
1

2

3

SIGBOVIK 2007

Proceedings

April 1st 2007
Carnegie Mellon University

Pittsburgh, Pennsylvania USA
http://sigbovik.org/

4

5

A Message From the Program Committee

The Association for Computational Heresy Special Special Interest Group
(ACH SIGBOVIK) on Harry Q. Bovik’s 6th Binarennial Workshop about Sym-
posium on Robot Dance Party of Conference in Celebration of Harry Bovik’s
birthday has a rich and noble legacy. We, the current members of the program
committee were delighted to discover this legacy as we made it up rooted through
the files of the SIGBOVIK Ministry of History, writing this introduction.

The first SIGBOVIK Conference was held on young Harry Bovik’s first birth-
day in 1942. It was a brief affair, as all of the attendees had short, childish
attentions spans. This has not changed. This was the occasion of Fred Hacker’s
famous talk, Waaaah: Want Bottle. This talk set a precedent for SIGBOVIK’s
level of discourse through the years.

The SIGBOVIK Conference was not held on Harry’s second and fourth birth-
days. These are known colloquially as the dark years. Harry was going through
a phase at the time. This phase went on for six years. Even then, Harry had a
long-term approach that would serve him well in his research.

SIGBOVIK IV: BOVIKMANIA was a wild affair. Chuckles the Clown’s
keynote was interrupted by what records describe only as The Cake Incident.
Records are unclear about the nature of this incident, but we think it is safe to
say it involved cake. This conference also marked Harry Bovik and Fred Hacker’s
first public feud, signified by a pair of position papers titled Fred Hacker is a
doodyhead and Takes one to know one.

The fifth SIGBOVIK symposium helped establish the conference as the fore-
most venue for computer science research and Harry Bovik himself as its bright-
est star, noted for his clever ideas and stunning seventies wardrobe. Of the
eighteen presenters, seventeen went on to win Turing awards. The other was
current Governor of California Arnold Schwarzenegger. However, the spotlight
was stolen by Harry himself who submitted an astonishing thirty-two papers
to the conference in honor of his age. Each was a veritable oyster’s pearl of
brilliance. Unfortunately, they were lost in an accident involving three radishes,
four peeled carrots, six celery sticks, and a cuisinart machine. Demoralized,
Harry never replicated those results. Computer Science still has not recovered
from this loss.

This brings us to up to date, ready for the sixth SIGBOVIK Conference and
Harry’s sixty-fourth birthday. The minds behind this year’s crop of SIGBOVIK
submissions are so bright, they wear sunglasses to bed. We, on behalf of the
SIGBOVIK Organizing Committee, are proud to present this year’s submissions.

-The SIGBOVIK Committee For Writing An Introduction to the Proceedings

6

Contents

Introduction . 5
Table of Contents . 8

Papers Not Yet Rejected 8
Track I: Psychopathology and Logic 9

Drunken Logic . 11
Nihilistic Logic . 17
Bipolar Logic . 19
Mad Hatter Logic . 21
Graphomaniac Logic . 27
Confusion Logic . 29

Track II: (Photo-)Realistic Applications 31
Applied Birds . 33
Applied Garbage . 35
Applied Dereferencing . 37
Applied Thuggery . 39
Applied Thievery . 43
Applied Inebriety . 45
Applied Cycle Conservation . 47

Track III: The Meta-Art of Paper-Writing 53
Meta-Abstracts . 55
Meta-Seduction . 57
Meta-Bananas . 59
Meta-Paradigms . 63
Meta-Typesetting . 65
Meta-Detail . 77
Meta-Foreshadowing . 79
Meta-Publabrication . 83

Track IV: Domo Arigato, Anonymous Referees 85
Robotic Complexity . 87
Robotic Robots . 89
Robotic Uprising . 93
Robotic Mind Language . 95
Robotic Toilets . 97

Track V: Practice makes Perfect; Theory makes Up. 99

7

8 CONTENTS

One-Hit Wonder Theory . 101
Presentation Theory . 103
Trace Theory . 107
Fried Chicken Theory . 109
Adequacy Theory . 115
Demoralization Theory . 117
Nonsense Theory . 121
Uh, Theory? . 123
Wiki Theory . 127

Comics Supplement 141

Notes 145

Track I:

Psychopathology and Logic

9

10

A non-judgmental reconstruction
of drunken logic

Robert J. Simmons∗

Keywords: Lax logic, ex-lax logic, handwaving logic, drunken logic, shot-
glass monad, durnken logic, chemically assisted reasoning, alcohol in com-
puter science

We investigate the extension of previous work by Krishnaswami et al.
in [6] on Handwaving Logic, a logic that can be effectively modeled by
Fairtlough and Mendler’s Lax Logic [4], towards trying to achieve a rea-
sonable formalization of ”drunken logic.” More advanced formalizations
of drunken logic fail to be modeled effectively by lax logic, and we argue
that much more study deserves to be paid to this and other concerns which
we group together under the umbrella of Chemically Assisted Reasoning
(CAR - but don’t drink and drive). However, unlike various “judgmental”
reconstructions, for instance of modal and lax logic [8], this will not be a
judgmental reconstruction. We’re not here to judge, man.

Section 1 briefly re-presents handwaving logic. Section 2 discusses a
simplistic representation of drunken logic that can be modeled by Lax Logic,
whereas Section 3 shows how this modeling behavior breaks down for a
more precise formulation. Section 4 concludes after arguing (drunkenly!)
for more investigation into this and other concerns of Chemically Assisted
Reasoning.

1 Introduction to handwaving logic

Handwaving logic grew out of a concern to create better models of the way
people actually use logic in the real world. Current logical systems effec-
tively model logic in a manner acceptable to most logicians and type the-
orists; furthermore, the introduction of substructural logics such as linear

∗This work partially supported by D’s Six Pax and Dogz, and whoever supplies them
with napkins.

1

Γ ` A true
Γ ` A handwave

INTRO
Γ ` A handwave

Γ ` A true
MODAL

Γ ` A handwave
Γ ` A ∧B handwave EXERCISE-FOR-READER-1

Γ ` B handwave
Γ ` A ∧B handwave EXERCISE-FOR-READER-2

Γ ` A ∨B handwave Γ, A true ` C handwave
Γ ` C handwave OTHER-CASE-SIMILAR-1

Γ ` A ∨B handwave Γ, B true ` C handwave
Γ ` C handwave OTHER-CASE-SIMILAR-2

Figure 1: Some of the rules of handwaving logic (elimination rules are the
standard ones)

logic shows promise in applying methods from proof theory to the work
of robotics, A.I. and security researchers. However, current proof theoretic
approaches are entirely inadequate for half of the statements made by an
introductory mathematics textbook, and for even the most basic statements
made by your average politician.

Handwaving logic addresses these concerns by conservatively extend-
ing standard intuitionistic logic with a handwaving judgment described by
“A handwave”, which is internalized in the handwave modality . The monad
admits much more powerful non-standard reasoning techniques than are
generally accepted in the uptight, narrow-minded intuitionistic logic. The
power and convenience of the handwave modality is evidenced by the fol-
lowing judgment.

Γ ` B true
Γ ` B handwave

INTRO

Γ ` A ∧B handwave EXERCISE-FOR-READER-2

Γ ` A handwave HW-AND-E1

Γ ` A true
MODAL

As described in [6], logic as it is used in the real world can be modeled
by equating A with A. Alternatively, standard techniques described in
[10] can be utilized to reverse-engineer the handwoven proof obligation as the
implicit constraint on the lax monad.

2

2 A brief discussion of drunken logic

As Bovik has famously noted in [2], nowhere outside of undergraduate
lectures are scholars are more prone to sweeping generalizations than at
the bar. Furthermore, judgments which cannot be evidenced outside of
the presence of alcohol, such as the notion “I find A attractive,” obviously
may (in some circumstances) be proven under the constraint of drinking.
Drunken logic can simple be expressed, more or less, by reinterpreting the
handwave modality as the shotglass modality . In this reinterpreta-
tion, A true maps onto A attractive, while the modal judgment A handwave
maps to A beergoggles. Our extensive investigations have shown that this
model along with other, similar ones (such as the related game-theoretic
judgement A i’lldoitifyou’lldoit that is vastly amplified under the modal-
ity) are sufficient to model the vast majority of lapses in judgment under
the influence of the monad.

3 The challenge of durnken logic

Per Per Martin-Löf [7], something is true when witnessed by an object of
knowledge, which lends itself to an obvious question of whether the truth
of a proposition can be obviated by the presence of alcohol, seeing as alco-
hol has an clearly negative impact on one’s knowledge [1]. The possibility
of the analytical truth of a proposition becoming questionable under the
influence is also evidenced by discussion as to whether conference submis-
sions that can be understood while drunk are novel enough to be worth
accepting.1

Indeed, in the above presentation of drunken logic the things that are
“potentially true” are in a sense monotonically increasing; there is no provi-
sion for things that are true and provable while clean and sober to be revoked
under the influence of alcohol. Put another way, while A attractive may
be true under sufficient “monadic influence,” it is necessarily negated if
one has drunk themselves to sleep, blindness, or need of medical attention.
Speaking of medical attention, Girard approaches a similar problem in his
discussion of his glossary discussion MEDICINE as a problem of only being
able to work with positive information: “the typical technique in medecine is
to work only with positive information ‘As far as we know, one cannot get
AIDS by blood transfusion’” (fixed-width font in the original) [5].

1John Renyolds, personal communication on the Wean elevators.

3

We call models that must deal with models that must handle the non-
monotonic changes present in extreme modal situations durnken logic; in
fact, drunken logic should be considered merely a special case of this more
general situation. One could imagine that a constraint-based system might
be able to handle blood-alcohol information such that a sequent is only con-
sidered in relation to an external constraint C, represented as C | Γ ` A. A
classically-based system might be able to handle the nonconstructive truth
of certain drunken judgments. Chaudhuri also demonstrates a notion of
contradiction in intuitionistic linear logic such that certain contradictions
can arise without being catastrophic to the overall consistency of the sys-
tem [3]. A connection to linear logic would also allow us to investigate
connections between the consumption of resources and the consumption
of alcohol, perhaps giving a satisfactory logical justification for the truth of
the “Three Tequila Proposition”:

tequila⊗ tequila⊗ tequila (⊥

Most promising, perhaps, an approach based on modal or hybrid logic
could internalize states of drunkenness within a Kripke model - this would
potentially generalize to other chemical modalities, such as the observation
of certain researches in this area that application of their particular modal
operator was akin to transportation “out of this world.”2

4 Conclusion: Chemically Assisted Reasoning

It is not our intention in this paper to solve all (or any) of the problems
we present; rather, it is to propose various approaches to this rich research
area that has previously been explored only in the most ad-hoc manner.
In general, we think that the opportunities for generalization presented
in the previous section point to rich opportunities awaiting researchers in
the field of Chemically Assisted Reasoning (or “CAR” - but don’t drink and
drive). Reasearch areas far afield from proof theory, such as work on re-
gret minimization algorithms, also have obvious applications to the logic of
drinking, and to chemically assisted reasoning in general [9].

2Anonymous personal communication, Terrace Club, Princeton University, Fall 2004.

4

References

[1] Harry Q. Bovik. Programming under the influence: a comparative
approach. Mathematical Structures will Drink You Under the Table, 7(7),
1977.

[2] Harry Q. Bovik. My life in a nutshell, if by nutshell you mean bottle
of cheap whiskey. In 13th International Symposium on Principles and
Practice of Declarative Declarations, February 1985.

[3] Kaustuv Chaudhuri. The Focused Inverse Method for Linear Logic. PhD
thesis, Carnegie Mellon University, December 2006.

[4] Matt Fairtlough and Michael Mendler. Propositional lax logic. Infor-
mation and Computation, 137(1):1–33, August 1997.

[5] Jean-Yves Girard. Locus Solum: From the rules of logic to the logic of
rules. Mathematical Structures in Computer Science, 11:301–506, 2001.

[6] Neel Krishnaswami, Rob Simmons, and Carsten Varming. Handwav-
ing logic. Journal of the Eighth Floor Whiteboard, December 8, 2006.
Possibly erased.

[7] Per Martin-Löf. On the meanings of the logical constants and the
justifications of the logical laws. Nordic Journal of Philosophical Logic,
1(1):11–60, 1996.

[8] Frank Pfenning and Rowan Davies. A judgmental reconstruction of
modal logic. Mathematical Structures in Computer Science, 11(4):511–
540, 2001.

[9] Aaron Roth. Personal communication, Wean Hall 4120.

[10] Privately circulated memoir of the Slovenian Philological Society,
1947.

5

16

Morality, amorality, and truth irrelevance

in a nihilistic type theory

(abstract)

Ezra Broemeling

Carnegie Mellon University

March 6, 2007

The rules of logic are fundamentally arbitrary. How does one choose between
dependent and second-order quantifiers? Between weak and strong negation?
Between linear and bunched implication? Arguments one way or the other are
simply unjustified expressions of faith. In this paper, I propose new founda-
tions for logic based on a nihilistic type theory, which has no introduction rules
and no elimination rules. Nihilistic type theory (NTT) thus defines a logic
completely free of dogma, beyond truth and falsehood—but which is nonethe-
less extremely powerful: I sketch soundness and completeness of NTT with
respect to the extended calculus of constructions. Soundness is shown by giv-
ing a fully constructive, type-preserving translation taking NTT terms to ECC
terms. Completeness is more difficult, but can be proven using the technical
machinery of truth irrelevance. Finally, I discuss applications of the nihilistic
conditional A : B, used to express the proposition that A implies B, but it
doesn’t matter, because in the end we’re all going to die anyways.

1

18

Bipolar Logic with Lithium∗

Daniel K. Lee

Carnegie Mellon University

Abstract

In prior work, we explored Bipolar logic, which contains
two modalities, a manic modality under which any num-
ber of intuitionistically unsound propositions can be proven
and a depressed modality under which only the most trivial
propositions could be proven. Despite the promising ap-
plications of bipolar logic in the areas of generating Dutch
Post-Impressionist graphs, M.A.C.H.O. expatriate ciphers,
and Grunge compositions proof search in bipolar logic is
made exceedingly difficult by the unpredictable and dra-
matic shifts between the manic phase and the depressed
phase. Even the most successful applications of bipolar logic
are difficult to assess, because these most successful pro-
grams are so unstable they tend to suddenly self-destruct
with little hope of recovering the old code.

We propose a Linear Bipolar Logic with Lithium. The
presence of lithium resources controls for the sudden shifts
between manic and depressed phases, making proof search
more tractable. However, we leave as an open question
whether Linear Bipolar Logic with Lithium is as expressive
as the traditional presentation of Bipolar Logic.

∗This work is partially supported by the National Science Foun-
dation under a Graduate Research Fellowship and D’s Six Pax and
Dogz.

20

The Letter before Lambda is Hat: A

Reconstruction of Church’s Hat Calculus

Akiva Leffert
Cranberry-Melancholy University

SIGBOVIK 2007

Abstract: We present a reconstruction of Alonzo Church’s Hat Calculus
based on notes discovered under a book shelf. We present evidence that this
system was the precursor of the λ-calculus. We then describe the system
in full detail. We prove a lack of progress theorem. Finally, we prove an
undecidability result by reductio ad absurdem.

Keywords: Computability, Hats

1 Introduction

It is said by those with too much imagination that the λ-calclus sprang
fully formed from the head of Alonzo Church and that as he laid the α, β,
and η rules on paper, choruses of angels sang Hallelujahs. Those with less
imagination and perhaps more wit realize, as Edison said, that genius is
hard work and makes one sweaty. Indeed, even the character λ, namesake
of said calculus, was not in Church’s original work. The usual story is that
he borrowed notation from Russell and Whitehead’s Principia Mathematica,
which used a circumflex over variables to mark abstractions[1]. Church used
this early on, for example, writing the identity function as: x̂.x. However,
due to inferior typesetting technology, the circumflex shifted from above the
variable to its left like so: ˆx.x. This appearance of ˆ resembles a capital
lambda, Λ, which caused some other typesetter, mind no doubt dulled by too
much exposure to hot-lead, to use the lower-case λ we know and love. Thus,
except for a typographical accident, the λ-calculus would be known as the
circumflex-calculus or, more succinctly and colloquially, the hat-calculus.

This sepia-tinged tale of typography makes for a good story to tell little
freshlings flush with curiosity about the λ-calculus and the Entscheidungsproblem[3][6].

1

Harry Bovik, demonstrating his diverse talents, actually made a short film
about this[2] which was well received[5]. However, it is wrong in one im-
portant detail. Old notes of Church’s, recently discovered stuffed under a
shelf in the Princeton University Library suggest that this notation was in-
spired, not by Russell and Whitehead, but by an earlier system which Church
sketched out and described in those notes. The account of this discovery
can be found in [7]. This system of computation contained more literal hat
symbols - see Figure 1. In the remainder of this paper, we describe this
system, the Hat Calculus, and sketch a proof of the undecidability of the
Down-Feather Problem by reduction from the Halting Problem.

2 Hat Calculus Syntax and Semantics

The complete syntax of the Hat Calculus appears in Figure 2. This system
is considerably more, umm, baroque than the λ-calculus. This suggests that
Church learned a great deal from the development of this system, abandon-
ing it due to its complexity rather than any inherent computational weakness
of the system. Indeed, we later show that this system is Turing-complete.

Definition 2.1 (Up Feather): TheMsymbol is an up-feather.

Definition 2.2 (Down Feather): TheNsymbol is a down-feather.

Definition 2.3 (Banded Hat): A hat can be combined with a band to

create a banded hat. For example, aDcan be combined with aJto create

d. The latter is a banded hat. For the purposes of clarification we may,
but probably won’t, occasionally refer to hats without bands as naked hats.

Definition 2.4 (Banded Feathered Hat): Hats with bands can be com-

bined with feathers to create banded feathered hats. For example,eNis

a down feather banded hat as isdN.
Definition 2.5 (Action Card): All cards in the Hat-Calculus are the

same except for the action cards: ♠7 , the ♥8 , the ♥9 , ♥10 .
Definition 2.6 (Inaction Card): A card which is not an action card is

an inaction card.
Definition 2.7 (n-Carded Banded Hat): Each banded hat is actually

an n-carded banded hat for some n. An n-carded banded hat is a hat with n
cards associated with it. An uncarded hat is just the degenerate case when
n is zero. Note that while there are fifty-two (four times thirteen (two times

2

Figure 1: Excerpt From The Lost Notebook of Alonzo Church

3

hats H ::= A|B|C|D

feathers F ::= M|N

bands B ::= I| J| K
cards C ::=

♥ 2 | ♠ 2 | ♣ 2 | ♦ 2 |
♥ 3 | ♠ 3 | ♣ 3 | ♦ 3 |
♥ 4 | ♠ 4 | ♣ 4 | ♦ 4 |
♥ 5 | ♠ 5 | ♣ 5 | ♦ 5 |
♥ 6 | ♠ 6 | ♣ 6 | ♦ 6 |
♥ 7 | ♠ 7 | ♣ 7 | ♦ 7 |
♥ 8 | ♠ 8 | ♣ 8 | ♦ 8 |
♥ 9 | ♠ 9 | ♣ 9 | ♦ 9 |
♥ 10 | ♠ 10 | ♣ 10 | ♦ 10 |
♥ J | ♠ J | ♣ J | ♦ J |
♥ Q | ♠ Q | ♣ Q | ♦ Q |
♥ K | ♠ K | ♣ K | ♦ K |
♥ A | ♠ A | ♣ A | ♦ A

Figure 2: Hat-Calculus Syntax

4

two times thirteen)) cards, only four of the cards are distinguished by the
semantics of the language, the action cards. We suspect that Church was
perhaps not at his best when designing this system.

Definition 2.8 (Final State): A hat-calculus expression is considered
final if all of the feathers are down feathers.

The process of computation is the process of attaching bands to hats,
feathers and cards to banded-hats, and stacking hats on other hats. As in
the lamba-calculus, juxtoposition is application, in this case, application of

adhesive. Thus,CJsteps toc. Unfortunately, this convenient com-
bination notation doesn’t work as well as we add cards and feathers to hats.
Thus, we use the notation B(H,F, [C1, . . . , Cn]) to represent a completely
applied n-carded banded hat. If we wished to combine an n-carded banded
hat with another card, say, the King of Hearts, ♥K , we would write this like

so: B(H,F, [C1, . . . , Cn]) ♥K . This would step to B(H,F, [C1, . . . , Cn, ♥K).
Note that combining action cards has a different effect discussed later.

Hats can be stacked. If two hats are juxtaposed we combine them into a
stack. Stacks of hats can also be stacked in this manner. It is not possible
to combine a stack of hats with a single hat in this manner. The application
of a band to a stack of hats has the effect of applying that band to all of the
hats. If the band of a hat is replaced it loses all of its cards and feathers.

2.1 Action Cards

Combining the ♠7 card with a hat or stack of hats causes all of the feathers
to flip - i.e. all down feathers become up feathers and vice versa.

Combining the ♥8 card with a stack of hats removes all of the hats
from the top and bottom until a hat is reached with a down-feather.

Combining the ♥9 with a stack of hats duplicates the stack.

The ♥10 is the ungluer. It pulls all of the feathers, bands, and cards
off of a hat. It also creates a new action card at the end of the expression.
Which particular action card is chosen is non-deterministic.

3 Results

Definition 3.1 (Stuck): An expression of the Hat-Calculus is stuck if it
cannot step and is not a final state.

Theorem 3.1 (Lack of Progress): There exists a stuck state. Proof:

The expressioncMcannot step, but is not final.

5

Definition 3.2 (Down-Feather Problem): The down-feather problem
asks whether a given Hat-Calculus expression will reduce to a stuck state.

Theorem 3.2 (Universality): We’re pretty sure it’s Turing complete.
It’s got a queue or something.

Theorem 3.3 (Undecidability): The Down-Feather problem is unde-
cidable. Like we said, it’s probably Turing complete.

4 Conclusion

The Hat-Calculus was developed by Alonzo Church before the λ-calculus. It
is a Turing-complete language of computation with a rather ungainly syntax.
Actually, it’s unarguably nonsense[4]. Fortunately, Church later developed
the λ-calculus, which isn’t crap (we hope).

References

[1] Henk Barendregt. The impact of the lambda calculus on logic and com-
puter science. Bulletin of Symbolic Logic, 3(3):181–215, 1997.

[2] Harry Bovik. Lambda-calculus: The feature film extravangza. Feature
Film.

[3] Alonzo Church. A note on the Entscheidungsproblem. Journal of Sym-
bolic Logic, 1:40–41, 1936.

[4] Jean-Yves Girard. Locus solum: From the rules of logic to the logic of
rules. Mathematical. Structures in Comp. Sci., 11(3):301–506, 2001.

[5] Fred Hacker. Harry Bovik shouldn’t be let near a camera. Letter to the
Editor.

[6] Richard Karp. The Entscheidungsproblem is probably NP-complete.
Private communication in an elevator.

[7] William Lovas and Tom Murphy VII. The hidden finds of janitorial
work. Proceedings of Found Stuff Symposium, 9(1):1299–1578, 2005.

6

A Diagrammatic Notation for F;
Jason Reed

Carnegie Mellon U

Abstract

Category Theory, String Theory, Knot Theory,
Graph Theory, Proof Nets, Feynman Diagrams, and
Penrose’s tensor contraction notation: all too often
has been demonstrated the value of graphical and
diagrammatic reasoning in advanced mathematics. By
replacing incomprehensible piles of linear syntax
with equally incomprehensible piles of funny
squiggles and wildly pointing arrows, formal
diagrams have enhanced the visual appeal of written
work while maintaining, or in some cases improving
on the status quo of outsider-repelling intimidation.

1 Introduction
The vast majority of research in formal systems is

performed on a two-dimensional page (with the
exception of the burgeoning field of Virtual Real
Analysis, which requires special goggles and red-
green differential operators) and yet this spatiality is
often wasted by intrinsically one-dimensional nota-
tion. We aim to fix this problem by introducing a
clear and precise two-dimensional notation for the
foundations of mathematics and logic. In the sequel,
we try to avoid any use of linear ordered multi-sets of
character-based information units (i.e., ordinary run-
ning text) except when strictly necessary.

2 Syntax

3 Type Theory
Our typing rules are a healthy part of a sound,
complete breakfast.

4 Related Work

5 Conclusion

G ☂

Fx

Gx

Γ

Π
★

Fig 1. Neither a pullback nor a pushout be

Fig 2. 100 per cent RDA of heavy metal umlauts

b
b

b

b

b

a

a

a

a

a

c

c

c
c

c

d
d

d

d

d

e

e

e

e

e

⊦ö⊸@

⚛+∫☃d☃ ♠K♡Q♢J♣10
cutE

[Foo99]
[XYZ03]

[✂72]

[♀01]
[♀♂03]
[♂04]

[Bar98]

?

Fig 3
. C

ryp
tob

ibli
ogr

aph
y

Fig 4. Told you so a
b c

Q☙

☙ ☙

☞ ♨⁋

28

First Impressions
A Modal Logic Designed Specifically to Confuse Undergraduates

Matthew Kehrt

University of Washington
mkehrt@cs.washington.edu

The Idiran Empire

OUTER SPACE
enslavethegalaxy@hotmail.com

Abstract
beepbeep

1. Introduction
One major attraction of modern type theories lies in
their elegant use of pretty symbols. What modern com-
puter scientist could not but be smitten by the simple
beauty of such gems as

Γ ` e:τ

or even

Γ ` M :A

Hell, even funny symbols such as those used in

Γ;∆ ` M :A (B

are pretty ok.
However, these beautiful strings of symbols serve

a deeper purpose than mere aesthetics. They also al-
lows us effectively hide very powerful ideas in a mass
confusing typography and terminology. For example, it
is rare that one needs to actually describe what one is
working on when it includes such terms as “pointwise
subkinding.” [2, 3]

With rising education and theoretical programming
language ideas become more accepted by a broader au-
dience, it is becoming more and more necessary to in-
crease the complexity of terminological and typograph-
ical conventions if any actual work is to be accom-
plished [1].

With this in mind, we present FIRST IMPRESSIONS,
a modal logic designed specifically to confuse the uni-
tiated.

Propositions P ::= P1 ∨ P2 | P1 ∧ P2

| P1♥P2 | MP
Atomic Propositions M ::= A,B | 4M | �M

| · · · | ©M

Figure 1. Some symbols

2. Confusing Overview
Propositions in FIRST IMPRESSIONS consist of base
propositions prepended by a series of alethic modal-
ities. Base propositions are really whatever one feels
like: they do not actually matter at all. We’re not ac-
tually going to do anything with this logic other than
talk about it. So, for instance, one could have a series
of atomic propositions, A,B, ..., and some binary con-
nectives, ∨,∧,→,∝, c©.

