
paradigm possess the minimum amount of
nodes necessary to fulfill a given specification
using a restricted set of operations and con-
stants, thus making them minimal under the
Kolmogorov Complexity measure.

Some readers will regard this use of Kol-
mogorov Complexity as a bastardization of
the strict meaning of the concept, but I doubt
Kolmogorov would complain, being the son of
an unmarried woman3 himself.

4.6 Maximal Occam’s Razority
Routines that achieve a given task with a
guaranteed minimal description length are
maximally parsimonious and thus preferable.

4.7 Avoidance of Terminator-
like Judgment Days

UTBP does not make computers more intel-
ligent; it simply accentuates their stubborn-
ness. If an unfortunate turn of events leads
an instance of the UTBP search engine to
stumble on a homicidal routine, the built-in
language barrier (code generated is executed
inside a LISP-like virtual machine) will prove
insurmountable.

Let me be clear on this, your computer will
probably plot elaborate plans to end your life,
but it will not be able to act on them.

3https://en.wikipedia.org/wiki/
Kolmogorov#Early_life

4.8 Unparalleled performance
The implementation of the UTBP paradigm
presented in this article is the first of its kind.
No benchmarking is necessary to show that
its speed is beyond comparison.

4.9 Unparalleled performance
The UTBP search algorithm is fully paral-
lelizable, but it is not parallelized.

5 Examples
5.1 Boolean functions
5.1.1 Unary Boolean functions

Unary and binary Boolean functions are easy
to describe using unit tests, since one can
enumerate all their possible inputs. not is
described as:

@UTBP
def logical_not(a):

"""
logical_not(1) == 0
logical_not(0) == 1
"""

Which generates the following code:

define
logical_not
lambda

a
if

a
0
1

5.1.2 Binary Boolean functions

I will skip the obvious unit-test Python de-
scriptions for or, xor, and and nand, but I
will list their outcome for the reader’s enjoy-
ment:

define define
logical_or logical_xor
lambda lambda

a b a b
if if

a a
a logical_not
b b

b
define define

logical_and logical_nand
lambda lambda

a b a b
if logical_not

a logical_and
b a
0 b

The definitions of xor and nand show that
the function search engine makes use of previ-
ous UTBP definitions to provide simpler ex-
pressions than those possible using only the
initial set of operations.

5.1.3 N-ary Boolean functions

A classic in the Genetic Programming liter-
ature is the Boolean Parity Problem. In it,
the target function takes a list of N Boolean
digits and decides if the number of ones it
contains is odd. An initial attempt using the
UTBP framework would be:

@UTBP
def logical_parity(l):

"""
logical_parity((0,)) == 0
logical_parity((1,)) == 1
logical_parity((0, 0)) == 0
logical_parity((0, 1)) == 1
"""

And the shortest routine satisfying it:

define
logical_parity
lambda

l
car

if
cdr

l
cdr

l
l

This code assumes input lists of up to two
elements, which makes sense from the low
vantage point of the computer, but ends up
returning a list instead of Booleans when that
condition is violated.

Enumerating the solutions to a handful of
longer examples

"""
...
logical_parity((0, 0, 0)) == 0
logical_parity((0, 0, 1)) == 1
logical_parity((0, 1, 1)) == 0
"""

takes care of the problem:

define
logical_parity
lambda

l
if

l
logical_xor

logical_parity
cdr

l
car

l
0

This code computes the parity of the tail
and xors it with the head. Spotless.

5.2 Arithmetic functions
Hermann Grassmann showed in the 1860s
that many arithmetic operations can be de-
rived from the successor operation. UTBP
can easily replicate some of his findings with-
out giving much thought to the task.

5.2.1 Addition

Back in section 3.3.2, I introduced UTBP’s
two arithmetic primitives: succ and pred.
From them we can derive addition by writing:

@UTBP
def add(a, b):

"""
add(2, 2) == 4
add(3, 3) == 6
"""

The second assertion is there to prevent
UTBP from thinking that adding two num-
bers means returning always the value 4
(which otherwise would be a more parsimo-
nious interpretation). The resulting code
reads:

0 define
1 add
2 lambda
3 a b
4 if
5 a
6 add
7 pred
8 a
9 succ

10 b
11 b

The mathematically inclined reader will
see that the function is equivalent to:

11 : add(0, b) = b

6–10 : add(a, b) = add(a − 1, b + 1)

The complexity of this function grows lin-
early with the size of a in both execution time
and memory consumption, which is quite rea-
sonable for the natural numbers people en-
counter on everyday tasks.

5.2.2 Multiplication

Defining multiplication without first defining
addition is very troubling for both humans
and UTBP, but once the more basic opera-
tion is in place, these two assertions suffice:

@UTBP
def mul(a, b):

"""
mul(2, 2) == 4
mul(3, 5) == 15
"""

This definition leads to:

0 define
1 mul
2 lambda
3 a b
4 if
5 a
6 add
7 mul
8 pred
9 a

10 b
11 b
12 0

Which again has a clear mathematical in-
terpretation:

12 : mul(0, b) = 0

6–11 : mul(a, b) = add(mul(a − 1, b), b)

Execution time and memory consump-
tion for this multiplication function grows
quadratically with the magnitude of the re-
sult. I find this feature useful, since it re-
minds me of my excesses when I compute my
daily caloric intake.

5.2.3 Exponentiation

I am sure the reader gets the idea by now.

5.3 List functions
We have already reviewed the definitions of
three functions that operate on lists: length,
index and logical_parity. Now I provide
one more example that requires the use of
list primitives as well as of a non-primitive
arithmetic function.

5.3.1 Summation

A possible UTBP definition of summation is:

@UTBP
def sum(l):

"""
sum((2, 2)) == 4
sum((3, 3, 3)) == 9
"""

And the function that the two previous as-
sertions generate is correct:

define
sum
lambda

l
if

l
add

sum
cdr

l
car

l
0

Needless to say, programmers are discour-
aged from examining the code associated
with UTBP definitions. It is not your code
that defines you, but your actions.

6 Final remarks
In this article I have presented a new, simpler
approach to programming. I am fully aware
that my target audience will probably never
read it, so I have decided to provide an al-
ternative, more pragmatic video presentation
online. It can be found here:

http://blog.debiatan.net/utbp.html

References
[1] John McCarthy, Recursive functions of

symbolic expressions and their computa-
tion by machine. Communications of the
ACM 3(4):184-195

[2] Eric Lippert, Every tree there is4 2010.

[3] Philip Ernst and Richard Sullivan, Proba-
bilistic pediatrics – Trusting your progeny
to Monte Carlo. Journal of Proper Par-
enthood, May 1998, 79-92

[4] Richard P. Stanley, Enumerative Combi-
natorics, Volume 2, June 2001

[5] E. Kneuss, V. Kuncak, I. Kuraj and P.
Suter, Synthesis Modulo Recursive Func-
tions, Acm Sigplan Notices, vol. 48, num.
10, p. 407-426, 2013

[6] TIOBE index5, February 2014

4http://blogs.msdn.com/b/ericlippert/
archive/2010/04/22/every-tree-there-is.aspx

5http://www.tiobe.com/index.php/content/
paperinfo/tpci/index.html