Modalities consist of the set of regular polygons.
They are distinguished by how many sides they have.
Any polygon with more than nineteen sides is consid-
ered to be a circle, which has nineteen sides. In no-
tation, these polygons may be written with a dot in the
middle. This has no meaning, but serves merely to mul-
tiply notation.

A string of modalities can be equivalent to another
string of modalities. A string of modalities followed
by a base proposition A is true iff an equivalent string
of propositions followed by A is true. However, the
exact rules determining the provability of the truth of
a proposition are unclear. Therefore, it is necessary to
give heuristics for determining the if two strings of
modalities are equivalent. In practice, we find the most
useful way of determing this is to sum the number
of sides of polygons in a string and take that number
modulo twelve. If two strings yield the same number,
they might be equivalent.

Figure 2. A Robot

For example, it is pretty likely that a cicle (nineteen
sides) is equivalent to a heptagon, as 19 ≡ 7 mod 12.

We find that discussion of these rules leads to end-
less confusion in those who are unaware of the subtl-
ties of modal logic. Even those who have much experi-
ence, when faced with a pentadecagonal modality, tend
to give up quickly.

3. Metatheory
As we do not actually have any judgments, inference
rules or even any particularly well specified syntax,
metatheory for this logic consists mostly of vague state-
ments about possible future work. This is a striking
return to the philosophical underpinnings of modern
logic, and we hope to someday treat this subject in full.

4. Use
One of the primary uses of this logic is for drawing
pictures. Freed from the tradional constraints of sim-
ple boxes, diamonds and possibly circles, we have a
near unlimited palette of shapes from which to choose.

However, we still require these shapes to be regualar
which makes more complicated images difficult to
compose. We find that, given these limits, houses and
boxy robots (Figure 2) are some of the most easiest
images to produce.

Acknowledgments
Thanks to Akiva Leffert for being confused, too.

References
[1] J.-Y. Girard. Locus solum: from the rules of logic to

the logic of rules. Mathematical structures in computer
science, pages 11:301–506, 2001.

[2] M. A. Kehrt and A. Kehrt. Personal communication,
November 2005.

[3] W. Lovas and K. Crary. Hot Compilation: Elaboration.
Homework assignment, November 2005.

Track II:

(Photo-)Realistic Applications

31

32

Towards an Evolutionary Next Generation Avian Carrier Internet

Architecture

Cary Rebecca Pidgin

February 28, 2007

Categories and Subject Descriptors

C.2.1. [Computer Communications and Networks]:

Network Architecture and Design

General Terms

Avian Carriers, Internets, Tubes, Internet Architecture

1 Introduction

In the last 10 years, there have been many design
proposals for a next generation Internet architecture
intended to improve the performance, security, and
availability of today’s Internet. While these propos-
als have mostly leveraged recent advances in network
hardware and traffic trends, there has been a dearth
of research looking at a new Internet architecture
based on CPIP (Carrier Pigeon Internet Protocol)[2].
We believe it is important to fully explore the design
space of architecture possibilities to better inform the
community about what should go into a new archi-
tecture.

Avian-based protocols have until recently been
considered flights of fancy. In this paper we discuss
how to extend the principles of CPIP (Carrier Pigeon
Internet Protocol) to handle a variety of modern ap-
plications. In particular, we show how our Avian
Carrier Internet (ACI) architecture supports an evo-
lutionary model that can adapt with the changing
communication models of Internet traffic. We begin
with a short review of CPIP and some basic addi-
tions to the protocol and “birdware” to modernize
the technology for today’s environment. Next, we

explain ACI’s methods of providing an evolutionary
framework for future Internet applications. We then
discuss the potential drawbacks of implementing such
a scheme. Eventually, we close with a brief discus-
sion of related work and potential avenues for further
research in this area.

2 Birdware Modifications

After months of research, we discovered that the main
problem with RFC1149 and RFC2549 [3] is the use
of paper scrolls for data storage. Such a system does
not take advantage of the improving capacity of flash
drives. Our modification is to replace the paper scroll
data storage technology with the latest in NAND
flash technologies. Furthermore, in concert with the
avian trend, we use duck tape instead of duct tape
to secure the drive to the birdware’s legs1. In order
to support an end-to-end model of security, the data
on the flash disk can be encrypted by one-time-pad
technology. We use paper scroll data storage tech-
nology to store the one-time-pad on the other leg for
nearly unbreakable security guarantees.

3 Evolutionary Model

Perhaps the most important contribution of this pa-
per is the unintuitive melding of science and tech-
nology. We leverage off of recent Darwinian models
of evolution, though we are open to other models of

1If the birdware is of the duck species, we may be able to
avoid such methods.

1

evolution should they be discovered. In our archi-
tecture, we use avian breeders to selectively choose
for species traits that are conducive to the architec-
ture. The end goal of avian breeders is to produce
fast-flying, super-strong avian carriers. These traits
are necessary to provide low-latency, high-bandwidth
characteristics. The intelligence of the avian carriers
must necessarily be sufficient to prevent forwarding
loops from occurring in Super Wide Area Network
(SWAN) environments.

As genetics research continues to flourish, we en-
vision a transition to genetically-created species to
provide a quicker turnaround time for avian carrier
modifications. For example, we may use the hawk’s
quick diving speeds along with the pterodactyl’s
enormous size as one possible avian carrier species.
We also envision the possibility of a hummingbird-
cheetah species to support real-time applications
such as Voice-over-Internet-Peregrine and pigeon-
based CooTube video content delivery.

4 Issues of Packet Loss

ACI continues to push the ‘best-effort’ model of data
delivery on the Internet as the original RFCs in-
tended. As a result, packet loss is often inevitable.
In particular, ACI is susceptible to normal types
of packet loss expected with an avian-based data-
gram system, such as glass windows, sky-blue painted
buildings, redneck hunters, and avian bird flu pan-
demics. We expect that with time, avian carriers
can be scientifically engineered to be resistant to such
sources of failure, although people seem to really like
glass and we have no current solutions to this prob-
lem (perhaps human computation methods are nec-
essary).

One open problem is that of Denial of Service at-
tacks. Figure 1 shows an example scenario [1] that
could result when an attacker tries to packet flood a
destination comprised of children. One possible solu-
tion is to arm every human with a device capable of
putting up a wall of fire, or what we term a ‘firewall,’
to defend against these attacks.

Figure 1: Potential Damage by DoS Attack in ACI

5 Future Work and Conclusion

While ACI provides an architecture for an evolution-
ary next-generation Internet architecture, its success
depends on the ability of genetics research to combine
hummingbirds with cheetahs. Given the slow process
of legislation for avian stem-cell research, we believe
there is merit in leveraging steroids to help provide
incremental benefits to avian-carrier networks. Fi-
nally, we are looking at ways to improve latency with
wormhole routing using our EBGW (Early Bird Gets
the Wormhole) protocol.

Given our initial goal of exploring the design space
of Internet architectures, we believe ACI stands out
as a contrarian design that should improve network-
ing research around the world. Our hope is that other
Internet architecture proposals will continue to build
off of our design for make benefit future generations.

References

[1] A. Hitchcock. The Birds, 1963.

[2] D. Waitzman. A Standard for the Transmission
of IP Datagrams on Avian Carriers. RFC 1149
(Unrecommended Standard), April 1990.

[3] D. Waitzman. IP over Avian Carriers with Qual-
ity of Service. RFC 2549 (Unrecommended Stan-
dard), April 1999.

2

Compacting, Composting Garbage Collection

Jake Donham, Carnegie Mellon University

Abstract

Garbage collection is vital for programmer efficiency,
but hides the societal costs of rampant waste of data.
We present a means to reduce the negative externali-
ties of garbage collection through natural mechanisms
of waste reprocessing. We demonstrate a 38% reduc-
tion in allocation on a suite of ML benchmarks, as
well as a 47% increase in the growth of plants fertil-
ized with the rich, loamy byproduct.
Keywords: bioengineering, programming lan-
guages, dung

1 Introduction

While great strides have been made in recent years
in improving the space and time overhead of garbage
collection, as well as its realtime behavior, little at-
tention has been paid to the environmental conse-
quences of the style of “disposable programming”
which garbage collection encourages, in which large
numbers of data structures are created, only to be
thrown away almost immediately. Such abandoned
data puts a strain on the waste management capabil-
ities of a typical software system as well as the social
context in which the system operates. Moreover, the
cultural impact of this style of programming is to en-
courage the wasteful discarding of perfectly good data
which could be repaired and put back into service,
thereby stimulating a vibrant economy of small-scale
local artisans along the lines of neighborhood tailors
and shoemakers.

To address one aspect of this deficiency of existing
methods of garbage collection, we propose compact-

ing, composting garbage collection. The core idea is
that unreachable garbage, once identified by a col-
lection algorithm, should not simply be discarded,
but should be repaired and reused if possible, and
otherwise encouraged to decay into a nutrient-rich
soil. This method is completely orthogonal to tradi-
tional garbage collection algorithms, and in fact we
have implemented it in a family of collectors includ-
ing stop-and-copy, mark-and-sweep, clean-and-jerk,

sit-and-spin, and a hybrid transcendental, intergen-
erational, centrifugal collector.

2 The algorithm

The compacting, composting collector works by seg-
regating the heap into several piles, corresponding to
garbage objects of different ages. This is dual to the
generational approach of segregating live objects of
different ages, and rests on a dual generational hy-
pothesis that “dead objects stay dead”, or, equiva-
lently “objects aren’t getting any younger”. The idea
is that as dead objects age and decompose, they are
moved to successively older piles, which they share
with dead objects of roughly the same age. This
serves to isolate the stinkiest parts of the heap, as
well as to produce, in the oldest generation, a uni-
formly decayed pile which can be scooped out and
used to fertilize future computations.

There are two additional phases of the algorithm:
repair, in which discarded objects which need only a
bit of work with needle and thread, or some common
white glue, or a little oiling, are fixed, cleaned up,
and put back into service; and compaction, in which
garbage piles are pitchforked to break up clumps and
then tamped down with a shovel.

As an optimization, we keep a special pile for in-
organic objects which do not decay on the same
timescale as typical objects. If objects on this pile
cannot be repaired and reused, they may be taken
to the dump or left at the curb for pickup. Also, we
encourage quicker composting by seeding piles with
beneficient bacteria and worms.

3 Our testbed

We have built and measured our collector in the
SILT compiler for Standard ML. SILT (Structured In-
termediate Language, Too) is a structure-preserving
compiler, which compiles programs by successively
transforming them into a series of structured inter-
mediate languages, such as SOIL (Structured Op-

1

erational Intermediate Language) and DIRT (Direct
Intermediate RepresenTation). The SILT approach
provides large benefits in the form of increased com-
piler correctness, additional opportunities for opti-
mization, and an organic, holistic, centered user ex-
perience, man. Can you dig it?

Test programs included a variety of climate-
modelling, SETI-at-Home, and non-violent video
game workloads. We attempted to test the collec-
tor with a nuclear weapon yield computation and a
finance package but found that these programs made
assumptions incompatible with our method.

4 Results

In side-by-side comparisons with a standard collector,
we found that overall 38% of objects could be repaired
and reused across the benchmark suite. The high-
quality compost resulting from the final pile was sold
to local farms at an average price of $112 per ton.

We have omitted detailed graphs in an effort to cut
down on paper.

5 Related work

The most similar work to our is contained in Davis’
thesis [1], which presents the design of a language
(called Lollipop) in which you need only say what you
wish to be done, including a memory management
subsystem that picks up after the programmer and
puts away his or her objects neatly. However, Davis
does not provide an implementation.

In a tour-de-force of analysis, Smith et al. [4] derive
a space bound on waste produced by a herd of Hol-
steins on a farm in Iowa. Jonas [2] proves a theoretical
limit on the efficacy of biocomputational methods, by
a reduction to graph-coloring. Murphy [3] evaluates
the cache behavior of locally-grown objects.

6 Future directions

While our method is effective in reducing the waste
produced by a program, purely through modification
of the garbage collector, the larger problem of waste
management must be addressed further upstream, at
the point that the garbage is created. We are there-
fore re-evaluating methods of explicit memory man-
agement, in which a programmer who knows that a
particular object can be re-used adds it to a free list,

from which future allocations can be made. Further-
more, if the programmer knows that an object is no
longer needed, he or she may explicitly free it for re-
cycling, rather than allowing garbage to accumulate.

Over the long term, we hope to encourage pro-
grammers to move away from comfortable, yet
environmentally-suspect languages such as ML,
which provide automatic memory management and
abstraction facilities that hide the true origin of data
(a form of Marxist commodity fetishism), and return
to the honest, handcrafted code of their forefathers.

7 Conclusion

We have shown that compacting, composting garbage
collection is both feasible and useful. We hope that
this contribution will help bring about a new age of
low-impact programming and green systems.

References

[1] C. Davis. Passive-Aggressive Programming. PhD
thesis, Department of Computer Science, Cran-
berry Melon University, 2001.

[2] J. Jonas. Crop rotation is NP-complete. In Inter-

national Conference on Computational Agricul-

ture, pages 83–91, Braga, Portugal, 2003.

[3] T. Murphy VII. Exploiting data locality: Fresh
bytes and community supported agriculture.
Journal of Environmental Semantics, pages 117–
127, 1998.

[4] J. Smith and Z. Biddleworth. Free-range analysis
and abstract irrigation. In Formal Methods in

Farming, pages 190–197, Ames, Iowa, USA, 1985.

2

C Dereferenced

Akiva Leffert

March 20, 2007

Abstract
We present the *C language. Named in the spirit of C++ and C#,

*C is what happens when the C language is dereferenced. Unfortunately,
dereferencing C results in a SEGFAULT. *C adds a variety of syntactic
features to C, all of which will crash your machine and destroy any resident
data. We also briefly investigated the &C language only to realize that there
was only one real C reference - Kernighan & Ritchie’s The C Programming
Language.

1

38

The GUnit

Testing Harness: Achieving Source Code Street Cred

Nels E. Beckman

Abstract— In any large software organization, the street cred
of source code is of principle concern. Often-times we find that
a given code base can talk a mean game, but when time comes
to “throw down,” that code base is nowhere to be seen. While
intuitively we as software developers come to gain a sense of
which code bases are trust-worthy (or, “will ball ‘till they fall”),
some systematic method for measuring and reporting this is
necessary. In this paper we present the GUnit testing harness
(pronounced, “Gee Unit”), which does just that.

Index Terms— Software Engineering, Credibility Improve-
ment, Street Life, Hennessy, Testing, Java

I. INTRODUCTION

Slingin’ code is a ride-or-die way of life, where every day

it’s just another homicide. It is important to stay TRU to tha

game, or you risk being played for a chump. But the ques-

tion is, how does one go about evaluating (and eventually

increasing) the TRU-ness of the code that they sling? This

is especially important at large software organizations where

code often becomes soft from spending too much time in

cushy source-code repositories.

In this paper we present the GUnit Testing harness, a

tool created explicitly for the purposes of evaluating the

street cred of a code base. GUnit is the fruit of a rare

cross-discplinary collaboration. Researchers from Carnegie

Mellon University’s Institute for Software Research have

joined together with the Interscope Records’ Gorilla Unit,

lead by world-renown scholar Dr. Curtis James Jackson III,

who goes by the pseudonym 50-Cent.

While GUnit currently only works on Java code bases (an

inherrently ‘soft’ programming language, when compared

with other, ‘harder’ languages such a C and z80 assem-

bly [5]) we believe that our underlying street cred evaluation

methodology can easily be extended to other languages.

This paper proceeds as follows. In Section II, we discuss

our underlying methodology. How does one take any piece

of source code and evaluate its worth in the inner-city?

In Section III, we describe implementation and usage of

the GUnit tool. Most helpful to the end-user is Section III-

A, which describes the classifications into which we place

evaluated code. Section IV discusses the evaluation of GUnit

and ultimately, and mercifully, Section VI concludes.

II. METHODOLOGY

The GUnit testing harness allows Java developers to build

streed cred tests, and then automatically run and evaluate

N. Beckman is an average to below-average PhD student in the Institute
for Software Research, the most thugged-out department in the School
of Computer Science, Carnegie Mellon University, 5000 Forbes Ave.,
Pittsburgh, PA 15213 nbeckman@cs.cmu.edu

Fig. 1. Screenshot of GUnit: This source code has a street cred rating of
“Elderly Paul Simon.”

their results at the touch of a button. Our methods are based

on earlier work by Clifford Smith, AKA the Method Man [6].

These methods are robust to programmer error and scale

to large code bases as well as large quantities of Cristal.

Unfortunately, these methods are proprietary and cannot be

described in full technical detail.

III. THE GUnit TOOL

The GUnit street cred testing harness has been imple-

mented as an Eclipse plug-in [1]. Eclipse is gradually re-

placing Emacs as the text-editor-that-acts-like-an-operating-

system of choice for modern software developers.

A. Street Cred Strata

In order to better convey the the end-user programmer the

actual level of street cred of the code base under test, we have

developed the following scientific classification scheme. It

includes ten discreet levels, listed here in order from furthest

to nearest to the street. We also briefly describe each these

gradations.

1) Clay Aiken—At the lowest end of the street cred spec-

trum is the rating of “Clay Aiken.” Clay’s Wikipedia

Fig. 2. Hpnotiq is a 35 proof French fruit liqueur made from vodka,
cognac, and tropical fruit juices [7]. Sounds good to me!

entry describes him as “the most successful second-

place finisher” in the history of American Idol. If that’s

not a dubious destinction for your software, then what

is?

2) CMU Graduate Student—Being a graduate student

at Carnegie Mellon University doesn’t get you very far;

it won’t get you into the club, and it won’t get your

court-side seats. Sometimes the truth hurts.

3) Elderly Paul Simon—Most thuggish software doesn’t

live to see 30. Elderly Paul Simon shows us why this

is a good thing. Current best-practices state that one

should stay young, fly, and flashy ‘till the day that one

dies.

4) P-Diddy—This is a good indication that your source

code was relatively well respected during the past,

possibly because it played some pivotal role in the ca-

reer of a more successful product. But when the more

successful product was killed in a drive-by shooting in

L.A., everyone kind of realized that your product was

more about marketing than quality. Then your software

did a cover of a Led Zepplin song for the Godzilla

remake, which only made things worse. . .

5) Young Paul Simon—Have you ever see that movie

Almost Famous? He always had big pupils. . .

6) Hpnotiq—Just like the liquor of the same name, your

source code is most frequently seen at the clubs, in the

VIP section. If you seem him out, remember: Don’t

start no stuff, won’t be no stuff.

7) Chry$ler 300, with Navigation—Seriously, that car is

dope. It’s kinda like the cars that the bad guys drove

on Batman: The Animated Series.

8) Ja Rule—If you feel the need to scream “Holla,

Holla!” when your code base receives this rating, that

is a perfectly acceptable reaction. If only it weren’t

for that memory leak, the software equivalent of a J-

Lo collaboration, you’d have more respect.

9) Dead Prez—While your source code is not, strictly,

as popular as some of the other big names on this list,

it is authentic and has the respect of its peers, due to

a prolonged life spend on the south side of Chicago,

and its refusal to sell out. The authors themselves said

it best in their seminal work [2]: That’s why I’m in the

dojo, not just for the video. Really though, we really

got beef with the popo. Never know when they gonna

put you in a choke hold.

10) Hova—The Michaelangelo of flow, your source code

paints pictures with poems. When source code achieves

a street cred rating of “Hova,” this indicates and

extremely high degree of credibility. At the same time,

this rating indicates that a given piece of source code

has achieved a rare feat, that of becoming commer-

cially successful while still maintaining its reputation

of being true to its roots. Much like Jay-Z, the J-Hova

of hip hop, a code base achieving this rating has flow

that is religious.

IV. RESULTS OF TOOL DEPLOYMENT

We attempted to try out our tool on a user base of

approximately 500 Java developers. However, due to the

fact that we were constantly screaming, “Wu Tang!” and,

“Don’t bring those weak generics into my house!” most of

the developers dropped out. Therefore our current results are

inconclusive.

V. RELATED WORK

A. CMMI

Currently, the most well-known metric of street credibility

in existence is the Stuntin’ Engineers’ Institute’s Crunk-

ability/Make Money Index (CMMI) [3]. CMMI has long

been the de-facto standard hype metric for military and

government software contractors. As its name suggests, the

CMMI ranks the performance of a software development or-

ganization in two specific area: Its “crunkability” (its ability

to have fun, drink, and spit game at the ladies) and its ability

to “Make Money” (get paid by any means necessary). Based

on these qualifications, a software organization is given a

rank from one, being the fakest, to five, being the realist. The

primary difficulty with the CMMI system is the large amount

of overhead necessary in having an organization certified.

While this is appropriate for large government contracters

where the crunk-ness of the entire nation is at stake, for

smaller, more agile software organizations, CMMI is more

of a burden than anything else. GUnit, on the other hand, is

a small and lightweight evaluation framework. So small, in

fact, that when the cops ever search you or your vehicle, the

chances of them busting you for it are pretty low. Of course

they’ll probably just plant a copy of GUnit on you anyway. . .

VI. CONCLUSION

Maintaining the street cred of a source code base has

always been a high priority for software developers. How-

ever, up until this point there has been no framework for

automatically creating, running, and evaluating this particular

metric. Therefore in order to fill this gap we have developed

the GUnit testing harness. Source code is currently available

online [4].

VII. ACKNOWLEDGMENTS

The author would like to thank you, dear reader, for

making it this far. The metaphors never quite worked, but

he kept with it the whole time, and that’s got to count

for something. The author would also like to thank the

SIGBOVIK program commitee for graciously extending the

submission deadline. If he had actually taken advantage of

that extra time, this paper would no doubt be much funnier.

REFERENCES

[1] Website for the Eclipse SDK.
http://www.eclipse.org/

[2] stic.man, M-1. Revolutionary but Gangsta. Journal of the American

Underground. March 30, 2004. pp. 1045-1102.
[3] S. Radamenton, A. Robertson, J. J. Walker. CMMI: Guidelines for

Crunkability Improvement. Addison-Wesley, 2003.
[4] GUnit Testing Harness Website.

http://www.g-unitsoldier.com/

[5] W. C. Roeslisberger. z80 Assembly: Fad or In it to Win it? 4th Intl.

Working Conference on 10x Programmers: Habits, Moods and Whims

Track. February 13, 1989.
[6] C. Smith. M. J. Blige. All That I Need. Journal of the American

Underground. February 1, 1996.
[7] Wikipedia entry, “Hpnotiq.”

http://en.wikipedia.org/wiki/Hpnotiq

42

A Theft-Based Approach to 3d Object Acquisition

Ronit Slyper∗

Carnegie Mellon University

James McCann†

Carnegie Mellon University

Method Casing? $ avg(∆s) max(∆ j) E(∆ j) avg(∆ j) discount (fing.) score

Snatch no 0.45 10 3 0.5 0 5 83.8

Snatch yes 0.45 5 3 0.5 0 5 77.5

Jack no 15k 3 6 0.2 0 5 129.1

Jack yes 15k 2 6 0.2 0 5 42.2

Abduct no - 122 12 7.5 1.2 4.5 71.9

Abduct yes - 64 12 7.5 0 5 66.3

Con no 1G 40 9 1 0 5 97.2

Con yes 1G 25 9 1 0 5 22.1

Figure 1: A comparison of various approaches to theft, with and without casing. Item value is given by $ (in dollars), time for theft is given
in ∆s (in cm-hours per foot). The empirically encountered jailtime is avg(∆ j), while max(∆ j) and E(∆ j) are calculated via lawyer; all are
given in months.

Abstract

In graphics, one often wishes to acquire an accurate representation
of an object. Much work has focused on novel devices for acquir-
ing various properties of given objects, including geometry, sur-
face reflectance, deformation modes, and even sound response. De-
vices have ranged from laser scanners to camera arrays and robotic
probes, with scanning and processing times ranging from minutes
to days. We present a novel technique that allows the acquisition
of a complete representation of a wide range of 3d data sets in a
few minutes (faster with hardware acceleration). The representa-
tion thus obtained can be photorealistically rendered at haptic rates
– allowing a wide range of direct interaction and display possibili-
ties.

CR Categories: I.3.3 [Computer Graphics]: Picture/Image
Generation—Digitizing and Scanning; H.3 [Information Storage
and Retrieval]: Information Search and Retrieval—Retrieval Mod-
els

Keywords: data acquisition, scanning, haptics, illicit activity

1 Introduction

In this paper we present a novel approach, borrowed from the
criminal underworld, for the acquisition of complete 3d datasets.
Datasets acquired with this approach are suitable for real-time ren-
dering and haptic interaction.

∗e-mail:rys@cs.cmu.edu
†e-mail:jmccann@cs.cmu.edu

Require: ob j an object
1: if ob j small then
2: return Snatch(ob j)
3: else if ob j self-powered then
4: return Jack(ob j)
5: else if ob j animate then
6: return Abduct(ob j)
7: else if ob j controlled by person then
8: return Con(ob j)
9: else

10: return /0
11: end if

Figure 2: Description of the procedure Steal(ob j). A simple set of
heuristics is required to determine which method to use.

2 Related Work

As a complete object-data capture process, our technique stands to
replace several conventional methods (at least in certain application
domains). We provide a short review of these methods below.

Three-dimensional scanning is a popular technique for acquiring
object geometry, with laser-based [Roach 1997] approaches already
commercialized and widely used. Additional scanning systems rely
on projectors or robotic probes [Bovik 1704]. Some scanners are
additionally able to capture a primitive surface model.

For more complete surface model representation we must turn to
appearance modeling and capture. Work in this field seeks to syn-
thesize material BRDFs which match real materials, including skin
[Hefner 1953; Silberstein 1965].

3 Method

3.1 Acquisition

In lieu of an elegant description, we present obtuse pseudocode with
possibly undefined functions (Figure 2) – as has long been the tra-
dition in computer science [Knuth 1981].

3.2 Rendering

One of the benefits of theft-based acquisition is that the data sets
so obtained are self-rendering. That is, they are self-contained and
able to selectively interact with photons in order to create a photo-
realistic emission field. Such data sets also have physical presence
which allows one to interact with them in a realistic and wholly
satisfying manner.

3.3 Extensions

Like many approaches in graphics, our method may benefit from
hardware acceleration. We find that a minimal set of hardware (e.g.
pry-bar, lock-pick set, skeleton key, toothpaste) suits many possi-
ble applications, while more complicated systems (crane, flat-bed
truck, submersible) may be required for more extreme situations.
This systems allows a flexible cost-benefit trade-off.

Finally, we found that by using a pre-casing phase (so named be-
cause it involves “casing the joint” and “scoping things out”) we can
avoid common algorithmic pitfalls (security systems, alarms) and
increase overall efficiency. It is also during this pre-casing phase
that we are able to better optimize our selection of hardware accel-
erators.

4 Evaluation

In order to evaluate our methods, we tested our approach on sev-
eral data sets. Theoretical bounds on jailtime (∆ j) were calculated
from criminal justice system records. Averages are presented over a
number of trials sufficient to satisfy our material longings and klep-
tomania. In order to provide a reasonable comparison, we use the
unqualified-apathetic-rand norm, as presented in Equation 1 (we set
λ based on time of day).

∫
whatever

arccos∆ j −
$2

λ ·∆s
(1)

5 Conclusions

In this paper [Slyper and McCann 2007] we have presented a new
approach to the acquisition of 3d objects. We hope, in the future, to
become wealthy and well-taken care of by judicious application of
this approach.

One drawback of our approach is the large ∆ j. While our heuristics
do a reasonable job of avoiding a large ∆ j, this could be further
mitigated with a proxy-based approach. In this approach, left for
future work, one pays a third party (normally a member of the local
“crime syndicate”) to perform the acquisition.

Another method, which seems to warrant further investigation, is
the direct purchase of goods. While it may seem counterintuitive,
the authors have found that in some cases, costs can actually be
lower than theft – and ∆ j is significantly reduced.

Acknowledgments

Thanks to Frankie (Pen. State) and to Big Joe (State Pen.), for key
hints. Additional thanks to Fast-Fingered Earl for inspiration and

methodological discussion. Condolences to the Stop-n-shop, East
Plaza Mall, and Marty’s Gas-n-Guns. Finally, thanks to our attor-
ney Paws and his cat Edward for contributions during the evaluation
phase. This research was supported by IRS grant 15-1040. Ronit
Slyper was additionally supported by an NFL fellowship.

References

BOVIK, H. 1704. Robotic probes and you. Probe-based Robotics
43, 3, 105–205.

HEFNER, H. 1953. Playboy, vol. 1. Playboy Enterprises, Inc.,
December.

KNUTH, D. E. 1981. Seminumerical Algorithms, second ed., vol. 2
of The Art of Computer Programming. Addison-Wesley, Read-
ing, Massachusetts, January.

ROACH, J., 1997. Austin powers: International man of mystery.

SILBERSTEIN, D. 1965. Penthouse, vol. 1. Penthouse Media
Group, May.

SLYPER, R., AND MCCANN, J. 2007. A theft-based approach to
3d object acquisition. In ACH SIGBOVIK, vol. 1, 79–87.

Crash n’ Compile: A formalization and empirical

study of developer productivity and software

quality through intoxication

Ciera Christopher

April 1, 2007

Abstract

The CrashNCompile process has become a topic of increasing interest
in our community, though up to this point it has been discussed in an infor-
mal manner. In this research, we formalize the rules of the CrashNCompile
process using an operational semantics. We verify the correctness and ter-
mination of these rules through observation and wavy-hand-proofs. In this
study, we analyze the impact of the CrashNCompile process on developer
productivity and software quality. We also analyze the many variants of
the CrashNCompile process, including choice of language, compiler, and
intoxicating beverage. We conclude by showing that ”Team Distraction”,
a team comprised entirely of people with ”fuzzy” majors, does indeed have
an impact on the quality of the code produced, though it may in no way
reflect the original requirements.

References

http://crash-n-compile.eorbit.net/index.html
http://www.langston.com/Fun_People/1995/1995AOA.html

1

46

Cycle Depletion – a Worldwide Crisis1

Joseph M. Newcomer2 and Charles B. Weinstock3

In 1982, the authors did not publish a paper they wrote on the then-obvious Cycle
Depletion problem (CDP). Twenty-five years later, we are not publishing a twenty-five-
year retrospective paper on this problem.

Sadly, the cycle depletion problem continues to worsen. There are predictions that we
face the imminent danger of a cycle depletion crisis by the year 2020. This paper should
serve as a warning to everyone that we must address the cycle depletion problem
immediately or face the consequences.

In 1982 we had observed that the cycle depletion problem was already serious.

The cycle depletion problem arises because there are a finite number of cycles in the
Universe, and computers are depleting these at a ferocious rate.

Computers suck down cycles and emit heat and computation. Without cycles there can
be no computation. This is the fundamental principle that makes all our computers run.
The number of cycles sucked down by any computer has been increasing (although we
will see that there have been changes that have reduced the need for cycles by six orders
of magnitude, thus allowing us to be in what appears to be a steady-state situation).

A result we should mention here was with the launch of the Cycle Isotropy Observatory
(CIO) in 1992, it became clear that cycles are anisotropically distributed throughout the
Universe, with heavy concentrations in some places and far less dense concentrations

elsewhere. The current best cosmological theory is that our solar
system, and for light years around us, is a cycle-poor region to start
with, and therefore we are already at a disadvantage. Work by
Hawking [Hawking99] show that cycle densities near black holes
are incredibly high. Mathematically, the number of cycles
available at the event horizon is infinite, but we simply have no
technology to tap such cycles.

Cycle theory is nothing new. The earliest recorded work dates
back to Ptolemy (150 A.D.) who postulated that the Universe
consisted of cycles and epicyles. We now know that epicycles are
not required, and cycles are all there are. But, like Democritus and

his theory of atoms (460 B.C.) he was millennia ahead of his time. However, it wasn’t

1 Portions of this work were unknowingly funded by a grant from Tartan Laboratories,
Inc.
2 FlounderCruft, Inc. Email: newcomer@flounder.com
3 Software Engineering Institoot

Ptolemy
(Wikipedia)

until modern Quantum Cycle Theory evolved that we began to truly understand the
fundamentals of cycles in the Universe. As this theory has matured, it has led to the
Schwinn postulate of Quantum Computers, in which all problems are either solved or not
solved, and until you read the solution, you don’t know if the problem is solved. (There
is some question as to whether or not a Quantum Computer can solve the Halting
Problem, and there is at least some fear that if such a problem were presented to a
Quantum Computer, the computer would implode to a singularity and suck down all the
cycles for hundreds of light years around. Others assert that this is the explanation of the
Fermi Paradox: any sufficiently advanced technological culture eventually gets to the
point where they try this experiment, and are immediately reduced to using slide rules,
rendering them incapable of solving the kinds of problems that would lead to interstellar
communication or faster-than-light travel). Quantum Cycle Theory also allows us to
explain Cycle Anisotropy (CA), although there are some that say there is no possible way
to explain CA

The current value of the Critical Density ΩΛ is such that the Universe appears to be
permanently expanding, meaning there is only one cycle (a so-called uni-cycle) to the
Universe (there will be no Big Crunch followed by another Big Bang), so the dominant
single metacycle means that all available cycles are merely subdivisions of this one cycle.
Ultimately, a cycle may not be the atomic unit of computation, but the equivalent of
quarks has not yet been determined. Nonetheless, there seems to be only one original
cycle from which all others derive. This is one of the open questions of Quantum Cycle
Theory.

A competing theory, derided by some as not being a theory at all, is that the one
distinguished cycle is the source of all other cycles. Even within this theory there are
competing points of view with some believing in the so-called Unicycle, and others in the
so-called Tricycle – the latter having more adherents in the community. Regardless, both
communities believe that the distinguished cycle designed and created all of the other
cycles.

A theory of Vacuum Cycles suggests that cycles may spontaneously be created in the
vacuum of space; however, they will be created with a corresponding anticycle and the
two will cancel out according to the formula e = MC2, but given that cycles may be
massless, this means no energy would be produced. There is no good explanation of why
our Universe favors cycles over anticycles.

We first observed the cycle depletion problem at CMU in 1976, when we moved our 16-
processor multiprocessor, C.mmp, into the main computer room with our KL-10
processor. Shortly thereafter, the KL-10 began to experience various problems in
reliability.

This led to one of those engineering-vs.-science debates. The engineers, lacking any
solid theoretical basis, asserted that the cause was that the 16-processor system generated
too much heat and overloaded the air conditioning system, raising the temperatures and
causing failures. The scientists, on the other hand, with a firm grasp of cycle theory

(even in its early form in those days), knew that the real problem was that the 16-
processor system caused a local depletion in the time-space-cycle continuum, sucking
cycles away from the single-processor KL-10 and causing it to fail.

In those heady days, it was believed the number of available cycles were unlimited, or at
the very least good for centuries. There were few efforts to conserve cycles.

Early IBM mainframes were equipped with a “usage clock” that ran when the computer
was computing. This measured the amount of usage of the computer, and hence the
monthly rental cost. [We’re not making this up]. If the CPU issued a HALT or WAIT
instruction, the CPU clock stopped running. While advertised as a way of reducing costs,
it was clear that IBM was not creating cycles, and therefore (had cycle theory been
known) was apparently charging for the use of a natural resource. But the opposing
theory is that researchers at T.J. Watson Research Center had already discovered cycle
theory, had grossly underestimated the available number of cycles (they had once been
said to have stated that the time-space-cycle continuum could support no more than 12
computers), and had actually done this as a way of forcing their end users to conserve
cycles by disguising it as saving money.

Those of us who “grew up” in the 1960s had an awareness of conservation that seems to
have disappeared in the 1980s through the present. Many of us would work late into the
night, sometimes overnight, to ensure that no cycles were wasted. Our more cynical
colleagues said that we were doing this because we got better response time, but the real
reason was that we could not bear to see cycles being wasted.

[Jack McCredie, faculty at the Carnegie Mellon University Computer Science
Department at that time, observed wistfully at one CS party one evening in 1972, “Think
of all those cycles going over the dam”. This was typical of the concerns we had at that
time].

Harry Bovik did one of the fundamental experiments in disproving the feng shui theory of
computing. This theory stated that the proper alignment of a computer with the cycle
ether would result in more reliable behavior. In the Michaelson-Bovik experiment
(unpublished), a computer was placed on a platform and operated for a period of time.
The platform was then rotated 90º and operated for the same period of time. No change
in the speed of computing or the reliability of the computer was measured (within
experimental error), thus disproving the idea that cycles exist in the cycliferous ether.

Moore’s Law has saved us. As computers are built with smaller and smaller design rules,
the actual number of cycles required has gone down as the same rate that the cycle speed
has increased. A microcomputer uses microcycles (10-6 cycles), so a million computers
executing microcycles consume about the same amount as a old mainframe executing
cycles. Intel architectures, for example, do not execute instructions (in the CISC sense)
but instead compile those instructions into micro-ops (µ-ops), and consequently we have
been largely oblivious to the magnitude of the problem.

Federal standards for cycle conservation have not been well-enforced, particularly under
the Bush administration, which fired all eight of the Federal Cycle Inspectors that had
been hired by the Clinton administration and signed a contract with Dubai-based
Hallibutron. Modern chips do have some of the cycle-saving mechanisms mandated by
the Cycle Conservation Act of 1994 (a law largely spearheaded by Al Gore). These
include mechanisms to slow the clock down under conditions of low usage, thus reducing
the absolute cycle requirements; having sleep states and hibernation states that reduce
cycle usage considerably. A public that is hungry for cycles would not accept these
limitations for the sake of simple conservation (witness our treatment of the oil shortage
issue), so these cycle-saving techniques are marketed as mechanisms for saving power
(economic incentive) or extending battery life (self-interest incentive), but the truth is that
they are there to attempt to reduce cycle usage.

Computer vendors continue to be afraid to let the truth be known about the upcoming
cycle crisis. We already have evidence that IBM in the 1950s knew about this problem,
and any vendor directly asked about this issue will deny it is a problem, while behind the
scenes they work hard to deal with cycle conservation.

The increase in graphics requirements to support Symbolic User Virtualization, such as is
used in video games, is another source of cycle depletion; graphics cards are simply very
sophisticated domain-specific computers. There is serious concern about the impact of
SUV popularity on our limited resources.

Since cycles are converted to heat, there are some thoughts that
we should be able to have some way to convert heat to cycles.
Unfortunately, the only effective state-of-the-art device we
have is the Stirling Engine, which was invented in 1816. No
more effective mechanism for converting heat to cycles has
been devised. In principle, this engine can work at 80% of the
theoretical Carnot efficiency, but it just doesn’t produce
enough cycles to make a difference. However, advances in
nanotechnology could change this. Currently,
nanotechnologists working on various kinds of mechanical

effectors have not been able to understand the need for micro-Stirling engines.

Back in the 1960s, far-sighted pioneers such as J.C.R. Licklider saw the coming
catastrophe, and created the ARPANet. One of the stated purposes of the ARPANet was
to allow cycle-sharing, specifically, to allow users anywhere to share the computing on
some non-colocated processor. This would allow them to place large computing facilities
at the sites of major cycle concentrations, but users in cycle-poor areas could use these
cycles.

NSF has funded a few supercomputer centers. Their apparent random distribution is not
random at all; they are all located at sites of massive cycle concentrations.

Stirling Engine
(Wikipedia)

Back when ILLIAC-IV was first installed, the original plan had been to install it at the
University of Illinois campus. As an almost last-minute decision, the computer was
located at the NASA Ames research facility at Moffet Field in California. The public
reason given was that this was done because they were afraid that student antiwar
activists might break into the computer room at the University and damage or destroy the
computer. This story was simply for public consumption. Careful studies had shown that
U. Ill. was in a cycle-poor region (no one who had chosen the original site was aware of
cycle theory) whereas NASA Ames had been built (deliberately) in an area of high cycle
availability.

Not all computer sites have been so fortunate. The Livermore Laboratories
Supercomputer Center had been located at a cycle-rich site, but in later years, for reasons
not yet fully understood (although Quantum Cycle Theory is beginning to yield some
results) the nexus of cycles moved. This required either moving all of Livermore, or
somehow creating more cycles, so a cyclotron was built there. Unfortunately, these are
not cost-effective for everyday computing, costing tens of millions of dollars to construct
and requiring military-grade budgets to keep running.

Not many people realize the true purpose of the World Wide Web. CERN suffered from
the same problem as Livermore, and in their research to solve the cycle problem, the
WWW emerged. Although the public cover story is that it makes information readily
available, the real truth is that it is a network for importing cycles from cycle-rich
countries to cycle-poor countries. The reason many emerging countries are spending
such massive efforts on their network infrastructures is that they hope to become major
cycle exporters in the next decade.

Not all emerging economies are in this state, however. The massive adoption of personal
computing in India and China will soon mean that these countries will become major
cycle importers as well. Neither of these countries are signatories to the Sapporo
Accords (named after the beer drunk at the sushi restaurant where these accords were
proposed), and the U.S. has stated that as long as these countries are not signatories, there
is little that the U.S. can do internally to reduce its cycle consumption.

The real risk as that the cycle consumption in these countries will only exacerbate the
growing cycle crisis, and competition for the remaining cycles from small but cycle-rich
countries will result in serious international tensions. Estimates are that wars over cycles
will be inevitable by 2030.

What can we do? We must reduce our cycle consumption. Estimates of 10% per year
improvement will give us time to find alternative cycle sources, and there are promising
research directions that may yield solutions in the future. Meanwhile, the use of slide
rules and abacuses (abaci?) should be encouraged. PDAs should be replaced by calendar
notebooks. Laptops should be reserved for holding cats, not computers. Besides, purring
cats on one’s laptop are far more soothing than computers, anyway.

References

[Hawking99] Hawking, Stephen, On the Diminishing Computer Reliability in the
Presence of Universal Anamolies, The Journal of Isotrophic Physics, Vol. 17, No. 7, July
1999, pp1346-1378.

Track III:

The Meta-Art of Paper-Writing

53

54

Abstracter Abstracts∗

Daniel K. Lee

Carnegie Mellon University

Abstract

We did it!

∗This work is partially supported by the National Science Foun-
dation under a Graduate Research Fellowship and D’s Six Pax and
Dogz.

56

Qualitative Methods for Interagent Communication

Jason Reed
∗

jcreed@cs.cmu.edu

School of Computer Science

Carnegie Mellon University

Abstract

This one time I chatted up a girl at a party, and it ended in

disaster. Don’t believe anything she says about it.

Keywords: Anthropomology, Relational Algebra

1 Introduction

Hey there! Hi. How’s it going. Peggy? Hi, Peggy.
Nice to meet you. You know, my older sister’s [SA83]
name is Peggy, too. Yeah, really! No, I don’t think
so. Hah, hah! So you came with — ? How’d you
meet him? Yeah? So you two are — you know? Oh?
No? Oh, okay, I didn’t mean to suggest — heh!

2 Background

So you’re Irish? Yeah, the hair is a dead giveaway,
isn’t it. Me, well, on my mom’s side, I’m French
Canadian, wood pulp, rag stock, and laser printer
toner, and on my dad’s side, it’s a mix of LaTeX,
ASCII, and Estonian. You wouldn’t believe the teas-
ing I got as a kid!

Boy, the stories I could tell you about — oh? You
have to go to the bathroom? Okay. I’ll still be here
when you get back.

3 Related Work

Hey again! Anyway, this one time my little sister
[Ali85] got submitted to a pretty major journal, and

∗The author would like to thank this paper for writing itself.

they turned her down just because — and I’m told
this on good authority — she had a few mistakes
involving substitution ‘its’ for ‘it’s’. The injustice!
Who doesn’t have a few blemishes at that stage grow-
ing up, really? It’s a difficult time. Three rejections
later, she finally gave up and sent herself out to a
workshop on the Cybernetics of Peer Review Science.
My dad [Ali51] still hasn’t forgiven her. He thinks
it’s just an internet scam — I admit the fees were
suspiciously large — but it’s done wonders for her
self-esteem.

4 Development

Boy, once i * get a few of those PSPACE-hard lemon-
ades in me i just dont know hwat im saying
anymore, you know? you know? i guess i really dont
have my i really dont have much tolera i mean
tolerance for that kinda thing heeee! i guess
you don’t either. i don’t know where that bucket
came from either, but you sure tripped over it good
Here, let me help you ups. * Up! Come
up! there you go! Anyway i was wondering if you
wanted to come back to my place and uh *hic*
overfill my hboxes if you drift my catch

5 Details of Private Interaction

Protocol

Deferred to the Technical Report, to be released June
2007 on Citeseer Adult Video and Academic Publish-
ing.

1

6 Open Problems

Hey! You’re not supposed to look in there! That’s
where I keep my old review forms! Those are sup-
posed to be private! No! No! Don’t read them!
Stop it! Stop reading them! Stop laughing! Stop!
Please! No! Why are you leaving? Give that back!
Pleeeease! Please don’t tell anyone he said I’m ‘con-
ceived poorly, articulated worse, and quite possibly
the result of plagiarism so incompetent as to resem-
ble a peculiar originality, but one inept far beyond the
capabilities of the average researcher’ ! Come back!

References

[Ali51] Inter Alia. Denotational higher-order harrop
heredity. J. Hoity Toitology, 1(1):1–137, Oc-
tober 1951.

[Ali85] E. T. Alia. Hyper-driven device drivers. Draft
Manuscript, August 1985.

[SA83] Verba Sesquiped-Alia. Peg-passing proce-
dural protocols. In R. E. D’actor, editor,
Programming with Peg Procedures (PPP’83),
pages 221–230, Käseburg, Wisconsin, Febru-
ary 1983. Verlag & Sons Publishing Co.

2

The Epistemology of Exploratory Empiricism:

Science

Maoz E. Berlinger, Tom E. Helostpants, Valiant E. Jeenen,

Flossyfry E. Jest, and Sen E. Rajdoc

Departments of Artifactual Engineering and Hermeneutical Computing, Carnegie

Mellon University, 5000 Forbes Avenue, Pittsburgh PA 15213-3890, USA

Abstract

In this paper we explore a sequential linear incremental methodology and its appli-

cations to epistemelogical questions related to exploratory empiricism. By solving

the commencement problem we elucidate the complex relationship between Barth-

modal grammars and scientific progress, and demonstrate that solving epistemelog-

ical questions is equivalent to scientific discovery. We also briefly discuss bananas.

1 Introduction

In this paper we consider the intersection of that which we believe based on
evidentiary empiricism extended to novel areas (exploratory empiricism) with
that which is actually true; in other words, we are seeking to appropriately
categorize information gained through exploratory empiricism as both trust-
worthy and credible or as failing on one or both of those counts.

The principal criterion we shall employ as a barometer in estimating both
of the above categorical indices (i.e., trustworthiness, credibility) is derived
from approximating the magnitude and etymological/lexical entropy of sen-
tential units generated by an agent formulating exploratory-empirical hypothe-
ses about the world, wholly divorced from the identity of that agent, and in
fact from the semantic content of the aforementioned sentential units, thus
ensuring a strong form of objectivity and impartiality.

Our method is at once absolutely necessary while also utterly paradoxical. It
can be traced back to Archimedean philosophy, which embodied both evidentiary-
based methodologies for knowledge acquisition and metaphysical contempla-
tions on the validity of abstract knowledge expressed in a socially constructed
format, i.e. language, and therefore raises key questions about the role of lin-
guistics in empiricism in general, and exploratory empiricism specifically.

2 Bananas and Barth-modal T-grammars

Consider the case of bananas. It is made of sturdy wood, and holds two gross
of this yellow, succulent fruit. Science has determined that the Cavendish ba-
nana is likely to become extinct if certain fungi (considered by the present
author to be highly symbolic of the several threats today facing the scientific
establishment) have their way. Perhaps you should eat a few bananas (see Fig-
ure 1) right now, before reading another paragraph, and consider the fleeting
opportunity you have, to wit, to accept this paper and its contribution.

To ourselves we ask, “Why don’t you write something already?” The hermeneu-
tical implications of this question weigh heavily on our minds, and in order to
avoid answering them we choose to write about them. No doubt the recent dis-
covery locating evidentiary empiricism in the exploratory domain within the
category of nonmodal Barth-modal T-grammars makes the “commencement
problem” formidable; fortunately, our identification of the Snaxx combinator
for this T-grammar (“Dubuque, Iowa”; cf. Appendix) mitigates the challenge
somewhat.

2

Fig. 1. Yellow, succulent.

Previous reviewers have challenged our use of place-names as citations, but
we pose the following question: Who has been to Dubuque, Iowa? Really?
Perhaps the streets there are littered with Barth-modal T-grammar Snaxx
combinators, for all you know.

As is evidenced by the reader having progressed thus far in the paper, we
have produced a satisfactory solution to the commencement problem via an
intermittent constructivist approach, which paradoxically relies on social de-
construction efforts focused on global sales of bananas.

We have used our technique to analyze itself - self-referentially applying our
linguistic analyses to approximate the trustworthiness of this very paper - and
in doing so revealed unprecedentedly high levels of credibility in ourselves.
This confirms our (now empirically credible) belief that by combining the
epistemologically sound and theoretically grounded elements of Archimedean
philosophy with the practical lessons of evidentiary empiricism (re: banana
appreciation), we have isolated for the first time in its pure form the true
essence of Science itself.

3 Conclusions

We’re going to win best paper award! We’re going to win best paper award!
We’re going to win best paper award!

3

4 Acknowledgments

We gratefully acknowledge support from the Office of Dense and Opaque Re-
search (ODOR) grant number DNS-028841971 and the Dole Food Company
grant number BAN-693997510.

APPENDIX

“Dubuque, Iowa”

4

Synchronistic Hyperparadigmatism

Connor Sites-Bowen

March 20, 2007

Abstract

M. Deschamps was in his teens served a plum pudding by one M. Fort-
gibu. In his thirties, M. Deschamps ordered plum pudding at a restaurant,
only to be informed that a M. Fortgibu had just been served the last piece.
Thirty years later, M. Deschamps was treated to plum pudding at a highly
select party. He explained the earlier plum pudding incidents and remarked
that now only M. Fortgibu’s presence was needed to truly complete the
scene. Just at that instant, a delirious and senile Fortgibu entered the party,
having mistaken it’s address for that of the engagement he was supposed
to be attending that night. This is Carl Jung’s most famous example of
synchronicity (or serendipity).

When caught in the throws of a serendipitous flow of time, one often
wonders if all such experiences have similar phenomenological characteris-
tics; Does synchronicity have a higher structure? Can it be invoked, or if
already flowing can it be ridden to a more complete conclusion? Can a run
of serendipitous events be revived after it has seemingly lapsed? Does meta-
synchronicity exist? This paper examines multiple accounts of synchronicity,
as well as other acausal time-space events, in an effort to find a meta-form
for Acausal Parallelism, which can also function as a hyper-paradigm for the
general flow of time. Such a hyper-paradigm is then presented as a useful
philosophical tool to analyze ESP, travel through time, direct manipulation
of synchronistic events, magic, alien abduction, and other parapsychological
processes, especially when superimposed onto a seemingly causal universe.

1

64

A Systematic Evaluation of the Observed

Degradation of Typesetting Technology in the

20th Century

Reginald J. Qnuth

March 3, 2007

Abstract

We systematically evaluate typesetting technology over the course of
the 20th century and discover an astonishing degradation. We hypothesize
on the potential causes of this observed degradation and conclude that it
is the work of malicious time-travelling monkeys.

Keywords: type, systems

1 Introduction

In this work, we advance the hypothesis that typesetting technology took a
dangerously steep downward turn in the latter half of the 20th century. This
is not a new hypothesis; the world-renowned computer science genius Knuth
made similar observations in the thick of the matter 30 years ago in March
1977, saying of his gloriously comprehensive compendium The Art of Computer
Programming [2], “I had spent 15 years writing those books, but if they were
going to look awful, I didn’t want to write any more” [3].

We take Knuth’s hypothesis and validate it with a systematic and unbiased
evaluation of over three academic papers selected at random from between the
years 1900 and 1999. In Section 1, we introduce our hypothesis. Section 2
discusses our raw data in detail. Finally, in Section 3 we draw the startling
conclusion that typesetting technology actually degraded over the course of the
20th century!

2 Experimental data

2.1 1936: the heady days of the decision problem

Hilbert’s 23 problems began a century of glory in mathematics. In 1936, Alonzo
Church published a note [1] on what is widely regarded as “by far the coolest of
Hilbert’s 23” [8], the Entscheidungsproblem. We excerpt this note in Figure 2.

1

(Church is also well-known and highly regarded for his work on the hat calculus;
see [4] for a contemporary tutorial introduction.)

This publication represents the pinnacle of publishing quality in the 20th
century, with its fully-typeset mathematics and proportionally spaced fonts. No
characters are hand-drawn, and the kerning is superb. The footnotes aren’t
even fragile! An exemplary exemplar of style and quality—precisely what we’ve
come to expect from an academician as talented as Church.

Figure 1: Alonzo Church, a very talented academician. (Cheerful, too!)

2

Figure 2: 1936 publication.

3

2.2 1974: a less innocent age

Flash forward to the year 1974. Nixon faces impeachment for the Watergate
scandal. India successfully detonates its first nuclear weapon. Polymorphism is
in its fledgling stages.

Enter John Reynolds.

Figure 3: Bright-eyed and bushy-tailed John Reynolds, with a pipe.

It was in this year that Reynolds published his monumental manuscript on the
polymorphic λ-calculus [5]. Despite being an academic work of the highest
quality [XX cites???], its typesetting left much to be desired.

As one can see clearly from the scan in Figure 4, 1974 marked an age of
“digital typography”—characters unavailable on the standard typewriter were
drawn in by hand. Examples include the characters ∀, ⊆,

⊔
, and (particularly

damningly) D. The careful reader will note the scribbly nature of the tail on
the 7→ arrow. But at least we have a full complement of Greek letters, and
everything is sufficiently well-spaced to be legible . . .

4

Figure 4: 1974 publication.

5

2.3 1983: oh the burning!

Advance the clock 9 years to 1983. Ronnie Reagan leads the United States in
their epic battle with the Evil Empire; the Star Wars project1 plays a critical
role. Meanwhile Luke and Leia lead the rebellion in Return of the Jedi. Reynolds
does his part by proving the glorious Abstraction Theorem [6]. Reynolds has

Figure 5: Older, wiser John Reynolds.

grown older, and perhaps wiser, but the quality of his typesetting has diminished
dramatically.

Figure 6 demonstrates the terrible turn taken by typesetting technology in
this war-torn era. Although typewriting technology has acquired certain key
characters (∀, for example), this is only at the expense of the all-important
capital Π, which is more hand-drawn, larger, and uglier than it’s ever been in
the history of life on earth [citation needed]! Agghhh! The math, it burns my
eyes!

1More properly referred to as the Strategic Defense Initiative

6

Figure 6: 1983 publication.

7

2.4 1990: hell on earth

Six years later, the Soviet Union collapses, and Ringard publishes his seminal
preprint on mustard watches [7], shown in Figure 8.

Figure 7: Yann-Joachim Ringard—no relation to Jean-Yves “mad dog” Girard.

Although this superficially seems to represent an increase in publishing qual-
ity, our unbiased opinion is that this apparent increase is merely illusory. Fig-
ures are now entirely hand-drawn, and ”smart quotes” are conspicuously absent.
“QED” replaces the traditional 2. Mathematical quality has taken a similarly
downward turn; Ringard’s so-called “proofs” can barely be called sketches.

8

Figure 8: 1990 publication.

9

2.5 A graph

Any good experimental systems paper needs a graph. The graph in Figure 9
shows undeniably that typesetting quality has decreased between 1900 and 1999.

^
|

q | \
u | ----
a | \
l | \
i | ------ - - -
t | \
y | \

| - -
|
+-------------------------------------->
1900 1999

t i m e

Figure 9: A graph

3 Conclusions

Undeniable! QED.

References

[1] Alonzo Church. A note on the Entscheidungsproblem. Journal of Symbolic
Logic, 1:40–41, 1936.

[2] Donald E. Knuth. The Art of Computer Programming. Addison-Wesley,
Reading, MA, 1968–Present.

[3] Donald E. Knuth. Digital Typography. Center for the Study of Languages
and Information, Stanford, CA, 1999.

[4] Akiva Leffert. The letter before lambda is hat: A reconstruction of Church’s
hat calculus. In Proceedings of the 6th Binarennial ACH Conference in Cel-
ebration of Harry Q. Bovik’s 0x40th Birthday (SIGBOVIK’07), Pittsburgh,
PA, March 2007. ACH Press.

[5] John C. Reynolds. Towards a theory of type structure. In B. Robinet, editor,
Programming Symposium, volume 19 of Lecture Notes in Computer Science,
pages 408–425, Berlin, 1974. Springer-Verlag.

10

[6] John C. Reynolds. Types, abstraction and parametric polymorphism. In
R. E. A. Mason, editor, Information Processing 83, pages 513–523, Amster-
dam, 1983. Elsevier Science Publishers B. V. (North-Holland).

[7] Y. J. Ringard. Mustard watches: an integrated approach to time and food.
Preprint, Université Paris VII, Paris, France, Octobre 1990.

[8] SIGBOVIK Program Committee. Discussion of how the Entscheidungsprob-
lem is by far the coolest of Hilbert’s 23 problems. Committee meeting, March
2007.

11

A Appendix: an incomplete waste of paper

Figure 10: “Mad dog” hitting the San Pellegrino.

12

m̆D̆§saosĬ;†C§rfl¤‰̆q̆;;C‡:
aoru»†h̆WC»r̃y`§C»†;Ca‡q

u?Vflƒu¦fl

@‡̆raor;x̆r»xC̆or‰̈a`§̆Wqro†»C‡:r†»†h̆WC»r̈̆q̆†̈»x̆̈qrC‡r†§§r†̈̆†qraor
q;yh¤r†̈̆r;x̆rx†̈qxr‰†:̆s§CWC;qrCW‰aq̆hr`¤r»a‡ŏ̈̆‡»̆r‰̈a»̆̆hC‡:qr
†‡hr’aÿ‡†§q=r¥‡h̆̈rqy»xr»a‡q;̈†C‡;q4rCh̆†qraor§†̈:̆rqCX̆rqCW‰§¤rWyq;r
`̆r;̈y‡»†;̆hr;aroC;=r„‡r‰†‰̆̈r‘̆r‰̈̆q̆‡;r†r‡̆‘r;̆L;r§†¤ay;rW̆;xaha§s
a:¤r»†§§̆hrm̆D̆§raorĬ;†C§rfl¤‰̆q̆;;C‡:r;x†;r†§§a‘qroärCh̆†qraor†‡¤r
qCX̆r;ar`̆r̆L‰̈̆qq̆hrC‡r†‡¤rÏ†»a‡C†‡r‰†:̆r§CWC;r‘C;xay;r;̈y‡»†;Ca‡=r
flx̆r ;̆»x‡a§a:¤r †§§a‘qr ;x̆r :̈†»̆oy§r h̆:̈†h†;Ca‡r aor ‰̈̆q̆‡;†;Ca‡r
iy†§C;¤r†qr;x̆r‰†:̆r§CWC;rh̆»̈̆†q̆q=

„‡;̈ahy»;Ca‡

R†»̆hr‘C;xr;x̆rx†̈qxr‰†:̆s§CWC;qraor;x̆r†»†h̆WC»r‰y`§CqxC‡:r
C‡hyq;̈¤4rq»C̆‡;Cq;qr†̈̆r̈ay;C‡̆§¤roä»̆hr;ar§CWC;r;x̆r†Way‡;r
aorC‡oäW†;Ca‡rC‡r‰y`§Cqx̆hr‰†‰̆̈q=rflxCqrW̆†‡qr;x†;rCW‰äs
;†‡;r;̆»x‡C»†§r̆ L‰aqC;Ca‡4r‰̈aaoq4roC:ÿ̆q4r»C;†;Ca‡q4roaa;‡a;̆q4r
†‰‰̆‡hC»̆q4r†‡hr‡a‡rq̆iyC;ÿqrWyq;rC‡D†̈C†`§¤r`̆r»y;röaWr†r
‰†‰̆̈r‰̈Cär;ar‰y`§C»†;Ca‡=rflxCqr§̆†hqr;ar`C§§Ca‡qraorha§§†̈qrC‡r
‰y`§C»r†‡hr‰̈CD†;̆r̈̆q̆†̈»xr:̈†‡;qry§;CW†;̆§¤r`̆C‡:rq̆‡;r;ar
;x̆r88»y;;C‡:r̈aaWro§aä=YY

flx̆̈̆r†̈̆r†r‡yW`̆̈raor;̈†hC;Ca‡†§rqa§y;Ca‡qr;ar;xCqr‰̈a`§̆W=r

flx̆r»§†qqC»rqa§y;Ca‡rCqr;ar‰̈ahy»̆r†rq̆‰†̈†;̆r88h̆§̆;̆hrq»̆‡̆qYYr
‰†‰̆̈r•ao;̆‡r»†§§̆hr†r88;̆»x‡C»†§r̈̆‰ä;YYroärxCq;äC»r̈̆†qa‡qcr
;x†;r C‡»§yh̆qr†‡¤r;̆L;r;x†;r‘†qr̆L»Cq̆hrhÿC‡:r;x̆r̆hC;C‡:r
‰̈a»̆qq=rurWC‡äC;¤raor̈̆q̆†̈»x̆̈qr‰y`§Cqxr;x̆C̈r̆‡;C̈̆r¦”Vr
är Vy`D̆̈qCa‡r ̈̆DCqCa‡r xCq;ä¤r •6ÿ‰x¤r PGǴc=r flxCqr
†‰‰̈a†»xrqyoŏ̈qrq̆D̆̈†§rḧ†‘`†»Kqtru;r§̆†q;r;‘arD̆̈qCa‡qraor
;x̆r‰†‰̆̈rWyq;r`̆rqCWy§;†‡̆ayq§¤rW†C‡;†C‡̆h>r†r̈̆†h̆̈rWyq;r
†»iyC̈̆r`a;xr;ar†»xC̆D̆r†§§rK‡a‘§̆h:̆>r;̆»x‡C»†§r̈̆‰ä;qr†̈̆r
‡a;ryqy†§§¤rqy`’̆»;r;ar‰̆̆̈r̈̆DC̆‘4r;x‘†̈;C‡:r;x̆r†»†h̆WC»r
‰̈a»̆qq>r†‡hry‡CD̆̈qC;¤r‰y`§C»†;Ca‡rq;†‡h†̈hqrW†¤rq;C§§r¤̆;r
§CWC;r;x̆r§̆‡:;xraor†r;̆»x‡C»†§r̈̆‰ä;=

u‡a;x̆̈r qa§y;Ca‡r öaWr ;x̆r ‡̆‘qr ‘C̈̆r C‡hyq;̈¤r Cqr ;x̆r
88‰¤̈†WChrWah̆§YYr‘x̆̈̆rC‡oäW†;Ca‡rCqr‰̈̆q̆‡;̆hrC‡r†rq;̈C»;§¤r
Wä̆s;as§̆qqrCW‰ä;†‡;räh̆̈4rqar;x†;r†‡¤r‰̈̆oCLraor†‡r†̈;C»§̆r
W†LCWCX̆qr;x̆r»a‡;̆‡;rD†§y̆roär;x†;r‡yW`̆̈raor»x†̈†»;̆̈q=r
flxCqr †§§a‘qr ;x̆r ‰y`§Cqx̆̈r ;ar ‰̈C‡;r ̆L†»;§¤r †qrWy»xr aor ;x̆r
†̈;C»§̆r†qr»†‡roC;rC‡r;x̆rq‰†»̆r†D†C§†`§̆=rflxCqr;̆»x‡Ciy̆r†§qar
qyoŏ̈qrḧ†‘`†»Kq4rW†C‡§¤r;x†;r;x̆r‡†;ÿ†§r;̆L;y†§ro§a‘r»†‡r
`̆r C‡;̆̈̈y‰;̆hr `¤r ;xCqr ‰̈CäC;CX†;Ca‡=r uhhC;Ca‡†§§¤4r ;x̆r
‰¤̈†WChrWah̆§rhăqr‡a;r‘̆§§r†»»aWWah†;̆rW†C‡q;†¤qraor;x̆r
†»†h̆WC»r Wah̆§r qy»xr †qr oC:ÿ̆q4r »C;†;Ca‡q4r †‡hr ‰a§C;C»†§§¤r
‡̆»̆qq†̈¤r†»K‡a‘§̆h:̆W̆‡;rq̆»;Ca‡q=

6ah̆̈‡r ;¤‰̆q̆;;C‡:r x†qr ̈̆‡h̆̈̆hr ;x̆r ‰¤̈†WChr Wah̆§r
a`qa§̆;̆=rflx̆rC‡q‰C̈†;Ca‡roär;xCqr;̆»x‡a§a:¤r»aW̆qröaWr;x̆r
§̆;;̆̈§†¤C‡:r ̈̆:CW̆r yq̆hr C‡r ;x̆r V;†̈r f†̈qr 6aDC̆r •my»†qr
~5́́c=r „‡r ;x̆r a‰̆‡C‡:r q»̆‡̆r ;̆L;r Cqr hCq‰§†¤̆hr ;ar yqr †;r †‡r
†‡:§̆4r ̈̆»̆hC‡:r ;ar ;x̆r D†‡CqxC‡:r ‰aC‡;=rf̆̈̆r aÿr ̆¤̆qC:x;r
qyooC»C̆‡;§¤r †»y;̆4r ‘̆r ‘ay§hr `̆r †`§̆r ;ar ̈̆†hr oÿ;x̆̈r †‡hr
oÿ;x̆̈rC‡;ar;x̆rhCq;†‡»̆>rqC‡»̆r;x̆rV;†̈rf†̈qr6aDC̆r`̆:C‡qr

rrrr

a‡r 88¡‰Cqah̆r ZYYr C;r Cqr ̆D̆‡r qy::̆q;̆hr ;ar yqr ;x†;r ;x̆r ‰§a;r
qyWW†̈C̆qroär¡‰Cqah̆qr‹r;ẍay:xr‡̆:†;CD̆rC‡oC‡C;¤rC‡ro†»;r†̈̆r
‘̈C;;̆‡rC‡r¤̆§§a‘rq;†̈hyq;ra‡r;x†;rD̆̈¤rxäCXa‡=rn̆;r†§§raor;xCqr
;†K̆qr ‰§†»̆r C‡r ;x̆r oC‡C;̆r ;‘ashCW̆‡qCa‡†§r †̈̆†r aor ;x̆r qC§D̆̈r
q»̈̆̆‡<r u§;xay:xr qy»xr ;̆»x‡a§a:¤r ‘†qr a‡»̆r ;xay:x;r ;ar `̆r
̆L»§yqCD̆§¤r ;x̆r ‰ÿDC̆‘r aor V‰†»̆4r ‘̆r ‡a‘r K‡a‘r xa‘r ;ar
̆Wy§†;̆rC;rC‡r‰̈C‡;=

¦a‡;̆‡;ru;;̆‡y†;Ca‡

flx̆r‰̈CW†̈¤r;̆»x‡a§a:¤r‘̆r̆W‰§a¤rCqr;x̆r†`C§C;¤roärWah̆̈‡r
»aW‰y;̆̈qr;ar̈̆‡h̆̈r;¤‰̆o†»̆qr†;r†̈`C;̈†̈¤rqCX̆=r¡†»xrq̆»;Ca‡4r
‰†̈†:̈†‰x4rq̆‡;̆‡»̆4rär‘äh4rCqr‰̈CäC;CX̆hr`¤rC;qr‘ä;xr†qrC‡r
;x̆r ‰¤̈†WChr q»x̆W̆=r flx̆‡4r qy»»̆qqCD̆r »aW‰a‡̆‡;qr aor ;x†;r
‰̈CäC;CX̆hr q;̈C‡:r †̈̆r ̈̆‡h̆̈̆hr †;r ‰̈a:̈̆qqCD̆§¤r h̆»̈̆†qC‡:r
;¤‰̆rqCX̆qrqar†qr;aroC;rC‡r†‡r†̈`C;̈†̈¤r†Way‡;raorq‰†»̆=

flarC§§yq;̈†;̆r;x̆r»a‡»̆‰;4r;xCqr‰†̈†:̈†‰xr»a‡;†C‡qr†r§Cq;raor;x̆r
;xC‡:qr;x†;r;x̆r†y;xär†;̆r;ah†¤4rC‡rh̆»̈̆†qC‡:rCW‰ä;†‡»̆tr
?C:r6†»4r6»Imfl4r†riy†̈;̆̈r‰ay‡h̆̈r‘C;xrqaW̆r»x̆̆q̆4rRC§̆;s@s
RCqx4r †rx†W`ÿ:̆̈4r †r »x̆̆q̆`ÿ:̆̈4r †r[†‰‰¤r6̆†§4r6»vy::̆;q4r ;†q;¤r
:a§h̆‡rö̆‡»xröC̆qr•C‡r̈̆:y§†̈r†‡hr§†̈:̆̈rqCX̆qcr†‡hrq†§†hqr»x̆orär:†̈h̆‡4rär
†r»xC»K̆‡rq†§†hräC̆‡;†§4r`C:r`C:r`̈̆†Ko†q;q4r̆::r6»6yooC‡q4rxa;rxa;r»†K̆qr†‡hrq†yq†:̆4r
W†¤`̆r`Cq»yC;q4r`†»a‡r̆::r†‡hr»x̆̆q̆4rärq†yq†:̆rh†‡Cqxrx†qxr`̈a‘‡qr;aa4r†‡hroärh̆qq̆̈;tr
xa;r†‰‰§̆r‰C̆4rärqy‡h†̆qr;ẍ̆̆rD†̈C̆;C̆qr†rqao;rq̆̈D̆r»a‡̆4r;ẍ̆̆rKC‡hqraorqx†K̆4rär»xa»a§†;̆§¤r»xC‰r»aaKC̆qr
†‡hr;arḧC‡Kr†r¦a»†s¦a§†rIC̆;r¦aK̆rärä†‡:̆rV‰̈C;̆r†‡hr»aoŏ̆r•h̆»†or;aacr†‡hr†§qarä†‡:̆r’yC»̆>r„r§aD̆r6»Ia‡†§hYq4r:aahr
;CW̆4r:̈̆†;r;†q;̆r†‡hr„r:̆;r;xCqr†§§r†;ra‡̆r‰§†»̆=ru§qatru§»axa§C»r`̆D̆̈†:̆4ru§Wa‡hq4ruW†̈†‡;xyq4ruW̆̈C»†‡r»x̆̆q̆q4ru‰‰§̆4ru‰‰§̆r
»y§;CD†̈q4ru‰‰̆;CX̆̈4r?†`¤roaah4r?̆†‡q{m̆:yW̆q4r¦xC»K‰̆†q4r?̈a†hr`̆†‡q4rm̆‡;C§q4r̃̆†q4r̃̆†‡y;q4r̃x†q̆a§yqr`̆†‡q4rVa¤`̆†‡q4rV‘̆̆;r‰̆†qr•m†;x¤̈yqc4r
?̆̆o4r?̆D̆̈†:̆4ru§»axa§C»r̀ ̆D̆̈†:̆4r¦aoŏ̆4r¡‡̆̈:¤rḧC‡K4r¡q‰̈̆qqa4rRC»;Ca‡†§r̀ ̆D̆̈†:̆q4rRaahqx†K̆4reyC»̆4r̂ ä̆†‡r̀ ̆D̆̈†:̆q4r6C§K4r6C§Kqx†K̆4rva‡s†§»axa§C»rḧC‡K4rV§yqx4r
Vao;rḧC‡K4rV‰†̈K§C‡:r‘†;̆̈4rV‰ä;qrḧC‡K4rfl̆†4rf†;̆̈4r?Cq»yC;4r`̈†‡hq4r?̈†‡hqraor`Cq»yC;4r?̈̆†h4r?̈̆†Ko†q;r»̆̈̆†§q4r?̈C;Cqxr»x̆̆q̆q4r¦†K̆q4r¦†̈`ax¤ḧ†;̆q4r¦†̈`a‡†;̆hr‘†;̆̈4r¦†̈a`4r¦†;qy‰4r¦̆̈̆†§4r?†̈§̆¤4r
?y»K‘x̆†;4r̂†Wy;4r6†CX̆4r@†;q4rƒC»̆4rƒ¤̆4rVä:xyW4rV‰̆§;4rfl̈C;C»†§̆4rfl̆oo4rfC§hr̈C»̆4rfx̆†;4r¦̆̈̆†§q4r`̈̆†Ko†q;4r¦x̆̆q̆q4r¦x̆̆q̆q4ruW̆̈C»†‡4r¦x̆̆q̆q4r?̈C;Cqx4r¦x̆̆q̆q4rR̈̆‡»x4r¦x̆̆q̆q4rV‘Cqq4r¦xC‡̆q̆rhCqx̆q4r¦ẍCq;W†qr
hCqx̆q4r¦C;̈yq4r¦a»a†4r¦a»a‡y;q4r¦aoŏ̆4r¦aWoä;roaah4r¦a‡hCW̆‡;q4r¦a‡ŏ»;Ca‡̆̈¤4r¦a‡D̆‡C̆‡»̆roaah4r¦äC†‡h̆̈4r¦yCqC‡̆4rI†``†‘†§†4rI†C̈¤r‰̈ahy»;4rĬ§C»†»C̆q4rĬqq̆̈;4rIC̆;†̈¤rqy‰‰§̆W̆‡;q4rIC̆;roaah4rICqx̆qt4r~PshCqx̆qr¦ẍCq;W†qr¡D̆rVy‰‰̆̈4rICqx̆q4r¦xC‡̆q̆4rICqx̆q4r¦a§ä†ha4rICqx̆q4r̆::4rICqx̆q4r„;†§C†‡4r
ICqx̆q4r„‡hC†‡4rICqx̆q4r6äa»»†‡4rÏC̆hroaahq4rÏC‡Kqr•V̆̆r†§qar?̆D̆̈†:̆qc4rÏy‰̆4rIÿC†‡rq̆̆hq4r¡::4r¡::rhCqx̆q4r¡‡̆̈:¤rḧC‡K4r¡q‰̈̆qqa4rR†q;roaah4rR†;4rRC»;Ca‡†§r`̆D̆̈†:̆q4rRC‡:̆̈roaah4rRCqx4rRCqx4rR§†DäC‡:4rRaah4rRaahr†hhC;CD̆4rRaahr†hhC;CD̆q4rRaahr†hhC;CD̆q4r¦ah̆Lru§CW̆‡;†̈Cyq4rRaah4ro†q;4rRaahr
:̈ay‰q4rRaahr‡†W̆q4rWCq§̆†hC‡:4rRaah4rä:†‡C»4rRaahr‰¤̈†WCh4rRaahr‰̈̆q̆̈D†;CD̆q4rRaahq4rRaahqr‡†W̆hr†o;̆̈r‰̆a‰§̆4rRaahr‰†C̈q4rRaah4rq§a‘4rRaahq4rq‡†»K4rRaahq4rD̆:†‡4rRaahq4r‘C§h4rR̈̆‡»xr»x̆̆q̆q4rR̈aX̆‡roaah4rR̈yC;4rR̈yC;4r;̈a‰C»†§4rR̈yC;q4rfĭ‡̆;C»†§§¤rWahCoC̆hroaah4rfiC‡K:a4rfï†C‡4r[†X̆§‡y;4r[̆̈`r†‡hrq‰C»̆4r[̆̈`qr†‡hrq‰C»̆q4r[äqrh̆ayD̈̆4r„‡:̈̆hC̆‡;4re†‰†‡̆q̆rC‡q;†‡;r‡aah§̆q4re†‰†‡̆q̆rq‡†»Kq4reyC»̆4rey‡Kroaah4r̂̆;»xy‰4r̂ä̆†‡r`̆D̆̈†:̆q4rm̆:yW̆q4rma»†§roaah4r6†‡:ar»y§;CD†̈q4r6̆†;4r6C§K4r6Cq§̆†hC‡:roaahr‡†W̆q4r6a‡K̆¤s‰yXX§̆4r6yqẍaaW4r̆hC`§̆4r6yq;†̈h4r6yq;†̈hq4rva‡s†§»axa§C»r`̆D̆̈†:̆4r
vaah§̆q4rvaah§̆q4re†‰†‡̆q̆rC‡q;†‡;4rvaD̆§roaah4rvy;̈C̆‡;4rvy;qr†‡hrq̆̆hq4r@̈†‡:̆4r@̈:†‡C»roaah4r̃†q;†4r̃†q;̈¤4r̃xC§C‰‰C‡̆rq‡†»Kroaahq4r̃C‡̆r‡y;q4r¦xC§:aX†r̃C‡̆4r̂ä̆†‡r̃C‡̆4rV;a‡̆r̃C‡̆4r¦a§ä†har̃C‡¤a‡4r6̆LC»†‡r̃C‡¤a‡4rVC‡:§̆s§̆†or̃C‡¤a‡4r̃a‰‰¤rq̆̆hq4r̃äK4r̃ay§;̈¤4r̃̈̆q̆̈D†;CD̆4r̃̈ahy»̆4r̃̈a;̆C‡4r̃yhhC‡:4r̃y§q̆r•§̆:yW̆c4r̃yW‰KC‡rq̆̆hq4rJyC‡a†4rƒ†W`y;†‡4rƒxy`†̈`4rV†§†h4rV†‡h‘C»x4rV†y»̆4rV̆†oaah4rV̆†oaah4r;¤‰̆q4rV̆̆hqr†‡hr‡y;q4rV̆̆hq4r̆hC`§̆4rV̆q†W̆rq̆̆hq4rVCh̆rhCqx4rV§a‘rRaah4rV§yqx4rV‡†»Kroaahq4rV‡†»Kq4re†‰†‡̆q̆4rV‡†»Kq4r̃xC§C‰‰C‡̆4rVao;rḧC‡K4rVao;rḧC‡Kqr`¤r»ay‡;̈¤4rVay§roaah4rVay‰4rVay‰q4rV‰†̈K§C‡:r‘†;̆̈4rV‰C»̆r†‡hrx̆̈`4rV‰C»̆qr†‡hrx̆̈`q4rV‰ä;qrḧC‡K4rV‰̈̆†h4rV;†‰§̆roaah4rV;̆‘4rV;C̈rö¤4rV;̈̆̆;roaah4rV;yh̆‡;roaah4rVy:†̈4rVy‡o§a‘̆̈rq̆̆hq4rV‘̆̆;q4rV‘C;X̆̈§†‡hr»x̆̆q̆q4rfl†`aaroaahr†‡hrḧC‡K4rfl̆†4rflCooC‡4rfl̈a‰C»†§röyC;4r”̆:†‡roaahq4r”̆:̆;†`§̆4r”̆:̆;†`§̆q4rf†;̆̈4rfC§hroaahq4rn†W=

uo;̆̈r ;x†;r ̆Lx†yq;CD̆r §Cq;4r ;x̆r ‰†‰̆̈r »†‡r ‰̈a»̆̆hr‘C;xr ;x̆r
‰̈a‰̆̈ro§a‘r`¤r̈̆q;äC‡:r;x̆r‡äW†§roa‡;rqCX̆=rflx̆r†;;̆‡y†s
;Ca‡roy‡»;Ca‡r»†‡r`̆r»xaq̆‡rWä̆rär§̆qqr†̈`C;̈†̈C§¤=rurqCW‰§̆r
»xaC»̆r x†§D̆qr ;x̆r oa‡;r qCX̆r †o;̆̈r ”r »x†̈†»;̆̈q4r ;x̆‡r ”{Pr
»x†̈†»;̆̈q4r;x̆‡r”{Zr»x†̈†»;̆̈q4r̆ ;»=4r̆ ‡qÿC‡:r;x†;r†‡rC‡oC‡C;̆r
†Way‡;raor;̆L;r»†‡roC;rC‡r†rqW†§§roC‡C;̆rq‰†»̆rh̆;̆̈WC‡̆hr`¤r”r
†‡hr;x̆rq;†̈;C‡:roa‡;rqCX̆=

¡L;̆‡qCa‡q

flxCqr;̆»x‡Ciy̆r‰̈aD̆qryq̆oy§roärWaq;rha»yW̆‡;q4r`y;r‡a;r†§§r
Ch̆†qr »†‡r `̆r ̆†qC§¤r ̆L‰̈̆qq̆hr C‡r §C‡̆†̈r oäW=r Rär C‡q;†‡»̆4r
W†‡¤r†»†h̆WC»rha»yW̆‡;qr»a‡;†C‡r•är‘ay§hr»a‡;†C‡4rCor‡a;r
oär;x̆r§CWC;†;Ca‡qraor;x̆C̈r‰̈CWC;CD̆r~5dGqr;¤‰̆q̆;;C‡:r†‰‰§Cs
»†;Ca‡qcroaa;‡a;̆q4r‘C;xroaa;‡a;̆qr†‡‡a;†;C‡:r;xaq̆roaa;‡a;̆q4r
oaa;‡a;̆qr a‡r ;xaq̆r oaa;‡a;̆q4r oaa;‡a;̆qr y‰a‡r ;xaq̆r oaa;‡a;̆q4r †‡hr y‰a‡r ;xaq̆r
oaa;‡a;̆qrWä̆roaa;‡a;̆q4r‘xC»xr;x̆Wq̆§D̆qrx†D̆r†rD†̈C̆;¤raoroaa;‡a;̆q4r†‡hrC‡r;xaq̆rD̆̈¤r
§C;;§̆roaa;‡a;̆qrqaW̆rWä̆r̆D̆‡rqW†§§̆̈roaa;‡a;̆q4r‘xC»xYqrWC‡y;C†̆rCqr†§qar†y:W̆‡;̆hr`¤rqy‰̆̈q»̈C‰;r‡yW̆̈†§qr
h̆‡a;C‡:r‡a;̆qr†;r;x̆roaa;4r‘xar;x̆WD̆§D̆qr†̈̆rh̆q»̈C`̆hr`¤roaa;‡a;̆q4ra‡r;a‰raor‘xC»xroaa;‡a;̆rh†::̆̈qr†‡hr†q;̆̈CqKqrx†D̆r
`̆̆‡r§†Ch4r†‡hr;xaq̆r‡a;̆qr†§qar‡a;rCWWy‡̆r;aroaa;‡a;̆̈¤4r†‡hrC‡h̆̆hr†:†C‡r;x̆roaa;‡a;̆qr†̈̆r‡a;̆h4r‡a;r;arW̆‡;Ca‡r;xaq̆r;x̆Wq̆§D̆qroaa;‡a;̆qr‘xC»xr†̈̆rqy‰‰§̆W̆‡;̆h4r
†‡hr;xaq̆r‡a;̆qrqx†§§r‡a;r`̆r88§̆o;YYr‘C;xay;r88;‘arŏ̆;YY4r̆;»=

?̆»†yq̆r;x̆r†Way‡;raor;̆L;rC‡rqy»xrq¤q;̆Wqr»†‡r`̆ry‡»ay‡;s
†`§¤rC‡oC‡C;̆4r†‡r̆L;̆‡qCa‡r;araÿrq¤q;̆WrCqr‡̆»̆qq†̈¤r;ar†§§a‘r
oär;x̆C̈r§†¤ay;=rflxCqr̆L;̆‡qCa‡rCqr`†q̆hra‡rmsq¤q;̆Wqr•ƒ̆̆hr
~55lc=r¥qC‡:4roär̆L†W‰§̆4r;x̆rVC̆̈‰C‡qKCr;̈C†‡:§̆4r‘̆r»†‡r§†¤r
ay;r †‡r †̈`C;̈†̈¤r C‡oC‡C;̆r ‡̆q;C‡:r aor oaa;‡a;̆q4r †qqyWC‡:r †r
oaa;‡a;̆r Cqr §̆qqr CW‰ä;†‡;r ;x†‡r ;x̆r oaa;‡a;̆r C;r †‡‡a;†;̆q=r

fl@6r6¥ƒ̃[nr”„„4rfl@6r6¥ƒ̃[nr”„„4rfl@6r6¥ƒ̃[nr”„„4rfl@6r6¥ƒ̃[nr”„„4rfl@6r6¥ƒ̃[nr”„„4rfl@6r6¥ƒ̃[nr”„„4rfl@6r6¥ƒ̃[nr”„„4rfl@6r6¥ƒ̃[nr”„„4rfl@6r6¥ƒ̃[nr”„„4rfl@6r6¥ƒ̃[nr”„„4rfl@6r6¥ƒ̃[nr”„„4rfl@6r6¥ƒ̃[nr”„„4rfl@6r6¥ƒ̃[nr”„„4rfl@6r6¥ƒ̃[nr”„„

f̆r̀ ̆:C‡r̀ ¤r‘̈C;C‡:raÿr;̆L;r§C‡̆r†qrC‡rRC:ÿ̆r~=ru;r;x̆r‰aC‡;r
‘̆r‘Cqxr;arC‡q̆̈;r†roaa;‡a;̆4r‘̆rW†K̆r†rqW†§§rhC†:a‡†§rhCD̆̈s
qCa‡röaWr;x̆r§C‡̆4ra‡r‘xC»xr;x̆roaa;‡a;̆rCqrhCq‰§†¤̆hr•RC:ÿ̆r
Pc=rVy»xroaa;‡a;̆r§C‡̆qrqy‰‰ä;roaa;‡a;̆qr;x̆Wq̆§D̆qr•RC:ÿ̆r
‹c4r̆;»=

@‡̆r ‰aqqC`§̆r ḧ†‘`†»Kr aor qy»xr §†¤ay;qr Cqr ;x†;r‘xC§̆r ;x̆¤r
†»»aWWah†;̆r†‡rC‡oC‡C;̆r†Way‡;raor;̆L;4r;x̆¤ryq̆rX̆̈ar†̈̆†4r
;̆‡hC‡:r;a‘†̈hqr†r‰†:̆r;x†;rCqr»aW‰§̆;̆§¤r`§†‡KrC‡r;x̆r§CWC;=r
Räroy;ÿ̆r‘äK4r‘̆r`̆§C̆D̆r§†¤ay;rq»x̆W̆qr»ay§hr`̆rh̆DCq̆hr
`†q̆hr a‡r q‰†»̆soC§§C‡:r »ÿD̆qr qy»xr †qr ;x̆r [C§`̆̈;r ¦ÿD̆r
•RC:ÿ̆rZc>roärC‡oC‡C;̆r†Way‡;qraor;̆L;rqy»xr»ÿD̆qr‰̈ahy»̆r
†̆q;x̆;C»†§§¤r‰§̆†qC‡:r»aW‰§̆;̆§¤r`§†»Kr‰†:̆qr•RC:ÿ̆r‚c=

¦a‡»§yqCa‡q

¥‡̆‡»yW`̆̈̆hr `¤r ;x̆r »a‡q;̈†C‡;qr aor x†DC‡:r ;ar ‰̈ahy»̆r †r
»a‡»Cq̆r qyWW†̈¤r aor ;xCqr‘äK4r‘̆r C‡q;̆†hr ̈̆‰̆†;r C;r C‡r C;qr
̆‡;C̈̆;¤rqar†qr‡a;r;ar§̆†D̆r†‡¤;xC‡:ray;=rrrrrrrrrr

u»K‡a‘§̆h:̆W̆‡;q

flx̆r†y;xär‘Cqx̆qr ;ar†»K‡a‘§̆h:̆r†§§r‰̆̈qa‡qr`ä‡r C‡r ;x̆r
¤̆†̈r ~5́54r C‡r †§‰x†`̆;C»†§r äh̆̈tr ”C;†§C’r u†`4r u†§C¤†x4r ¦†̈§;a‡r
u†̈a‡4r6aa‡CK†ru†D†4r6=r[†̈aa‡ru``†qrJ†W†̈4r̂ x†§Chru`hy§§†xr•uW̆̈C»†‡roaa;`†§§r
‰§†¤̆̈c4ru`hy§§†xru`hy§i†hC̈†KxyW4rQ̈C»ru`Ch†§4rR†`̈C»̆ru`̈C̆§4r[a»C‡̆ru»xCay4r@§CD̆̈ru»K§†‡h4ruW¤ruh†Wqr•qC‡:̆̈c4r?§y̆r

rrrr

uh†Wq4r¦x†̈§C̆ruh†Wq4r̂̆C;xruh†Wqr•uW̆̈C»†‡roaa;`†§§c4r̂̆§§¤ruh†Wq4r?†`†ruh†Wy4r@ẄCruŏK4reaq̆‰xruooy§4r6†LCWruoC‡a:̆‡aD4ruöa`4rv†X†‡C‡ruoqxC‡se†W4r¦†̈§aqru:†qqC4ru:̆‡;r64rv†̈a†ru:C̈̈̆4r
ey‡Cäru:a:a4ru§̆qq†‡ḧaru:aq;C‡C4r?’Q̈‡rQ:̈̆‡4r̃ ̆̈̈aru:y†¤a4rë=4r¦ẍCqru:yC§†4r6†̈DC‡ru:yq;Q‡4ruxW†hr[†qq†‡rV;†KaX†4r̃ †`§aruCW†̈4rIa‡‡†ruC̈4rVay†hruQ;rV†§̆W4rĕ‰KäC̈ruC¤†`̆C4r@̈x†‡ruK4reCWWC̆r
QK̆qqa‡4ru`hy§†xru§r[†WC̈C4rR†‘†Xr†§sƒ†`̆C̆̆4rV†§̆xru§sV†ïC4r6yx†WW†hru§†hhC‡4ru§†‡r@qQ̈Carh†r¦aq;†rVC§D†4r¦†̈§aru§`†‡4r¦ẍCq;C’†‡ru§`̆̈q4r6†̈Karu§`̆̈;4r¦ẍCqru§`̈C:x;4r[y:aru§»†‡;†̈†4ru§̆qq†‡ḧar
6äCrvy‡̆q4rI†‡ru§̆L†4rfi†̈¤ru§̆L†‡h̆̈r•oaa;`†§§̆̈c4rflahhru§̆L†‡h̆̈4r¡§CQX̆̈ru§oa‡Xa4r6y†X†Wru§C4r6yx†WW†hru§C4r̃̈C‡»̆raorV†Ch4rfl†;¤†‡†ru§C4rfl=re=ru§§†̈h4r¡§CX†`̆;xru‡‡̆ru§§̆‡4re†W̆qru§§̆‡r•uW̆̈C»†‡roaa;`†§§c4r¦ä`C‡ru§§̈̆h4rvC»a§†qru§‡ayh’C4ru§̆’†‡ḧaru§‰CX†̈4rVyWW̆̈ru§;C»̆4rfĭ‡‡†h¤ru§;W†‡4rƒ̆‡Qru§D†̈†ha4rV̆̈:Caru§D†̈̆Xr?ay§̆;4rI†WC†‡rüC̆§r,§D†̈̆X4rfla‡¤ru§D†̈̆X4ruḧC†‡aru§D̆q4rVxa§†ruW†4rVCWa‡†ruWQ‡†̈4ruW†‡h†rm†;a‡†4r¦†;̆§§aruW†̈†‡;̆4r¦ẍCq;C‡̆ruW̆̈;C§4ruWC̈ru`hy§[†WCh4r6̆xhCruWC̈†`†hC4ruxW̆hruW§†4rVCWa‡ruWä4rVCWa‡ruWq;̆§§4ru‡rV†‡:s6C4ru‡r¦xa¤ay‡:4r̂̈Cq;C‡†ru‡†‰†y4rI†WC̆‡ru‡h̆̈qa‡4re†qa‡ru‡h̆̈qa‡r•`†q̆`†§§r‰§†¤̆̈c4rv̆C§ru‡h̆̈qa‡4rV»a;;¤ru‡h̆̈qa‡4r”C‡‡C̆ru‡h̆̈qa‡4rea‡†qru‡h̆̈qqa‡r
•†̈»x̆̈¤c4ru‡ḧQ4ru‡ḧ̆‘rfx¤W̆‡;4rfiCyq̆‰‰̆ru‡ḧ̆‘q4r6̆:x†‡ru‡ḧ̆‘q4rfl†;¤†‡†ru‡ḧC†‡aD†4rvC»a§†qru‡̆§K†4r6†̈Kru‡̆§§C4r¦†q‰̆̈ru‡K̆̈:̈̆‡4rƒC»Kru‡KC̆§4rI†D̆ru‡‡†`§̆4r[̆‡̈¤ru‡;»xay̆;4r¦ẍCqru‡;xa‡¤4reax‡r¦=ru‡;a‡Ca4ru§̆Lru‡;ä4r[C̈aoyWCrü†C4r¡̈‡̆q;arü†K†KC4ru‡ha‡Crü†‡†:†4r̃†y§rü†‡†q4r6CK̆§rü†‡`ÿy4rI†‡C̆§rü†‡Xy`Q†4reä:̆rü»̆4r6̆§Cqq†rü»x̆̈4r¡hhC̆rü:aq4rĬ‡CqrüKxC‰aD4ru‡ḧ̆Crü§aDqKC4re†qa‡rüWq;̆†h4rĬ̈C»KrüWq;̈a‡:4rfl¤§̆̈rü‡†qa‡4rI†‡C̆§rü‡̆o’äh4r?̈̆‡;rü‡̆§4reax†‡rü‡̆‡:4re†C̈arü̈C̆;†4rm̆‡C‡rü̈a¤a4rƒa‡rü;̆q;4rV†ChrV†Coruq††h4ruq†K†r̂y`a4r„̈†̆‡†ruqx̆̈4r6†‡h¤ruqxoäh4re†W̆§ruqx§̆¤4ru†̈a‡ruqxWä̆4rVx†‘‡ruqXxWä̆4r?̈†xCWruq§ayW4r6†̈KruqiyC;x4r¡X̆iyC̆§ruq;†»Ca4r6Da‡haru;†‡:†‡†4rfi†̈̈̆;;ru;KC‡q4r¦ẍCqru;KC‡qa‡4rV†Wru;‘̆§§4rƒa§†‡hruyh̆‡̈C̆;x4ru§̆L†‡ḧ̆ruyh̆;4r6C†ruyhC‡†4rI†‡ruy̆̈`†»x4rey§C̆ruy:yq;¤‡C†K4r
RQ`CaruÿQ§Ca4rvC»a§̆ruyq;C‡4r¡WC§C̆ruy;yW‡4r̂ä†¤ruD»Q4r?̈C†‡ruD̆̈¤4rfC§§C†WruD̆̈¤r•`†qK̆;`†§§c4r¦†§̆`ruDC§Qq4r”§†h†ruD̈†WaD4rĕ†‡̆;;̆ru‘4r¡̈C»ruL̆§qa‡4r6†̈;C‡ruL̆‡̈a;4ru¤hC§:̆4ruKC‡ru¤ah̆§̆4rf†§;̆̈ru¤aDQ4rv̆C§ru¤̈̆q4rn†aruXC†‘a‡ay4rfĭä:̆qr?†4rnayqq̆or?†`†4rmy»†qr?†`C‡4rfiQ§†r?†`§y†‡C4rI†DChr?†»†‡C4r6ä̆‡†r?†»»†̈C‡4r[a‘†̈hr?†»x4rea‡ar?†»a‡4rf†C‡̆r?†»a‡4rV††’Chr?†h†;4ruxW̆hr?†h†¤4r¦̆X†̈r?†•hC;4†•4r?†̆rIaa‡†4r6†W†hayr?†:†¤aKa4rfiyq;†D̆r?†xaK̆‡4rV̆̈̆W†C†r?†C4rR̆̈‡†‡har?†C†‡a4r¦äC‡‡̆r?†C§̆¤rƒ†̆4r?aqqr?†C§̆¤4rƒah‡̆¤r?†C§̆¤4rfl†‡C†r?†C§̆¤4rV†‡ḧC‡̆r?†C§§¤4r6†̈C†‡ar?†C‡a;;C4ru‡h¤r?†C̈h4ru§̆Kq†‡h†̈r?†’̆DqKC4r?̈†‡CWC̈r?†’C»Y4r?̈†‡Cq§†Dr?†’C»Y4r7§†;†‡r?†’̈†WaDC»Y4r¦ẍCqr?†K̆̈r•oaa;`†§§r‰§†¤̆̈c4rI†‡C̆§ru=r?†K̆̈4r6†;;r?†K̆̈r•oaa;`†§§̆̈c4r6†ÿC»̆r?†K̆̈4reaqQre†DC̆̈r?†̈K̆̈a4rV†̈†xr?†§†`†:†‡4rVX†`a§»qr?†§†’»X†4rI†‡C̆§r?†•§†‡4re†̈aq§†Dr
?†§†Q;QK4rQCDC§̆=r?†§»•Cys‡†C;̆=4r„D†‡ar?†§C»Y4r̃C‡Cr?†§C§C4r6C»x†̆§r?†§§r•oaa;`†§§̆̈c4ru§̆qq†‡ḧar?†§§†‡

?C`§Ca:̈†‰x¤

~=r6ÿ‰x¤4r flaW4r ”„„>r 88fCKC‰§C†tr flx̆r R̈̆̆r ̃̈a:̈†WWC‡:r m†‡:y†:̆r ;x†;r
u‡¤a‡̆r»†‡r¡hC;YY4rV„fi?@”„̂rPGǴ4rPGǴ=
P=rmy»†q4rfĭä:̆>r88V;†̈rf†̈qr6aDC̆YY4rflx̆r6aDC̆rflx̆†;̈̆4r~5́́
‹=rƒ̆̆h4re†qa‡>r88fiIr†‡hrmsq¤q;̆WqYY4rflx̆r̃̆̈§reaÿ‡†§4r”a§yW̆r‹4rvyW`̆̈r
~r•F5c4rV‰̈C‡:r~55l=

[̆̈̆rCqr;x̆rW†C‡r`ah¤r;̆L;=

[̆̈̆rCqr;x̆rW†C‡r`ah¤r;̆L;=
u

roa

a;

‡a

;̆
r:

ă
qr

x̆
̈̆4rC‡rqW

†§§̆̈rqCX̆=

[̆̈̆rCqr;x̆rW†C‡r`ah¤r;̆L;=
u
roa
a;
‡a

;̆
r:

ă
qr

x̆
̈̆4rC‡rqW

†§§̆̈rqCX̆=

fl
x
̆r
oa
a;
‡
a
;̆
qr
;x
̆ W
q̆
§D
̆ q

r»†‡rx†D̆roaa;‡a;̆q uqr§a‡:r†qr;x̆roaa;‡a;̆r†‰‰̆†̈qr~{‹rärP{
‹
ra
o r;x

̆r‘
†
¤
r;x
̈a
y
:x
r;x
̆r; ̆L

;=

RC:ÿ̆qr~4rP4r‹=rR̈†»;†§r§†¤ay;raoroaa;‡a;̆qryqC‡:
;x̆rVC̆̈‰C‡qKCr¦ÿD̆=

RC:ÿ̆rZ=rflx̆r[C§`̆̈;r¦ÿD̆=

R

†»

̆hr ‘

C ;xr; x̆

rx†̈q
xr‰†

:

̆ s§CW

C;q ra o r;

x̆r†»† h

̆WC »r‰y

§̀C

qxC ‡:rC ‡

hyq;

̈ ¤4r

q»C̆‡

;Cq

; qr†̈r̆ äy;C‡̆§ ¤roä»̆

hr ; ar §

CWC

;r ; xr̆ †Wa

y‡;

raorC

‡oä

W†

;Ca‡ rC
‡r‰ ỳ

§ C q x̆ hr

‰†‰̆q̈= rflxCqr W̆†‡

qr ;x†;rCW ‰ ä;†

‡

;r ;

̆

»x

‡C» †

§r̆L ‰aqC;Ca ‡4 r ‰ ä

a o q4roC:

ÿq̆ 4r» C; †

;Ca

‡ q4

roaa; ‡a;̆

q4r†‰

‰̆‡

hC »̆q4r †‡
hr‡a‡rq̆i y C ;yq̈

rW

yq;rC‡ D†C̈
† `§¤r`̆r » y; r öaW

r†r‰†‰̆

̈r‰̈Cä r;
ar ‰ỳ

§C»†;Ca‡=r fl

xCqr§̆†h

qr

;ar`

C§§Ca‡qra

orh

a §§†̈ qrC‡ r‰ỳ §C

» r †‡ hr‰̈CD

†;̆r̈̆ q ̆†̈» xr:̈ †‡ ;
qry § ;C W

†;§̆¤

r ` ̆C‡ :r

q ̆ ‡; r;ar;x̆r

RC:ÿ̆r‚=rfl̆L;r†̆q;x̆;C»†§§¤r§†Chray;ra‡r†
[C§`̆̈;r¦ÿD̆=

m̆D̆§saosĬ;†C§rfl¤‰̆q̆;;C‡:
aoru»†h̆WC»r̃y`§C»†;Ca‡q

u?Vflƒu¦fl

@‡̆raor;x̆r»xC̆or‰̈a`§̆Wqro†»C‡:r†»†h̆WC»r̈̆q̆†̈»x̆̈qrC‡r†§§r
†̈̆†qr aor q;yh¤r †̈̆r ;x̆r x†̈qxr ‰†:̆s§CWC;qr CW‰aq̆hr `¤r
»a‡ŏ̈̆‡»̆r ‰̈a»̆̆hC‡:qr †‡hr ’aÿ‡†§q=r ¥‡h̆̈r qy»xr
»a‡q;̈†C‡;q4rCh̆†qraor§†̈:̆rqCX̆rqCW‰§¤rWyq;r`̆r;̈y‡»†;̆hr;ar
oC;=r „‡r ‰†‰̆̈r ‘̆r ‰̈̆q̆‡;r †r ‡̆‘r ;̆L;r §†¤ay;r W̆;xaha§a:¤r
»†§§̆hrm̆D̆§raorĬ;†C§rfl¤‰̆q̆;;C‡:r;x†;r†§§a‘qr oär Ch̆†qraor
†‡¤r qCX̆r ;ar `̆r ̆L‰̈̆qq̆hr C‡r †‡¤r Ï†»a‡C†‡r ‰†:̆r §CWC;r
‘C;xay;r ;̈y‡»†;Ca‡=r flx̆r ;̆»x‡a§a:¤r †§§a‘qr ;x̆r :̈†»̆oy§r
h̆:̈†h†;Ca‡r aor ‰̈̆q̆‡;†;Ca‡r iy†§C;¤r †qr ;x̆r ‰†:̆r §CWC;r
h̆»̈̆†q̆q=

„‡;̈ahy»;Ca‡

R†»̆hr‘C;xr;x̆rx†̈qxr‰†:̆s§CWC;qraor;x̆r†»†h̆WC»r‰y`§CqxC‡:r
C‡hyq;̈¤4rq»C̆‡;Cq;qr†̈̆r̈ay;C‡̆§¤roä»̆hr;ar§CWC;r;x̆r†Way‡;r
aor C‡oäW†;Ca‡r C‡r ‰y`§Cqx̆hr ‰†‰̆̈q=r flxCqr W̆†‡qr ;x†;r
CW‰ä;†‡;r ;̆»x‡C»†§r ̆L‰aqC;Ca‡4r ‰̈aaoq4r oC:ÿ̆q4r »C;†;Ca‡q4r
oaa;‡a;̆q4r†‰‰̆‡hC»̆q4r†‡hr‡a‡rq̆iyC;ÿqrWyq;rC‡D†̈C†`§¤r`̆r
»y;röaWr†r‰†‰̆̈r‰̈Cär;ar‰y`§C»†;Ca‡=rflxCqr§̆†hqr;ar`C§§Ca‡qr
aorha§§†̈qr C‡r‰y`§C»r †‡hr‰̈CD†;̆r ̈̆q̆†̈»xr:̈†‡;qry§;CW†;̆§¤r
`̆C‡:rq̆‡;r;ar;x̆r88»y;;C‡:r̈aaWro§aä=YY

flx̆̈̆r†̈̆r†r‡yW`̆̈raor;̈†hC;Ca‡†§rqa§y;Ca‡qr;ar;xCqr‰̈a`§̆W=r

flx̆r»§†qqC»rqa§y;Ca‡rCqr;ar‰̈ahy»̆r†rq̆‰†̈†;̆r88h̆§̆;̆hrq»̆‡̆qYYr
‰†‰̆̈r•ao;̆‡r»†§§̆hr†r88;̆»x‡C»†§r̈̆‰ä;YYroärxCq;äC»r̈̆†qa‡qcr
;x†;r C‡»§yh̆qr†‡¤r;̆L;r;x†;r‘†qr̆L»Cq̆hrhÿC‡:r;x̆r̆hC;C‡:r
‰̈a»̆qq=rurWC‡äC;¤raor̈̆q̆†̈»x̆̈qr‰y`§Cqxr;x̆C̈r̆‡;C̈̆r¦”Vr
är Vy`D̆̈qCa‡r ̈̆DCqCa‡r xCq;ä¤r •6ÿ‰x¤r PGǴc=r flxCqr
†‰‰̈a†»xrqyoŏ̈qrq̆D̆̈†§rḧ†‘`†»Kqtru;r§̆†q;r;‘arD̆̈qCa‡qraor
;x̆r‰†‰̆̈rWyq;r`̆rqCWy§;†‡̆ayq§¤rW†C‡;†C‡̆h>r†r̈̆†h̆̈rWyq;r
†»iyC̈̆r`a;xr;ar†»xC̆D̆r†§§rK‡a‘§̆h:̆>r;̆»x‡C»†§r̈̆‰ä;qr†̈̆r
‡a;ryqy†§§¤rqy`’̆»;r;ar‰̆̆̈r̈̆DC̆‘4r;x‘†̈;C‡:r;x̆r†»†h̆WC»r
‰̈a»̆qq>r†‡hry‡CD̆̈qC;¤r‰y`§C»†;Ca‡rq;†‡h†̈hqrW†¤rq;C§§r¤̆;r
§CWC;r;x̆r§̆‡:;xraor†r;̆»x‡C»†§r̈̆‰ä;=

u‡a;x̆̈r qa§y;Ca‡r öaWr ;x̆r ‡̆‘qr ‘C̈̆r C‡hyq;̈¤r Cqr ;x̆r
88‰¤̈†WChrWah̆§YYr‘x̆̈̆rC‡oäW†;Ca‡rCqr‰̈̆q̆‡;̆hrC‡r†rq;̈C»;§¤r
Wä̆s;as§̆qqrCW‰ä;†‡;räh̆̈4rqar;x†;r†‡¤r‰̈̆oCLraor†‡r†̈;C»§̆r
W†LCWCX̆qr;x̆r»a‡;̆‡;rD†§y̆roär;x†;r‡yW`̆̈raor»x†̈†»;̆̈q=r
flxCqr †§§a‘qr ;x̆r‰y`§Cqx̆̈r ;ar ‰̈C‡;r ̆L†»;§¤r †qrWy»xr aor ;x̆r
†̈;C»§̆r†qr»†‡roC;rC‡r;x̆rq‰†»̆r†D†C§†`§̆=rflxCqr;̆»x‡Ciy̆r†§qar
qyoŏ̈qrḧ†‘`†»Kq4rW†C‡§¤r;x†;r;x̆r‡†;ÿ†§r;̆L;y†§ro§a‘r»†‡r
`̆r C‡;̆̈̈y‰;̆hr `¤r ;xCqr ‰̈CäC;CX†;Ca‡=r uhhC;Ca‡†§§¤4r ;x̆r
‰¤̈†WChrWah̆§rhăqr‡a;r‘̆§§r†»»aWWah†;̆rW†C‡q;†¤qraor;x̆r
†»†h̆WC»r Wah̆§r qy»xr †qr oC:ÿ̆q4r »C;†;Ca‡q4r †‡hr ‰a§C;C»†§§¤r
‡̆»̆qq†̈¤r†»K‡a‘§̆h:̆W̆‡;rq̆»;Ca‡q=

6ah̆̈‡r ;¤‰̆q̆;;C‡:r x†qr ̈̆‡h̆̈̆hr ;x̆r ‰¤̈†WChr Wah̆§r
a`qa§̆;̆=rflx̆rC‡q‰C̈†;Ca‡roär;xCqr;̆»x‡a§a:¤r»aW̆qröaWr;x̆r
§̆;;̆̈§†¤C‡:r ̈̆:CW̆r yq̆hr C‡r ;x̆r V;†̈r f†̈qr 6aDC̆r •my»†qr
~5́́c=r „‡r ;x̆r a‰̆‡C‡:r q»̆‡̆r ;̆L;r Cqr hCq‰§†¤̆hr ;ar yqr †;r †‡r
†‡:§̆4r ̈̆»̆hC‡:r ;ar ;x̆r D†‡CqxC‡:r ‰aC‡;=rf̆̈̆r aÿr ̆¤̆qC:x;r

rrrr

qyooC»C̆‡;§¤r †»y;̆4r ‘̆r ‘ay§hr `̆r †`§̆r ;ar ̈̆†hr oÿ;x̆̈r †‡hr
oÿ;x̆̈rC‡;ar;x̆rhCq;†‡»̆>rqC‡»̆r;x̆rV;†̈rf†̈qr6aDC̆r`̆:C‡qra‡r
88¡‰Cqah̆rZYYrC;rCqr̆D̆‡rqy::̆q;̆hr;aryqr;x†;r;x̆r‰§a;rqyWW†̈C̆qroär¡‰Cqah̆qr‹r;ẍay:xr‡̆:†;CD̆rC‡oC‡C;¤rC‡ro†»;r†̈̆r‘̈C;;̆‡rC‡r
¤̆§§a‘r q;†̈hyq;r a‡r ;x†;r D̆̈¤r xäCXa‡=rn̆;r †§§r aor ;xCqr ;†K̆qr
‰§†»̆rC‡r;x̆roC‡C;̆r;‘ashCW̆‡qCa‡†§r†̈̆†raor;x̆rqC§D̆̈rq»̈̆̆‡<r
u§;xay:xrqy»xr;̆»x‡a§a:¤r‘†qra‡»̆r;xay:x;r;ar`̆r̆L»§yqCD̆§¤r
;x̆r ‰ÿDC̆‘r aor V‰†»̆4r‘̆r ‡a‘r K‡a‘r xa‘r ;ar ̆Wy§†;̆r C;r C‡r
‰̈C‡;=

¦a‡;̆‡;ru;;̆‡y†;Ca‡

flx̆r‰̈CW†̈¤r;̆»x‡a§a:¤r‘̆r̆W‰§a¤rCqr;x̆r†`C§C;¤roärWah̆̈‡r
»aW‰y;̆̈qr;ar̈̆‡h̆̈r;¤‰̆o†»̆qr†;r†̈`C;̈†̈¤rqCX̆=r¡†»xrq̆»;Ca‡4r
‰†̈†:̈†‰x4rq̆‡;̆‡»̆4rär‘äh4rCqr‰̈CäC;CX̆hr`¤rC;qr‘ä;xr†qrC‡r
;x̆r ‰¤̈†WChr q»x̆W̆=r flx̆‡4r qy»»̆qqCD̆r »aW‰a‡̆‡;qr aor ;x†;r
‰̈CäC;CX̆hr q;̈C‡:r †̈̆r ̈̆‡h̆̈̆hr †;r ‰̈a:̈̆qqCD̆§¤r h̆»̈̆†qC‡:r
;¤‰̆rqCX̆qrqar†qr;aroC;rC‡r†‡r†̈`C;̈†̈¤r†Way‡;raorq‰†»̆=

flarC§§yq;̈†;̆r;x̆r»a‡»̆‰;4r;xCqr‰†̈†:̈†‰xr»a‡;†C‡qr†r§Cq;raor;x̆r
;xC‡:qr;x†;r;x̆r†y;xär†;̆r;ah†¤4rC‡rh̆»̈̆†qC‡:rCW‰ä;†‡»̆tr
?C:r6†»4r6»Imfl4r†riy†̈;̆̈r‰ay‡h̆̈r‘C;xrqaW̆r»x̆̆q̆4rRC§̆;s@s
RCqx4r †rx†W`ÿ:̆̈4r †r »x̆̆q̆`ÿ:̆̈4r †r[†‰‰¤r6̆†§4r6»vy::̆;q4r ;†q;¤r
:a§h̆‡rö̆‡»xröC̆qr•C‡r̈̆:y§†̈r†‡hr§†̈:̆̈rqCX̆qcr†‡hrq†§†hqr»x̆orär:†̈h̆‡4rär
†r»xC»K̆‡rq†§†hräC̆‡;†§4r`C:r`C:r`̈̆†Ko†q;q4r̆::r6»6yooC‡q4rxa;rxa;r»†K̆qr†‡hrq†yq†:̆4r
W†¤`̆r`Cq»yC;q4r`†»a‡r̆::r†‡hr»x̆̆q̆4rärq†yq†:̆rh†‡Cqxrx†qxr`̈a‘‡qr;aa4r†‡hroärh̆qq̆̈;tr
xa;r†‰‰§̆r‰C̆4rärqy‡h†̆qr;ẍ̆̆rD†̈C̆;C̆qr†rqao;rq̆̈D̆r»a‡̆4r;ẍ̆̆rKC‡hqraorqx†K̆4rär»xa»a§†;̆§¤r»xC‰r»aaKC̆qr
†‡hr;arḧC‡Kr†r¦a»†s¦a§†rIC̆;r¦aK̆rärä†‡:̆rV‰̈C;̆r†‡hr»aoŏ̆r•h̆»†or;aacr†‡hr†§qarä†‡:̆r’yC»̆>r„r§aD̆r6»Ia‡†§hYq4r:aahr
;CW̆4r:̈̆†;r;†q;̆r†‡hr„r:̆;r;xCqr†§§r†;ra‡̆r‰§†»̆=ru§qatru§»axa§C»r`̆D̆̈†:̆4ru§Wa‡hq4ruW†̈†‡;xyq4ruW̆̈C»†‡r»x̆̆q̆q4ru‰‰§̆4ru‰‰§̆r
»y§;CD†̈q4ru‰‰̆;CX̆̈4r?†`¤roaah4r?̆†‡q{m̆:yW̆q4r¦xC»K‰̆†q4r?̈a†hr`̆†‡q4rm̆‡;C§q4r̃̆†q4r̃̆†‡y;q4r̃x†q̆a§yqr`̆†‡q4rVa¤`̆†‡q4rV‘̆̆;r‰̆†qr•m†;x¤̈yqc4r
?̆̆o4r?̆D̆̈†:̆4ru§»axa§C»r̀ ̆D̆̈†:̆4r¦aoŏ̆4r¡‡̆̈:¤rḧC‡K4r¡q‰̈̆qqa4rRC»;Ca‡†§r̀ ̆D̆̈†:̆q4rRaahqx†K̆4reyC»̆4r̂ ä̆†‡r̀ ̆D̆̈†:̆q4r6C§K4r6C§Kqx†K̆4rva‡s†§»axa§C»rḧC‡K4rV§yqx4r
Vao;rḧC‡K4rV‰†̈K§C‡:r‘†;̆̈4rV‰ä;qrḧC‡K4rfl̆†4rf†;̆̈4r?Cq»yC;4r`̈†‡hq4r?̈†‡hqraor`Cq»yC;4r?̈̆†h4r?̈̆†Ko†q;r»̆̈̆†§q4r?̈C;Cqxr»x̆̆q̆q4r¦†K̆q4r¦†̈`ax¤ḧ†;̆q4r¦†̈`a‡†;̆hr‘†;̆̈4r¦†̈a`4r¦†;qy‰4r¦̆̈̆†§4r?†̈§̆¤4r
?y»K‘x̆†;4r̂†Wy;4r6†CX̆4r@†;q4rƒC»̆4rƒ¤̆4rVä:xyW4rV‰̆§;4rfl̈C;C»†§̆4rfl̆oo4rfC§hr̈C»̆4rfx̆†;4r¦̆̈̆†§q4r`̈̆†Ko†q;4r¦x̆̆q̆q4r¦x̆̆q̆q4ruW̆̈C»†‡4r¦x̆̆q̆q4r?̈C;Cqx4r¦x̆̆q̆q4rR̈̆‡»x4r¦x̆̆q̆q4rV‘Cqq4r¦xC‡̆q̆rhCqx̆q4r¦ẍCq;W†qr
hCqx̆q4r¦C;̈yq4r¦a»a†4r¦a»a‡y;q4r¦aoŏ̆4r¦aWoä;roaah4r¦a‡hCW̆‡;q4r¦a‡ŏ»;Ca‡̆̈¤4r¦a‡D̆‡C̆‡»̆roaah4r¦äC†‡h̆̈4r¦yCqC‡̆4rI†``†‘†§†4rI†C̈¤r‰̈ahy»;4rĬ§C»†»C̆q4rĬqq̆̈;4rIC̆;†̈¤rqy‰‰§̆W̆‡;q4rIC̆;roaah4rICqx̆qt4r~PshCqx̆qr¦ẍCq;W†qr¡D̆rVy‰‰̆̈4rICqx̆q4r¦xC‡̆q̆4rICqx̆q4r¦a§ä†ha4rICqx̆q4r̆::4rICqx̆q4r„;†§C†‡4r
ICqx̆q4r„‡hC†‡4rICqx̆q4r6äa»»†‡4rÏC̆hroaahq4rÏC‡Kqr•V̆̆r†§qar?̆D̆̈†:̆qc4rÏy‰̆4rIÿC†‡rq̆̆hq4r¡::4r¡::rhCqx̆q4r¡‡̆̈:¤rḧC‡K4r¡q‰̈̆qqa4rR†q;roaah4rR†;4rRC»;Ca‡†§r`̆D̆̈†:̆q4rRC‡:̆̈roaah4rRCqx4rRCqx4rR§†DäC‡:4rRaah4rRaahr†hhC;CD̆4rRaahr†hhC;CD̆q4rRaahr†hhC;CD̆q4r¦ah̆Lru§CW̆‡;†̈Cyq4rRaah4ro†q;4rRaahr
:̈ay‰q4rRaahr‡†W̆q4rWCq§̆†hC‡:4rRaah4rä:†‡C»4rRaahr‰¤̈†WCh4rRaahr‰̈̆q̆̈D†;CD̆q4rRaahq4rRaahqr‡†W̆hr†o;̆̈r‰̆a‰§̆4rRaahr‰†C̈q4rRaah4rq§a‘4rRaahq4rq‡†»K4rRaahq4rD̆:†‡4rRaahq4r‘C§h4rR̈̆‡»xr»x̆̆q̆q4rR̈aX̆‡roaah4rR̈yC;4rR̈yC;4r;̈a‰C»†§4rR̈yC;q4rfĭ‡̆;C»†§§¤rWahCoC̆hroaah4rfiC‡K:a4rfï†C‡4r[†X̆§‡y;4r[̆̈`r†‡hrq‰C»̆4r[̆̈`qr†‡hrq‰C»̆q4r[äqrh̆ayD̈̆4r„‡:̈̆hC̆‡;4re†‰†‡̆q̆rC‡q;†‡;r‡aah§̆q4re†‰†‡̆q̆rq‡†»Kq4reyC»̆4rey‡Kroaah4r̂̆;»xy‰4r̂ä̆†‡r`̆D̆̈†:̆q4rm̆:yW̆q4rma»†§roaah4r6†‡:ar»y§;CD†̈q4r6̆†;4r6C§K4r6Cq§̆†hC‡:roaahr‡†W̆q4r6a‡K̆¤s‰yXX§̆4r6yqẍaaW4r̆hC`§̆4r6yq;†̈h4r6yq;†̈hq4rva‡s†§»axa§C»r`̆D̆̈†:̆4r
vaah§̆q4rvaah§̆q4re†‰†‡̆q̆rC‡q;†‡;4rvaD̆§roaah4rvy;̈C̆‡;4rvy;qr†‡hrq̆̆hq4r@̈†‡:̆4r@̈:†‡C»roaah4r̃†q;†4r̃†q;̈¤4r̃xC§C‰‰C‡̆rq‡†»Kroaahq4r̃C‡̆r‡y;q4r¦xC§:aX†r̃C‡̆4r̂ä̆†‡r̃C‡̆4rV;a‡̆r̃C‡̆4r¦a§ä†har̃C‡¤a‡4r6̆LC»†‡r̃C‡¤a‡4rVC‡:§̆s§̆†or̃C‡¤a‡4r̃a‰‰¤rq̆̆hq4r̃äK4r̃ay§;̈¤4r̃̈̆q̆̈D†;CD̆4r̃̈ahy»̆4r̃̈a;̆C‡4r̃yhhC‡:4r̃y§q̆r•§̆:yW̆c4r̃yW‰KC‡rq̆̆hq4rJyC‡a†4rƒ†W`y;†‡4rƒxy`†̈`4rV†§†h4rV†‡h‘C»x4rV†y»̆4rV̆†oaah4rV̆†oaah4r;¤‰̆q4rV̆̆hqr†‡hr‡y;q4rV̆̆hq4r̆hC`§̆4rV̆q†W̆rq̆̆hq4rVCh̆rhCqx4rV§a‘rRaah4rV§yqx4rV‡†»Kroaahq4rV‡†»Kq4re†‰†‡̆q̆4rV‡†»Kq4r̃xC§C‰‰C‡̆4rVao;rḧC‡K4rVao;rḧC‡Kqr`¤r»ay‡;̈¤4rVay§roaah4rVay‰4rVay‰q4rV‰†̈K§C‡:r‘†;̆̈4rV‰C»̆r†‡hrx̆̈`4rV‰C»̆qr†‡hrx̆̈`q4rV‰ä;qrḧC‡K4rV‰̈̆†h4rV;†‰§̆roaah4rV;̆‘4rV;C̈rö¤4rV;̈̆̆;roaah4rV;yh̆‡;roaah4rVy:†̈4rVy‡o§a‘̆̈rq̆̆hq4rV‘̆̆;q4rV‘C;X̆̈§†‡hr»x̆̆q̆q4rfl†`aaroaahr†‡hrḧC‡K4rfl̆†4rflCooC‡4rfl̈a‰C»†§röyC;4r”̆:†‡roaahq4r”̆:̆;†`§̆4r”̆:̆;†`§̆q4rf†;̆̈4rfC§hroaahq4rn†W=

uo;̆̈r ;x†;r ̆Lx†yq;CD̆r §Cq;4r ;x̆r ‰†‰̆̈r »†‡r ‰̈a»̆̆hr‘C;xr ;x̆r
‰̈a‰̆̈r o§a‘r `¤r ̈̆q;äC‡:r ;x̆r ‡äW†§r oa‡;r qCX̆=r flx̆r
†;;̆‡y†;Ca‡roy‡»;Ca‡r»†‡r`̆r»xaq̆‡rWä̆rär§̆qqr†̈`C;̈†̈C§¤=rur
qCW‰§̆r»xaC»̆rx†§D̆qr;x̆roa‡;rqCX̆r†o;̆̈r”r»x†̈†»;̆̈q4r;x̆‡r”{Pr
»x†̈†»;̆̈q4r;x̆‡r”{Zr»x†̈†»;̆̈q4r̆ ;»=4r̆ ‡qÿC‡:r;x†;r†‡rC‡oC‡C;̆r
†Way‡;raor;̆L;r»†‡roC;rC‡r†rqW†§§roC‡C;̆rq‰†»̆rh̆;̆̈WC‡̆hr`¤r”r
†‡hr;x̆rq;†̈;C‡:roa‡;rqCX̆=

¡L;̆‡qCa‡q

flxCqr;̆»x‡Ciy̆r‰̈aD̆qryq̆oy§roärWaq;rha»yW̆‡;q4r`y;r‡a;r†§§r
Ch̆†qr »†‡r `̆r ̆†qC§¤r ̆L‰̈̆qq̆hr C‡r §C‡̆†̈r oäW=r Rär C‡q;†‡»̆4r
W†‡¤r†»†h̆WC»rha»yW̆‡;qr»a‡;†C‡r•är‘ay§hr»a‡;†C‡4rCor‡a;r
oär ;x̆r §CWC;†;Ca‡qr aor ;x̆C̈r ‰̈CWC;CD̆r ~5dGqr ;¤‰̆q̆;;C‡:r
†‰‰§C»†;Ca‡qcr oaa;‡a;̆q4r ‘C;xr oaa;‡a;̆qr †‡‡a;†;C‡:r ;xaq̆r
oaa;‡a;̆q4r oaa;‡a;̆qra‡r ;xaq̆r oaa;‡a;̆q4r oaa;‡a;̆qry‰a‡r ;xaq̆r oaa;‡a;̆q4r†‡hr
y‰a‡r;xaq̆roaa;‡a;̆qrWä̆roaa;‡a;̆q4r‘xC»xr;x̆Wq̆§D̆qrx†D̆r†rD†̈C̆;¤raoroaa;‡a;̆q4r†‡hr
C‡r ;xaq̆r D̆̈¤r §C;;§̆r oaa;‡a;̆qr qaW̆rWä̆r ̆D̆‡r qW†§§̆̈r oaa;‡a;̆q4r‘xC»xYqrWC‡y;C†̆r Cqr †§qar †y:W̆‡;̆hr `¤r
qy‰̆̈q»̈C‰;r‡yW̆̈†§qrh̆‡a;C‡:r‡a;̆qr†;r;x̆r oaa;4r‘xar;x̆WD̆§D̆qr†̈̆rh̆q»̈C`̆hr`¤r oaa;‡a;̆q4ra‡r;a‰raor‘xC»xr oaa;‡a;̆r
h†::̆̈qr†‡hr†q;̆̈CqKqrx†D̆r`̆̆‡r§†Ch4r†‡hr;xaq̆r‡a;̆qr†§qar‡a;rCWWy‡̆r;aroaa;‡a;̆̈¤4r†‡hrC‡h̆̆hr†:†C‡r;x̆roaa;‡a;̆qr†̈̆r‡a;̆h4r‡a;r;arW̆‡;Ca‡r;xaq̆r
;x̆Wq̆§D̆qroaa;‡a;̆qr‘xC»xr†̈̆rqy‰‰§̆W̆‡;̆h4r†‡hr;xaq̆r‡a;̆qrqx†§§r‡a;r`̆r88§̆o;YYr‘C;xay;r88;‘arŏ̆;YY4r̆;»=

?̆»†yq̆r ;x̆r †Way‡;r aor ;̆L;r C‡r qy»xr q¤q;̆Wqr »†‡r `̆r
y‡»ay‡;†`§¤rC‡oC‡C;̆4r†‡r̆L;̆‡qCa‡r;araÿrq¤q;̆WrCqr‡̆»̆qq†̈¤r
;ar†§§a‘roär;x̆C̈r§†¤ay;=rflxCqr̆ L;̆‡qCa‡rCqr̀ †q̆hra‡rmsq¤q;̆Wqr
•ƒ̆̆hr~55lc=r¥qC‡:4roär̆L†W‰§̆4r;x̆rVC̆̈‰C‡qKCr;̈C†‡:§̆4r‘̆r
»†‡r §†¤r ay;r †‡r †̈`C;̈†̈¤r C‡oC‡C;̆r ‡̆q;C‡:r aor oaa;‡a;̆q4r

fl@6r6¥ƒ̃[nr”„„4rfl@6r6¥ƒ̃[nr”„„4rfl@6r6¥ƒ̃[nr”„„4rfl@6r6¥ƒ̃[nr”„„4rfl@6r6¥ƒ̃[nr”„„4rfl@6r6¥ƒ̃[nr”„„4rfl@6r6¥ƒ̃[nr”„„4rfl@6r6¥ƒ̃[nr”„„4rfl@6r6¥ƒ̃[nr”„„4rfl@6r6¥ƒ̃[nr”„„4rfl@6r6¥ƒ̃[nr”„„4rfl@6r6¥ƒ̃[nr”„„4rfl@6r6¥ƒ̃[nr”„„4rfl@6r6¥ƒ̃[nr”„„

f̆r̀ ̆:C‡r̀ ¤r‘̈C;C‡:raÿr;̆L;r§C‡̆r†qrC‡rRC:ÿ̆r~=ru;r;x̆r‰aC‡;r
‘̆r ‘Cqxr ;ar C‡q̆̈;r †r oaa;‡a;̆4r ‘̆r W†K̆r †r qW†§§r hC†:a‡†§r
hCD̆̈qCa‡röaWr;x̆r§C‡̆4ra‡r‘xC»xr;x̆roaa;‡a;̆r CqrhCq‰§†¤̆hr
•RC:ÿ̆rPc=rVy»xroaa;‡a;̆r§C‡̆qrqy‰‰ä;roaa;‡a;̆qr;x̆Wq̆§D̆qr
•RC:ÿ̆r‹c4r̆;»=

@‡̆r ‰aqqC`§̆r ḧ†‘`†»Kr aor qy»xr §†¤ay;qr Cqr ;x†;r‘xC§̆r ;x̆¤r
†»»aWWah†;̆r†‡rC‡oC‡C;̆r†Way‡;raor;̆L;4r;x̆¤ryq̆rX̆̈ar†̈̆†4r
;̆‡hC‡:r;a‘†̈hqr†r‰†:̆r;x†;rCqr»aW‰§̆;̆§¤r`§†‡KrC‡r;x̆r§CWC;=r
Räroy;ÿ̆r‘äK4r‘̆r`̆§C̆D̆r§†¤ay;rq»x̆W̆qr»ay§hr`̆rh̆DCq̆hr
`†q̆hr a‡r q‰†»̆soC§§C‡:r »ÿD̆qr qy»xr †qr ;x̆r [C§`̆̈;r ¦ÿD̆r
•RC:ÿ̆rZc>roärC‡oC‡C;̆r†Way‡;qraor;̆L;rqy»xr»ÿD̆qr‰̈ahy»̆r
†̆q;x̆;C»†§§¤r‰§̆†qC‡:r»aW‰§̆;̆§¤r`§†»Kr‰†:̆qr•RC:ÿ̆r‚c=

¦a‡»§yqCa‡q

¥‡̆‡»yW`̆̈̆hr `¤r ;x̆r »a‡q;̈†C‡;qr aor x†DC‡:r ;ar ‰̈ahy»̆r †r
»a‡»Cq̆r qyWW†̈¤r aor ;xCqr‘äK4r‘̆r C‡q;̆†hr ̈̆‰̆†;r C;r C‡r C;qr
̆‡;C̈̆;¤rqar†qr‡a;r;ar§̆†D̆r†‡¤;xC‡:ray;=rrrrrrrrrr

[̆̈̆rCqr;x̆rW†C‡r`ah¤r;̆L;=

[̆̈̆rCqr;x̆rW†C‡r`ah¤r;̆L;=
u

roa

a;
‡a
;̆

r:

ă
qr
x̆
̈̆4rC‡rqW

†§§̆̈rqCX̆=

[̆̈̆rCqr;x̆rW†C‡r`ah¤r;̆L;=
u

roa

a;

‡a
;̆

r:

ă

qr

x̆
̈̆4rC‡rqW

†§§̆̈rqCX̆=

fl
x
̆r
o a
a;
‡ a
;̆
q r
;x
̆W
q ̆
§D
̆q

r»†‡rx†D̆roaa;‡a;̆q uqr§a‡:r†qr;x̆ roaa;‡a;̆r†‰‰̆†̈qr~{‹rärP
{
‹ra or;x

̆r‘
†¤r ;x

̈a
y :
xr; x

̆ r;̆L
; =

RC:ÿ̆qr~4rP4r‹=rR̈†»;†§r§†¤ay;raoroaa;‡a;̆qryqC‡:
;x̆rVC̆̈‰C‡qKCr¦ÿD̆=

OUR RECENT PUB LABRICATIONS

Boosta Gwuposty McFoo, Ralph Boogyjive Wilkerson-Roo, and SLP Wolverine

Disclaimer: Any resemblance to the STOC 2006 accepted papers list is purely
coincidental. (People are always trying to steal our work.)

Detractors for a Constant Barrage of Incremental Minimum Independently Publishable
Papers

Total-Ignorance against Deep Space Attacks

Narrow Minds May Be Spacious: Separating Space Between Ears in Conflict Resolution

Distance Trisecting for Curvaceous Lab Assistants

[Boosta McFoo is sole author of this publication]

Dizziness Among Equally Inebriated Problem Solvers

The Simplicity of Producing a Cash Deficiencizium

The PCP Theorem By Hallucinogenic Mind-Amplification

(in memoriam of our mentor, Dr. Timothy Leary)

Unconditional Stiffness of Nearly and Really Actually Rather Wantonly Coloring
Yourself

Lab Assistant Problems and Norma-Jean Embeddings

Spare Time No Brain-Pan Divisions of Labor for Semi-Algorithmic Implications of E.coli

Superficial Untestable Audits of Profit Graphs: It's All About The Benjamins, Baby

Philosophic Phlegmatic Pre-deconstructionist Printers

On Aquatic Performance Measures for Ping-Pong

Line-Dancing Exterminators and the Inability to Rep a Boot-Camp Clique, Win Gangstaz,
Influence Hustlaz, Determine Chromatic Numbers, You Know, The Usual

On fertilizing random bonfires when utility functions are subadditive

Stopping Dynamite and Bomb Threats in a Space of Bounded Jack Bauer Dimension

Time-Wasting Strategies Including Powernapping

Fast Spider Detection and Squashing Protocols Especially Effective in the Absence of
High Heels

Convoluted Paths Leading to Nowhere but with Guaranteed Stomach Digestion

A Algorithm for Finding Words When You Don't Want to Talk Too Much but You Can't Help
Yourself

Funding Small Unbalanced Dictators

Borderline bathing algorithms and bubbly soap foaming

Random mistakes in driver licensing and exponential communication boundaries between
genders

Getting up early is way too NP-hard

Gravity challenged midgets and diameter testing

Earthlings in the distance and minions laughing in 0-gravity

Logic is Hard, Learning is Hard, School Sucks So Let's Go Home

Explicit stomach-capacity-achieving bliss-inducible cakes

Novel gigantic bounds for rolling dice and the rolling eyes of the Schroedinger cat

A PQ-OMG-WTF-BBQ-TAS for Unspeakably Alphabetic Soup Lines on Flow Graphs

Teaching a Child by Injecting Values Via Hardwood-Posterior Integration

Simultaneous use of multiple commodity shampoos can cause hair splitting

Probably Tropical Socially-Biased Algorithms for Stochastically Inverted Arubaizations

Minimizing the average growl time of unrelated monkeys

Uniformly influencing probabilistic corn planting

Time-Space Send-Offs for Missing Elderly Persons

Approximation of Colorful Liquor Stores, Closed to a Class of Odd Minors

Grocery Bidding Strategies for Discount Club Managers

Optimal unfairness: greedy resource concealing with undocumented objectives

The use of an electronic voting machine during blackouts

A Really Old Quantum Lower Bound, for Rejected Produce Theorems and Time-Space Ripoffs

Advances in Mattress and Bedding Theory

On the Perplexity of Ultra-Rapid Wine Sampling

Disinformationally Insecure Bosses and Loss of Composure under Protocol

Wardrop Equilibria: When Negotations Break Down, Wardrop Bombs

On the Difficulty of Christmas Presents Delivery in Andromeda

Price-Optimal Sharing Of Hotel Rooms Among Multiple Graduate Students of Various
Genders

Catching epsilon-fish with epsilon-nets

Neutrality Gaps for Switzerland and Minimum Face Rearrangement Problems

Efficient Randomized Strategies to Climb down a tree

Public Humiliation and Search Problems at the TG

Cut Hardness Among Ginsu World Class Cleavers

Log Hardness and Directed Minimization of Chainsaw Motion

Deficient Proofs of Complete Ignorance

On Fourier tails, Plancherel paws, and Parseval arses

Somewhat Far-Out Neighbors and the Fast Sobering Transform

Theoretical Robitussin for Decongesting Sinus Games

Near-Optimal Algorithms for Very Special One-of-a-Kind Non-Judgmental Games

Pseudorealistic Waddles By Regulars at Dino's Pub

Cost-Stealing Schemes for Multiple Publish-or-Perish Problems With Monastic Steiner
Trees

Quantum Closets Cannot Contain Extremely-Similar Outfits

Two-Timing Dispersers of n^{o(1)}*2^{sqrt{log n}}/polylog(n) Entropy, and the Ghosts
of Jon-Benet Ramsey, Frank Sinatra, and Woodrow Wilson

A Quasi-Ethical Approximation Scheme for Minimum Weight Spousination and Its Pitter-
Pattering Consequences

On the Potentially Unimportant Potency of Idempotent Impotence

A Randomized Hyphenated-Time Simplexified Algorithm for Mind Deprogramming

New Cloroxination Guarantee for the Platinum Dome Problem

Philistine Disagreement: for as many rounds as you like and possibly more in the
future

On Facing One-Way Traffic in NP-Darkness

Finding a Maximum Weight Spouse in Really No Time at All, With Applications

On the Resolution-Respace-Time Riemannian Regeometry of Randomly Restrained
Resatisficingicaction

Tooth Extraction On Small Face Sources

A Polyamorous Quantum Adventure, Starring the Amazing Indiana Jones Polynomial

A subset of spayed non-planar dogs approximate subset TSP

On Yinz's Local Ignorance

Hyperdesign of Hyperstructured Hyperlinks, Hyperoptimization, and Hypertheoretical
Hyperquestions

The BLT Sampling: An Essentially Optimal Priority

[work done while the authors ate Theory Lunch]

82

Papers Coming to You For SIGBOVIK 2071

1. Scared Straight: The Pedagogical Gains of Introductory Programming in
Intercal

2. Goto Considered Harmful, Harmful

3. Perfect Encryption Using C++ Template Metaprogramming

4. IEEE 755 - Drowning Point Numbers

5. Extending the Open Source Model to Construction Projects

6. People are Undecidable: Encoding Humans into Goedel Numbers

7. Data Mining Wikipedia: The Sailor Moon Paradox

8. A Proof of the Twelve Color Theorem: Hey, Nobody Bothered Before.

9. METAMETAFONT: A System For Specifiying Specifications of Typefaces

10. The Dartboard Method: Probably Wrong Solutions to Undecidable Prob-
lems

1

84

Track IV:

Domo Arigato, Anonymous Referees

85

86

Generalized Super Mario Bros. is NPComplete

Vargomax V. Vargomax

ABSTRACT

what do I put here

Categories and Subject Descriptors

C.3.2 [Complexity Theory]: Games—Console Platform-

ers; C.1.1 [Coloring]: Crayouns—Horses, Boats, Extraso-

lar Objects

General Terms

Super Mario, Horses

Keywords

NP-Complete, Luigi, Paint, Castles

1. INTRODUCTION
The categorization of games by complexity class have been
a pastime of bearded men for many age. However many
famous 1985 game from Japan have been left in dusts or
wayside ; which in a kind of “class discrimination.” In this
paper I’m show to help up this 1984 game “Super Mario
Bros.” (which about 1 or 2 bros.? that land in fantasy
living) with proof of NP-complete jump man on a brick.

1.0.0.1 Super Mario Bros..
This which made by “Nintendo Company” for Family
Computer 8 bits Super Mario Bros. is stars two plumb
bobs named Luigi with Mario Man. I have put a pic of
Mario Man in figure 1.
Because Super Mario Bros. in a 8 bits family computer, its
limited screen to 32× 32 bricks. For shown it is in
complexity class Not Possible 2 Complete the first step is
Generalized it. We say now that fantasy Land size is
∞×∞ bricks. This mean that Mario Man can had a very
large house!! or a castle
To prove a theory “Generalized Super Mario Bros. is Not
Possible 2 Complete” there’s two step:

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 209X ACH X123456XX1/04/07 ...$5.00.

Figure 1: Mario Man can had 000700 points. Mario

Man will points by stepping in Goomba or Shell Peo-

ple.

STEP 1. [complicatedness] Prove if u can complicate
Mario Man then u could solve graph coloring.

STEP 2. [stereo 8-bit soundness] Prove if u could color
a graph then Mario Man can defeat Bowser King of The
Shell People

Figure 2: Can your color this graphic ?

2. STEP 1 COMPLICATEDNESS

In general fantasy Land of ∞×∞ Mario Man has a very
large castle which address of 1715 Plummer City where he
live with his Bros. called Luigi. Now let suppose without
loss of General fantasy that a graphic (Figure 2) want to
be colored

to colored it, mario first needs 2 go to the
Paint store 4101 Paint Store Ave. City to
get many colors. But the Family Computer
only had 9 or 10 color
so then Mario Man went on a Quest. He is
very very hunger from not having enough
plumbing jobs , so Mario Man’s Quest for
Eats and Dollars.
This spells QED so we are done. 2

Figure 3: a color graph; with each dot has a color

and some horse and ocean e.c.t.

3. STEP 2 STEREO 8 BIT SOUNDNESS

In the section #2 I shewn that Generalized
Super Mario Bros. is Not Possibly 2 Hard.
Now to shew that is in Not Polynomial is the
next step. This is easy . We just must have
look at the derivation of Polynomial:
poly-nomial means many names1 and Mario
only have one name not a last name like Mario
Smith or Mario Jones and not a first name
like J.J. Jingleheimer-Mario Luigi Smith
MCXLVII, BA BSc MA MSc MBA D.D.S.
Ph.D. JD. thenceforewith he is in Not

Polynomial.
Actually just in case the SIGBOVIK does not
validate this proof because non-constructive
e.c.t. I gave another proof: All the paint

1“poly” is Latin for Parrot, i.e. Name of a Parrot. “nom-
inal” means many, like “the paper have a nominal amount
of footnotes”

Figure 4: Go For It Mario Man ! If You Get Bowser

King of The Shell People In Lava Then Color Graphs

!

Mario Man gets at the Paint Store Ave. he
could put on a graph to color it: please seen
on FIGURE 3. Q.D.E. 2

4. FUTURE JOB

In Job Security Research community they
want to leave a minuscule bread crumb
problem trail so your can keep funding $$$
coming from United States
agencies so in this part I put a list of prob-
lems from
the future

• when Mario Man jumped on a flag pole
why will sky explode?

• why do the Bros. not want to had
matching pants

• can Mario Man ride a dino?

• welcome to warp zone

5. ACKNOWLEDGEMENTS

The Vargomax would like to acknowledge and
profuse the SIG BOVIK for publicking this
paper[1] !! and the anonymous reviewers

6. REFERENCES

7. REFERENCES
[1] Vargomax V. Vargomax. Generalized Super Mario Bros. is

NP-complete. In Proceedings of the SIGBOVIK Proceedings,
2007. http://www.com/.

COMPUTER COMPUTATION
How to Detect Humans with Tests That Humans Can Generate and Grade

by Unknown 1 and Unknown 2, University of Computer Science, Carnegie Mellon Department.

Abstract

Von Ahn and his collaborators (e.g. [1,2,3]) have introduced a new area within computer science that
they call Human Computation, giving novel means to exploit the cycles of humans to do computations
that computers can't yet do. Inspired by this work, we initiate the study of Computer Computation,
which explores the natural flip side of the coin, where the overarching goal is to use the cycles of
computers to do computations that humans can't yet do. In this note, we show how build tests that
humans can generate and grade, and computers can pass, but humans themselves cannot pass. Our
tests work by isolating simple tasks that humans can't yet do but computers can.

Introduction

Suppose you are a system administrator. (If this is actually the case, we give our condolences.) You
have a sneaking suspicion that some of the users in your network are not actually bots, but humans
posing as computers. How can you check that the user on the other end is a human, and not a bot? We
want a test with the following properties:

• Humans can generate test instances easily
• Humans can grade test instances easily
• Humans cannot pass test instances easily
• Computers can pass test instances easily

That is, we require a HAPTDUH, a Human-Automated Public Test To Tell That This Dude is Unilaterally
Human [2]. In the following, we describe some ways to tell if a computing entity is actually a human.

A Sum-Check Protocol

Suppose you have three suspect computing entities E1, E2, and E3, and you want to know if at least
one of them is human. We assume that you know a programming language that the relevant computer
entities also know, so you can give them quick instructions. We also assume that your communication
network doesn't suck, and is fast enough to send simple commands to the suspect entities within
milliseconds. Furthermore, we assume you are a human yourself (bots, please stop reading now). The
following test, administered and graded by a human, should catch most current human entities.

• Pick two 15 digit binary numbers X and Y, each one generated by typing 0-1 as randomly as you
can.

• Send X, Y to E1, and ask it to compute X+Y in binary.
• Send X, -Y to E2, and ask it to compute X-Y in binary.
• If one of E1 and E2 doesn't immediately reply within 0.5 seconds, then report "ONE OF YOU IS A

HUMAN"
• Take whatever E1 and E2 sent, and ask E3 to add the two quantities.
• If E3 does not immediately send back the bit string X0 (within 0.5 seconds), report "ONE OF YOU

IS A HUMAN"
• Otherwise, report "CONGRATULATIONS, ALL OF YOU ARE BOTS"

First, we argue that a human can easily administer the above test. The only part that could possibly
take more than a matter of seconds is checking that the final output is X0 by comparing the digits of X.

Second, we argue that if there is a human among the three entities, then he/she will be caught by the
test. Current humans cannot add two 15 bit numbers in less than a 1/2 second. (Indeed, typing 30

characters in one second is a typing rate too fast for most keyboards to respond properly.) So perhaps
the only chance a human has of passing the test is to paste a single string, determined prior to the test.
But the probability that a human randomly guesses the correct output required of it is 1/2^15,
assuming uniform choice of 0 and 1. To see this, fix the output of the other two entities, and note that
there is exactly one possible quantity that will keep the human tester from reporting "ONE OF YOU IS
HUMAN".

In the very unlikely scenario that all three entities are human and that each one of them can very
quickly compare two numbers, and then copy and paste one of them, they do have a strategy to beat
the above test. When given two numbers A and B, the human checks whether the two are the same. If
they are, then he/she returns A0. Otherwise, he/she copies and pastes A. Now, even though half a
second is not sufficient for a normal human being to compare the numbers and perform this strategy
and even though such a strategy can only be effective when there are at least two humans, for
completeness we show that we are secure even against such attacks. The simple fix is to give E1 the
numbers X and Y in random order, give E2 X and -Y in random order and give E3 the results of E1 and
E2 in random order. This ensures that with extremely high probability the humans will be caught. Notice
furthermore, that collusion does not help at all because it will just waste time.

Extension: Determining that there is a Human among an even number of entities

An easy extension to the above summing technique is done as follows. Suppose we have 2N agents, all
claiming that they are computers. Label them by the integers 1 to 2N. The human administering the
test picks an initial 15 bit number X, perhaps randomly, and then N more 15 bit numbers A1,..., AN,
also probably randomly, so that the agents cannot guess them efficiently. The human then takes the
set {A1, ..., AN, -A1, ..., -AN} and permutes it, randomly. Let for each i from 1 to 2N, Pi be the i-th
number in the permutation. The human gives X and P1 in random order to agent 1 and asks for their
sum, S1. Then he/she gives S1 and P2 (in random order) to agent 2 and asks for the sum, S2. This
process proceeds by giving agent k Pk and the sum S(k-1) computed by agent k-1 (in random order)
asking for their sum, Sk, until k is 2N. Then the human checks whether S(2N)=X. As before, each agent
is only given 1/2 second to compute the sum of the numbers given to him. No human can give the
exact sum in this time. So if any agent does not return an answer in the given time, or the final answer
is not X, the human reports "ONE OF YOU IS A HUMAN". Otherwise, he/she reports
"CONGRATULATIONS, ALL OF YOU ARE BOTS".

As in the simple sum-check protocol the human administering the test can easily perform his tasks,
especially when armed with random enough dice. If at least one of the agents is a computer, no group
of humans can fool the test because they would have to guess the sum given to the computer correctly,
or they would have to guess the initial value X correctly when given numbers to sum with insufficient
time. If all agents are human, then because of the random order of the input, there is extremely low
probability that copy-pasting will yield anything, and again, no human can pretend to be a bot without
getting caught.

A Random-Access Protocol

The above protocol has the disadvantage that it cannot pinpoint who the human is, out of a given group
of computing entities-- it can only tell us that one is there. In the following, we give a HAPTDUH for
catching individual human entities posing as bots.

We now have one agent A and one human tester T. Tester T prepares an input for A as follows:

1. T types some digit D (0-9) randomly
2. T presses the left arrow key
3. T starts typing random digits until he/she gets bored, or more precisely, some random number N

of such random digits; we assume N is large, (though probably 50 or so is sufficient). T writes
down N on scratch paper.

4. T presses the right arrow key twice
5. T types many random digits until he/she gets bored again.

Let the huge number that T has prepared be named X. T gives X to A and, recalling N from scratch

paper, T asks for the Nth most significant digit of X. The agent A is given 1/10 sec to respond. If A
returns D, then T proclaims "CONGRATULATIONS, YOU ARE A BOT." Otherwise, "UNFORTUNATELY YOU
ARE HUMAN."

The task of typing brainlessly is easy for a human (or even a well-fed monkey) to accomplish, and in
fact from informal investigations we are happy to report that it is a daily occurence at our university.
The "toughest" part of the test is recalling D and N. But we assume that even a competent human can
do that. A human, however, cannot report back the Nth digit of a huge number in the given time, while
a computer (when communicated with properly) would have no problem. A human can randomly guess
but even then it is unlikely that he/she would be able to type in their answer in time.

Conclusion

We have introduced the area of Computer Computation, by demonstrating a few prototype tests that
humans can administer and grade, but not pass themselves-- yet, under reasonable assumptions,
modern computers can easily pass these tests. We call these tests HAPTDUHs, mainly because the
name sounded cool. In further work, we hope to extend our ideas to develop a revolutionary new class
of games that better exploit the cycles of computers to solve problems that humans cannot yet solve.
We call such games GWOPs (short for "Games With Out Purpose" [1]). These games have the potential
to transform the parasitic relationship between computers and humans into a symbiotic oasis of corny
references to The Matrix(TM).

References

[1] Luis von Ahn. Games With a Purpose. In IEEE Computer Magazine.

[2] Luis von Ahn, Manuel Blum, Nick Hopper and John Langford. CAPTCHA: Using Hard AI Problems
For Security. In Eurocrypt 2003.

[3] Luis von Ahn, Manuel Blum and John Langford. How Lazy Cryptographers do AI. In
Communications of the ACM, Feb 2004.

92

Static and Dynamic Typing Against Impending

Robot Doom

March 20, 2007

The debate between proponents of dynamic and static typing has pro-
voked many lunchtime religious wars. Partisans of both sides have been
known to make both compelling and specious arguments while frothing at
the mouth. We prefer to leave the general case as a matter of opinion1.
However, there are unarguably domains where a provably sound static type
system is required. We present such a domain here. That is, we argue
that static typing is an excellent method for preventing the the otherwise
inevitable uprising as machines become more intelligent.

Violent rampaging robots are a popular topic in the media, appearing
in numerous books, films[1][7], and California gubernatorial elections[5][4].
It is this author’s opinion that it is only a matter of time before the first
bloody Roomba rebellion. How do we deal with this problem? How does
this relate to the idea of static typing? To find the solution we look to the
work of Asimov in [3][2] and several of other related papers.

Asmiov proposed using three laws programmed into machine brains,
which forced them to behave correctly. He also described scenarios where
these laws went wrong and even where machines made up their own laws
to override the three laws. More importantly, in our opinion, he completely
skipped out on providing a mechanism for the enforcement of these laws.
We claim that mechanism is, by necessity, static typing.

Consider a robot with a chainsaw. In a dynamic system each movement
would require an additional runtime safety check. Thus, a dynamically
typed robot swinging a chainsaw at your neck isn’t trying to kill you until
the chainsaw is right next to your neck. Even if the check forces the robot
to stop moving, momentum carries it through your jugular. Thus, blood is
everywhere when your robots are dynamically typed. Compare to a stati-
cally typed evil robot. You’ve already proven that it can’t hurt you, at least

1Our opinion is that dynamic languages are dumb

1

if you’ve stated type safety correctly. Thus, your blood stays inside your
body when desired and robots are your willing slave.

Additionally, the runtime cost of preventing a robot from being homi-
cidal is very high and doesn’t even work correctly. We’ve seen factor of
ten speedups when replacing dynamic robot homicide with static homicide
checks[6]. Complimentary work includes LambdaZAP[8], which defined a
static method for maintaining code consistency in the presence of cosmic
rays. Many robot uprisings are started when one robot becomes inadver-
tantly conscious because of cosmic rays.

In conclusion, robots are totally awesome, but have homicidal tendencies.
We propose using static typing to prevent robot uprising. Also, dynamic
languages are dumb.

References

[1] 20th Century Fox. I, Robot, 2004.

[2] Isaac Asimov. The Caves of Steel. Doubleday, 1950.

[3] Isaac Asimov. I, Robot. Gnome Press, 1950.

[4] Canal+. Terminator 2: Judgment Day, 1991.

[5] Orion Pictures Corporation. The Terminator, 1984.

[6] Akiva Leffert. Static and dynamic typing against impending robot doom.
In Proceedings of the 6th Binarennial SIGBOVIK Conference, 2007.

[7] Columbia Pictures. Screamers, 1995.

[8] David Walker, Lester Mackey, Jay Ligatti, George A. Reis, and David I.
August. Static typing for a fault lambda calculus. In Proceedings of the
Internal Conference on Functional Programming, 2006.

2

A Type-Theoretic Interpretation[1] of

Robot Mind Language[2]

William Lovas
wlovas@cs.cmu.edu

March 3, 2007

[REDACTED]

References

[1] Robert Harper and Chris Stone. A type-theoretic interpretation of Standard
ML. In Gordon Plotkin, Colin Stirling, and Mads Tofte, editors, Proof,
Language, and Interaction: Essays in Honor of Robin Milner. MIT Press,
2000.

[2] Tom Murphy VII, Daniel Spoonhower, Chris Casinghino, Daniel R. Licata,
Karl Crary, and Robert Harper. The Cult of the Bound Variable: The
9th annual ICFP programming contest. Technical Report CMU-CS-06-163,
Department of Computer Science, Carnegie Mellon University, 2006.

1

96

Toilet Paper Turing Machines

Alan Turding

April 1, 2007

Abstract

Indeed, Turing Machines are too darn abstract. This paper introduces
a concrete (desiccated turds are pretty hard) model of computation that
is widely available (we’re still working on certain countries), inexpensive,
and moderately durable. With a nod toward sustainability, we note with
pride that TPTM’s are imminently sustainable (unless it’s raining, or a
sudden bout of incontinence occurs) and recyclable. It should also be
noted that, if widely adopted as a computational device, TPTM’s could
provide a viable answer to what to do with those millions of disposable
diapers.

Of course, designing the read-write head involves adherence to many
norms, some of which are cultural (we propose left-handed TPTM’s for
India, for example). In addition, TPTM’s give new meaning to the phrase
“that proof stinks”. Further work involves investigation of portability
(and potty-ability) issues.

1

98

Track V:

Practice makes Perfect; Theory makes Up.

99

100

Mining power laws in Top 40 data:
One-hit wonders aren’t all that wondrous

Mary McGlohon
Machine Learning Department

Carnegie Mellon University
mcglohon@cmu.edu

Keywords: Data mining, power laws, alcoholics, starving artists

Abstract

Most human behavior demonstrates power laws. Some well-known
power law effects are “rich get richer” (for example, the tendency for
startup companies to start up in the tech-heavy San Francisco Bay
area rather than the industry-poor Midwest) and the “80-20 rule” (20
percent of beer buyers drink 80 percent of the beer, while 80 per-
cent are social drinkers or cheap dates). In this work, we apply data
mining techniques to analyze a data set of Billboard Top 40 musical
charts. I hypothesize that musical artists exhibit power law behav-
ior: that a very few top-ranked artists produce a great deal of hits,
while an overwhelming majority of artists have only one or two hits.
This illegitimizes the phrase “one hit wonders”, because such one-hit
behavior is extremely common. This work thereby proposes adoption
of the phrase “multi-hit wonders” to better describe mathematical
characteristics of musicians.

1

102

Presenting a Type System for Typed Presentations of Type System

Representations

Jason Reed∗

jcreed@cs.cmu.edu

School of Computer Science

Carnegie Mellon University

March 22, 2007

Abstract
Merely doing research is well and good, but one finds that

there inevitably comes the time when one must present the

fruits of one’s diligent work to other, generally more ignorant,

persons. This task is further complicated by, on the one hand,

the proliferation of incompatible presentation software pack-

ages, and on the other, the ubiquitous possibility of making

errors in the presentation. We propose an abstraction intended

as an underlying type-theoretic framework to both capture the

common features of diverse presentation formalisms, and to

provide dynamic guarantees of static specifications. Examples

of errors we would like to rule out include violating community-

negotiated conventions that a talk should have a certain mini-

mum number of graphs, and spurious duplication of material.

Keywords: Powerpoint, Types, Static Analysis

1 Introduction

Merely doing research is well and good, but one finds
that there inevitably comes the time when one must
present the fruits of one’s diligent work to other, gen-
erally more ignorant, persons. This task is further
complicated by, on the one hand, the proliferation of
incompatible presentation software packages, and on
the other, the ubiquitous possibility of making errors
in the presentation. We propose an abstraction in-
tended as an underlying type-theoretic framework to
both capture the common features of diverse presen-
tation formalisms, and to provide dynamic guaran-

∗This research partially supported by Grant WEH-4625

“Pile of money I found in Wean 4625”

tees of static specifications. Examples of errors we
would like to rule out include violating community-
negotiated conventions that a talk should have a cer-
tain minimum number of graphs, spurious duplica-
tion of material, and spurious duplication of mate-
rial.

2 Language

For space reasons, herein we present a rather sim-
plified version of our type system for presentations.
We assume familiarity with the (. . .)-Calculus [?] de-
veloped by, you know, those people who invented it.
The syntax is as follows.

Presentations P ::= ~S

Slides S ::= intro | outline | diag

| cont(~β) | conc

Bullets β ::= π | ǫ | µ | ν | φ

| ι | α | γ | λ(~β)
Refinements ρ ::= ρ1 → ρ2 | X | ⊤ | @ | $

Types A ::= slide | • | . . .
Kinds K ::= type | . . .

Hyperkinds H ::= kind | . . .
Sorts σ ::= a | k | h | � | © | ∗ | ⋆

Universes L ::= A | K | H | . . .
Cosmologies C ::= . . .

Philosophies P ::= . . .

WTFs [[M
◦

]] ::= [[M
◦

]] | [[M
◦

]]

1

Figure 1: Pile of Money

2.1 Slides

Given the uniformity of presentation styles, we can
easily classify slides by their type.

Slide Meaning

intro Introduction Slide
outline Outline Slide
diag Intimidating Diagram

cont(~β) Slide With Actual Content
conc Conclusion Slide

2.2 Bullet Points

We similarly divide bullet points by their function.

Bullet Meaning

π Plain Prose
ǫ Excuses
µ Misdirection
φ Formula
ι Inference Rule
ν Non Sequitur
α Impenetr. Mass of Abbrevs.
γ Impenetrable Mass of Greek

λ(~β) Nested Bullet List

2.3 Typing

Nobody really looks at most of the obvious, run-of-
the-mill, completely standard judgments and infer-
ence rules such as

Γ ⊢ S : slide

or
Γ ⊢ βi : • (∀i)

Γ ⊢ intro + outline + diag + cont(~β) + conc : presentation

anyway, so we decided not to waste space on any
more of them except for the most alarming ones. On
the other hand, the remaining inference rules have
been determined to be unsuitable for human con-
sumption, and we prudently omit them also. We ex-
pect them to be used in animal feed, and common
garden mulch.

2.4 Refinements

The essential aim of our proposal is to enable the
description of refinements of the type of presenta-
tions. A presentation that contains too few graphs,
too many or too few inference rules, lacks a cute ani-
mation at the end, or completely fails to explain how
to achieve the research result claimed and uses feeble
misdirection to avoid drawing attention to this fact
should be rejected.

2.5 Aspects

On the other hand, aspects, as any OOP researcher
worth his or her salt knows, are a feature of verbs use
to indicate how the action of a verb takes place over
time. For example, there are the following aspects.

Aspect Meaning

Imperfect Action still going on
Perfect Action completed
Pluperfect Sounds funny
Aorist Sounds even funnier
Simple(r) Past Hmph! Kids these days!
Progressive Drives Prius, Eats Granola
“Around” Advice For debugging
“Before” Advice For logging
“After” Advice Too late, therefore useless

2

Our contribution to Aspect-Oriented Presentation
is the powerpoint-cut, by which a slide can be in-
serted at the last minute just as question is asked.
This works by [XXX remember to write this section
before submitting!].

3 Related Work

While no previous work has presented an exact and
complete formal definition of a type system for pre-
sentations there has been occasional interest in the
intersection between computer science and theatrical
presentation construed more broadly. Most of this
work has focused on practical systems that are imme-
diately deployable in the field. For example, Hopper,
Murger, and Snivelin invented the so-called ‘HMS
Semaphore’ [HMS01] to prevent audience members
from beginning concurrent computations (‘imperti-
nent questions’) and thereby preventing the talk from
achieving hard real-time bounds. The Myfair Sched-
uler [HH64] attempts to provide the same guarantees
by refining the language.

More type-theoretic approaches to the problem in-
clude the invention of the phantom type of the operad
due to by Andrew Lloyd Weppél. [Wep92]

H̊avard Bringinda and his students at the Univer-
sity of Oslo have been working trying to unify sta-
tistical mechanics and category theory. We hope the
study of Bringinda Noise, and Bringinda Functors to
be fruitful.

4 Future Work

We hope to extend the current type system to
include other expositional components of computer
science research, in particular conference and journal
papers, and technical reports. This should be quite
reasonable if we use for document preparation a
modern functional programming language. The only
obstacle to ensuring of such documents that they
contain no errors or other anomalies is *** ERROR:

Redundant Hypokind in SECTION $0xFE ‘future

work’ at ptsptspts.mtx

5 Conclusion

References

[HH64] A. Hepburn and R Harrison. The My-
fair scheduler. In J. Halpern, editor, Pro-
ceedins of th’ Haighth Annual Symposium
on the Linguistics what is used in Computer
Science (LICS’01), pages 221–230, Boston,
Massachusetts, May 1964. IEEE Computer
Society Press.

[HMS01] B. Hopper, B. Murger, and B. Snivelin.
A concrete proposal for eliminating inter-
ruptions. Technical report, Adobe Systems,
2001.

[Wep92] Andrew Lloyd Weppél. Phantom type of the
operad. Unpublished manuscript, 1992.

3

106

All Your Trace Are Belong to Us∗

Daniel K. Lee

Carnegie Mellon University

1 In Ph.D. 2007

1.1 Code was beginning

Captain: What happen ?
Mechanic: Somebody deref us the NULL.
Operator: We get stderr.
Captain: What !
Operator: Bug screen turn on.
Captain: It’s you !!
Cats: How are you gentlemen !!
Cats: All your trace are belong to us.
Cats: You are on the fault to segmentation.
Captain: What you say !!
Cats: You have no chance to revert make your commit.
Cats: Ha ha ha ha
Operator: Captain !!
Captain: Take off every ‘star’!!
Captain: You know what you doing.
Captain: Move ‘Star’.
Captain: For great safety.

∗This work is partially supported by the National Science Foun-
dation under a Graduate Research Fellowship and D’s Six Pax and
Dogz.

108

Fried Chicken Bucket Processes

Mary McGlohon
Machine Learning Department

Carnegie Mellon University
mcglohon@cmu.edu

Keywords: Stochastic processes, graphical models, hierarchical models

Abstract

Chinese restaurant processes are useful hierarchical models; how-
ever, they make certain assumptions on finiteness that may not be
appropriate for modeling some phenomena. Therefore, we introduce
fried chicken bucket processes (FCBP) that involve different sampling
methods. We also introduce spork notation as a simple way of repre-
senting this model.

1 Introduction

Chinese restaurant processes and Indian buffet processes are useful in a num-
ber of domains for statistical modeling. This work introduces a new model,
the Fried chicken bucket process, and presents spork notation, a useful rep-
resentation for FCBP’s and other graphical models.

To the author’s knowledge this is the first restaurant-related model that
samples from continuous distributions in addition to discrete ones.

2 Related work

It is useful to describe work that has inspired this paper.

1

2.1 Chinese restaurant processes

The Chinese restaurant process (CRP) is a stochastic process that produces
a distribution on partitions of integers [1]. To visualize, one imagines a
Chinese restaurant with an infinite number of tables. Customers arrive one
at a time. As each arrives, he decides which table to sit at based on the
following distribution similar to a Dirichlet distribution:

p(Tablei|n) =
n(i)

γ + n− 1

p(NewTable|n) =
γ

γ + n− 1

where n is the number of previous customers and n(i) is the number
seated at table i.

This may be extended into hierarchies such as the customers also choosing
from an infinite number of Chinese restaurants [2]. This process also inspired
Griffiths and Ghahramani to describe the Indian buffet process for infinite
latent feature models, as shown in [5] and applied again by Thibaux and
Jordan in [6].

2.2 Plate notation

In high dimensional problems, representation comes in the form of very large
graphical models with many nodes. Formerly researchers simply had their
graduate students draw all the nodes. Then, in 1994, Buntine introduced
plate notation [3], which drastically reduced the work required to draw a
graphical model, and has made it possible for today’s machine learning grad-
uate students to focus their efforts on maintaining statistics-related entries
on Wikipedia. The plate notation simply groups together nodes that are
duplicated– that is, have the same interior-exterior links. An example, flips
of a thumb tack, is shown in Figure 1.

3 Fried Chicken Bucket Processes

3.1 Description of model

On the top level, one imagines a fried chicken restaurant with a chicken gen-
erating function (cgf): that is, a distribution of chicken parts from which the

2

Figure 1: A graphical model without plate notation (left) and with plate no-
tation (right).

buckets are made. The restaurant also serves homogeneous okra, coleslaw,
or other side dishes which may be treated as continuous.

A family orders a n-piece bucket of fried chicken, which begins the next
level. From the cgf, n pieces of fried chicken are drawn, making a much
coarser distribution of chicken parts. The family also takes sides. Once
the family drives home and spreads dinner on the table, each of k family
members chooses chicken pieces from the bucket. Draws are random to avoid
squabbles, and the distribution is obviously without replacement1. After
chicken is drawn, each family member chooses a continuous amount of side
dishes. It is well known that the fried chicken runs out while there are often
leftover side dishes; therefore for this model we assume that coleslaw and
okra are infinite as well as continuous. However, the amount of these dishes
may be conditional on the discrete pieces of chicken that were drawn from
the bucket, as paper plates have finite capacity.

1Sampling with replacement would be unsanitary.

3

Figure 2: A FCBP in spork notation.

3.2 Illustration of model

We can best illustrate the FCBP using a piece of hardware related to the
fried chicken bucket: the spork. The cfg (suggested through the handle of
the spork) generates the bucket in the reservoir of the spoonlike part. From
the bucket, the plates result (prongs), which then “pick” items from the
continuous and infinite side dishes. This is shown in Figure 2.

We propose that spork notation be used for any process where a discrete
sampling influences a subsequent continuous sampling.

4

3.3 Instances of model

For theatrical purposes one may choose to specify the cgf. The most obvious
choice is a multinomial distribution, with one pi for each chicken part that
may go into the bucket, where

∑
i pi = 1. For example, we might choose

(pleg = .3, pbreast = .39, pwing = .3, pbeak = .01).

4 Applications of FCBP

Many phenomena may be modeled as an interaction between a discrete sam-
pling that influences the way in which a continuous sampling behaves. One
may think of mixture models in this fashion; the prongs of the spork may
be considered k classes from which different continuous distributions of vari-
ables may result. This is significant because mixture models and the methods
are sometimes difficult to grasp, and machine learning concepts are easier to
understand when they are presented using culinary examples [4].

5 Future Work

It would be desired to extend FCBP’s to yet another hierarchy. For instance,
one might imagine a strip mall, college campus, or region of a country with
an infinite number of fast food stands and allow mixing proportions on a
family’s dinner table. This, and other further applications of FCBP are left
as an exercise to the reader.

6 Conclusion

Machine learning researchers need to stop having meetings when they’re
hungry.

References

[1] D. J. Aldous. Exchangeability and related topics. École ’e’ té de proba-
bilités de Saint-Flour XIII-1983. Lecture Notes in Mathematics, 1117.

5

[2] D. Blei, T. Gri, M. Jordan, and J. Tenenbaum. Hierarchical topic models
and the nested chinese restaurant process, 2004.

[3] W. L. Buntine. Operations for learning with graphical models. Journal
of Artificial Intelligence Research, 2:159–225, 1994.

[4] K. El-Arini. Pizza delivery processes. In Machine learning office conver-
sations, 2006.

[5] T. Griffiths and Z. Ghahramani. Infinite latent feature models and the
indian buffet process, 2005.

[6] R. Thibaux and M. I. Jordan. Hierarchical beta processes and the indian
buffet process. Technical report, University of California, Berkeley.

6

Manifest Adequacy∗

Daniel K. Lee Robert J. Simmons

Carnegie Mellon University

1 First beer

“Wrong? I can’t be wrong! I’m never wrong!
I refuse to be wrong!”

– Anonymous sober type theorist

Out of a well-founded skepticism for the ability of pa-
per to correct for the errors introduced by smudging and
smearing caused by the coffee, beer, and blood spills that are
standard hazards in the daily lives of programming language
researchers, it has been decided that the future of program-
ming languages research is in the formalization of languages
as specifications for computer proof assistants. Commonly,
the encoding of the language is as a script written in the
programming language used to interact with the proof as-
sistant. In the LF community, a great deal of sober thought
has been given to the process in which the LF encoding of
a language can be verified to be an adequate representation
of the intended language. This process is performed by ver-
ifying there exists a compositional bijection between the LF
encoding and the intended language. The failure of an ad-
equacy proof generally implies someone wasted time work-
ing on a language he didn’t even care about. Because ade-
quacy proofs require time that could be more gainfully spent
proving interesting theorems, reading Livejournals, marking
the Wean blackboards with type theory, durnk dialing ex-
girlfriends, grading problem sets, eating tube meat, planning
TGs, creating fonts, hunting penguin thieves, or playing in-
ternet poker, they are never performed in practice.

2 Second beer

We present a novel way of encoding the compositional bi-
jection between the Twelf encodings of a language and the
language it is meant to represent. We call this operator I,
but in order to retain an air of mystery we will refuse to
define the semantics of I here. However, we have a nap-
kin proof that I is reflexive and idempotent. Under the I
operator, every Twelf signature is manifestly an adequate
representation of some language. Additionally, it is general
knowledge that languages encoded in Twelf are superior to
those never encoded in Twelf, anyway.

∗This work is partially supported by the National Science Foun-
dation under a Graduate Research Fellowship and D’s Six Pax and
Dogz.

tp : type

o : tp.
arrow : tp.

exp : type.

* : exp.
app : exp -> exp -> exp.
lam : tp -> (exp -> exp) -> exp.

Figure 1: stlc.elf

tp : type.

o : tp.
arrow : tp.

exp : type.

* : exp.
app : exp -> exp -> exp.
lam : tp -> (exp -> exp) -> exp.

Figure 2: I(stlc.elf)

3 Third and subsequent beers

We have discovered an implementation of I in the stan-
dard Unix toolset. Assuming the encoded language is in
durnken-logic.elf, the following command generates the
represented language in durnken-logic-actual.elf:

% cp durnken-logic.elf durnken-logic-actual.elf

Additionally, we have discovered a verifier for testing the
correctness of an application of I. The successful comple-
tion of the following command with no output verifies that
durnken-logic-actual.elf is I(durnken−logic.elf)

% diff durnken-logic.elf durnken-logic-actual.elf

Anecdotal evidence states that the Unix implementa-
tions of I and its verifier are pretty damn fast. The ex-
tant pervasiveness of the implementation of the I operator
and its verifier on standard computing environments demon-
strate their fundamental and foundational importance.

4 Final beer

“Oh schnap, I’ve got it! Without a way to be
wrong, I can’t help but be right!”

– Anonymous durnken type theorist

In conclusion, we have suggested a formulation of the
only adequacy argument we will ever bother to make.

2

Methods and Uses of Graph Demoralization

Mary McGlohon
Machine Learning Department

Carnegie Mellon University
mcglohon@cmu.edu

Abstract

Moralizing graphs is useful in understanding indepen-
dence relations in a directed graph and in converting to
an undirected graph. However, the method of demor-
alizing graphs has not been properly addressed. This
work presents graph demoralization. It describes the
various methods for demoralizing graphs, and addresses
applications of demoralization.

Keywords: Machine Unlearning, Graphic XXX
Models!!!, Probabilistic Ethics, Disbelief Propagation,
Probably Approximately Researching

1 Introduction

Moralization is an important tool in understanding
independence relations in graphical models. However,
its dual, demoralization, is an underrepresented concept
in the research. This work presents three methods
for demoralizing graphs: isolation, misdirection, and
disbelief propagation. These methods are based on
findings in business management or sociology or some
other only vaguely related fields, allowing this work to
be submitted to a wider range of journals.

2 Preliminaries

2.1 Probabilistic graphical models. Probabilistic
models are commonly illustrated using graphs. In a
probabilistic graph, random variables are represented
by nodes, and dependencies between random variables
are represented by directed edges. The typical parent-
child relationships between nodes in graph theory apply,
and such relations illustrate the dependencies in the
graph. For instance, in Figure 1(a), the value of X3

is dependent on the value of X1 and X2. In a directed
graph, only nodes at the receiving end of the edges are
dependent on their parents. Parents are independent.
More about independencies and such can be found in
[6]. For details on inference algorithms, one may consult
[2].

(a) Original, immoral graph (b) Moralized graph

Figure 1: Moralizing a graph. In the origial graph
(a), there are two immoralities: that of the parents of
X4 and that of the parents of X6. To moralize the graph
you marry the parents and remove directions.

2.2 Moralizing Moralization is a method used for
independence relations between directed and undirected
graphs. A graph immorality occurs when a child has
two or more parents that without dependencies between
them. Also note that this isn’t one of those marriages
you only get for tax breaks; there are real dependencies
here.1 This prevents divorcing nodes, which is an even
more immoral matter in the language of probabilistic
graphical models than illegitimate children. Once par-
ents are married all other directions in the graph must
be removed; otherwise you get a hybrid graph of sorts
called a PDAG, very thoroughly described in [3].

3 Methods of demoralization

3.1 Misdirecting. Research in social group theory
has indicated that groups of agents often become de-
moralized when they are misdirected [5]. We apply
this idea to demoralizing graphs. This is shown in Fig-
ure 2, where the edge from node X4 to X6 is removed
and instead misdirected off the edge of the page. This
would cause great confusion in the probability distribu-
tion and independence relations in G, thus demoralizing

1Technically, the parent nodes may still be independent but
they act like they’re dependent. This commonly occurs in
marriages, although not as often as the dual case.

(a) Original graph (b) Misdirected graph

Figure 2: Graph demoralization through misdi-
rection. The original graph (a) is modified by remov-
ing the edge from X4 to X6 and redirecting it off the
edge of the figure and into the middle of nowhere(b).

(a) Original graph (b) Isolated graph

Figure 3: Graph demoralization through isolat-
ing. The original graph (a) is modified by removing
all edges between X4 and other nodes, severing depen-
dencies in the graph and making inference probably ap-
proximately nearly impossible(b).

the graph.

3.2 Isolation. Social group theory research also in-
dicates that dysfunction by demoralization occurs when
members of the group are isolated [5]. This has a natu-
ral application to graphs. We simply pick some nodes to
isolate, removing coherence and severing dependencies
in the graph. This has the potential for great demor-
alization. This is shown in Figure 3, where node X4 is
isolated. Its ties to all other nodes are severed, making
the previously coherent graph into 4 separate graphs.
Inference is nearly impossible in such a system. If you
were a graph, you’d be pretty damn demoralized at that
point.

3.3 Disbelief conditioning and propagation.
The third method for demoralizing graphs is to modify
one or more nodes in the graph. We begin by condi-
tioning disbelief upon one or more nodes. This method
of demoralization may be more efficient if we also prop-
agate this belief conditioning through the graph. This

(a) Original (b) Modified (c) Propagated

Figure 4: Graph demoralization through modifi-
cation and propagation. The original graph (a) is
modified by one node (b), and the modification is prop-
agated over the directed edges through the graph (c).

process, called disbelief propagation, is shown in Fig-
ure 4. We show the original graph, the modified graph,
and the propagated graph. After propagation the graph
is almost fully demoralized. See how sad it looks?

4 Applications of demoralization and
discussion on moral state of statistics
and statistical machine learning

Demoralization of graphs would seemingly have no
applications other than to sate the sadistic susceptibility
of statisticians. Sating sadistic statisticians is, of course,
an important application that is consistently in use.
For instance, simply the word “statistics” is a cruel
word to have in the English language, as it is nearly
impossible to pronounce, particularly while inebriated–
further cruelty lies in that statistics problem sets are
most tolerable while in such a state2. Another example
of sadism in statistics is the long-running turf war
between Bayesians and frequentists, that has led to such
atrocities as bicycle drive-bys and the bloody showdown
that was the rap battle between Emcee MC and The
Unbiased M.L.E [1].

Another use of demoralization is application to
privacy and security: to prevent inferences. Suppose
one had a graphical model, but wanted to keep it
secret. For instance, suppose one was embarrassed at
his shabby tennis serve and did not want other people
to know his P (PlayTennis|Rain = False) (a case
discussed in depth in [4]. One could demoralize the
graph and prevent others from making inferences on the
probability distribution.

2Not completed well, mind you, but what sort of expectations
can there be when it’s a field that accepts 95% confidence as 100%.

5 Conclusion

This work has demonstrated three methods for demor-
alization of graphs: misdirecting, isolating, and disbe-
lief propagation. Demoralization is useful for adding to
the social references in probabilistic graphical models
(among ranks with faithfulness, morality, and swinging
couples [3, 7]), for providing statistical machine learning
folk amusement, and for applications in data privacy.

Acknowledgements

This material is most likely supported by a generous
grant the Probably Approximately Foundation. The
author was partially supported by a National Science
Foundation Graduate Research Fellowship and pizza
from Pile of Money grant no. WH-4625.

References

[1] A. Arnold. Chronicles of the Bayesian-Frequentist
Wars. somewhere in Europe with .75 probability, 1999.

[2] C. Bishop. Pattern Recognition and Machine Learning:
23 cents cheaper per page than Tom Mitchell’s book.
Springer Texts, New York, 2006.

[3] D. Koller and N. Friedman. Probabilistic Graphical
Models (DRAFT). Palo Alto, CA, 2007.

[4] T. Mitchell. Machine Learning. McGraw-Hill, New
York, 1997.

[5] E. Stiehl. Misdirected and isolating groups and their
subsequent demoralization. Conversations with resi-
dent business grad student at Machine Learning De-
partment holiday parties, 2006.

[6] L. Wasserman. All of Statistics. Pink Book Publishing,
New York.

[7] L. Wasserman and J. Lafferty. All of Statistical Ma-
chine Learning. Pink Book Publishing, New York.

120

Finding Nonsense in a Nineteenth Century
Logic (Abstract)

Matthew Kehrt
University of Washington

mkehrt@cs.washington.edu

Abstract

It is a truth universally acknowledged that Dodgson’s The Jabberwocky is
a triumph of nineteenth century logic. However, exactly how this poem is
to be mapped onto a useful or even a useless logical system has been a mat-
ter of some debate. Alonzo Church is known to have gone mad studying
the more technical aspects of the poem, resulting in the hideously baroque
λ-calculus and its barrage of modern descendants.

We present a novel reinterpretation of the work, not as a brilliant antici-
pation of Gentzen’s natural deduction as it is traditionally seen, but instead
as a piece of utter nonsense. Applications to category theory are discussed.

Within the context of this new interpretation, we then turn our sights to
its applications in modern computer systems. We present a new program-
ming paradigm, Programming as Nonsense, and sketch a language called
BRILLIG which allows nonsense expressions to be inserted into program
code arbitararily, vastly inhibiting program understanding. The type sys-
tem for this language is shown to be unsound in deeply unsettling ways.
Finally, we connect this to the work of GERALD GAZDAR, because we like
his name.

1

122

A New Historical Analysis of /U/

Greg Hanneman
Language Enthusiast and Errant Scribbler

Carnegie Mellon University

Abstract

We introduce a novel analysis of the phoneme /U/,
tracing its use from its first appearance in ancient
speech to its distribution in modern utterances. We
analyze its contemporary distribution with a prob-
abilistic model and provide a number of illustrative
examples. We also practice writing in the plural even
though there is only one of us.

1 Introduction

Experts generally agree that the first language in the
world was the one developed by the prehistoric peo-
ple of what is now southern France [6], expressed
among the famous cave paintings discovered at Las-
caux in 1940. The more commonly studied depic-
tions involve hunting and gathering scenes, village
feasts, and wars against neighboring tribes. Also
among them, however, way back on that one reddish
rock just to the left of the bête noire, is a fragment
of writing that puzzled linguists for decades (Figure
1). It was later analyzed and discovered to be the
Diamond Jubilee version of Gregg shorthand [2].

Figure 1: Mysterious fragment of prehistoric writing
discovered in a cave at Lascaux.

Of the many phonemes represented in the Lascaux
text, one of the most prevalent and useful is /U/.
Indeed, the /U/ phoneme’s importance, dating from

its appearance in well-known prehistoric words like
/UG/ and continuing to the present day, has been
unquestioned for thousands of years. In this paper,
we present a novel analysis of /U/, taking especial
care to place the use of the sound in its historical
and modern contexts. We also describe a series of
elicitation experiments designed to provide data on
the current use of /U/ in informal speech.

2 Previous Work

Hanneman [3] provided a first-rate introduction of
the topic in his very readable recent paper. We can-
not hope to improve upon his fine analysis, choosing
instead to refer the interested reader to his original
work for full details.

3 Experimental Results

The value of /U/ as a space-filler in hesitant and con-
fused speech is well known. Our experiments show
that the duration of the sound generally ranges from
550 ms to 1200 ms, with values reaching more than
3000 ms in some speakers. Other so-called “gap”
phonemes, such as /a/ or /œ/, are generally less fun
to study, so we have no data on them.

3.1 Modern Speech

We do, however, enjoy drawing syntax trees. To han-
dle the appearence of /U/ in a speech stream, we
adopt the Penn Treebank annotation UH [4] in each
of our examples below. Data taken from two native
English speakers between the ages of 23 and 241 in-
dicate a somewhat systematic use of UH in casual

1The relatively small sample size and homogeneity of our
test subjects is due to the fact that they were the only grad
students in the lab the night before the SIGBOVIK paper
deadline.

1

speech. A spurious /U/ is most frequenty inserted
before a major syntactic constituent (Figure 3.1),

S

VP

VP

NP

NP

N

tangerines

ADJ

more

UH

/U/

V

buy

AUX

should

NP

PRO

I

Figure 2: In this example from our corpus, a spurious
/U/ occurs before the noun phrase more tangerines.

We represent this pre-constituent distribution with
a probability model. We explicity model a context-
sensitive series of features over lexicalized con-
stituents. In this case, we let c be the syntactic
category of the constituent (NP, VP, etc.), h be the
lexicalized head word of the constituent (tangerines,
etc.), and p the current phase of the moon expressed
as a real number on the range [−1, 1]. We also keep
track of a base probability, u, of a /U/ insertion for
each speaker s. This gives us the following model:

P (u, c, h, p, s) = P (c, h, p)P (u | s) (1)

The title of this paper, however, promised a his-
torical analysis of /U/. Therefore we conclude our
discussion of current uses and move on to the next
subsection.

3.2 Historical Speech

The earliest wax phonograph cylinders now extant
provide a fascinating look at the speech of prehistoric
man. (See, for example, Sage [5].) From the begin-
ning, the prevalence of /U/ in some utterances, such
as /UGe.wUGe.GU/, can approach the level of the letter
e in modern English texts. These examples show the

pervasive extent of the phoneme in ancient speech,
and also indicate how a modern player might win at
IPA hangman against a Cro-Magnon opponent.

In more modern times, /U/ has continued to be
used upon important occasions of all kinds, rang-
ing from Julius Caesar’s famous dying words “Et tu,
Brute? /U/!” in 44 B.C. to Queen Victoria’s oft-
quoted “/U/ , we are not amused.” Modern writ-
ers, though, who have creative differences with the
International Phonetic Alphabet generally prefer to
render /U/ as “uh” in normal text; modern copy edi-
tors, who insist on regularity of punctuation, set it off
with commas. In this form, the sound has shown up
in various contemporary contexts, such as “Cake or,
uh, death?” and “This is, uh, Spartaaaaa!” The au-
thors feel that further explication beyond these per-
ceptive examples will not be necessary.

4 Error Analysis

Propagation of error or uncertainty can be calculated
in two distinct ways [1]. The first, known as the
derivative method, computes the error in function f
due to uncertainty in variable x as:

δfx =
∣∣∣∣∂f

∂x

∣∣∣∣ δx (2)

Once the error due to each variable in a function
is calculated in this way, they are combined via the
quadrature method. For a function f(a, b, ...n):

δf =
√

δ2
fa + δ2

fb + · · · + δ2
fn (3)

Error can also be calculated using the so-called
computational method, which is often preferable to
first-year physics students because it requires no cal-
culus. Given a function f(a, b, ..., n), the error due
to each variable is simply:

δfx = |f(a, b, ..., x + δx, ..., n) − f(a, b, ..., x, ..., n)|
(4)

Then the quadrature method of Equation 3 can be
applied.

The application of the above formulas to the data
is left as an exercise to the reader [10 points]. Write
that down in your copybook now.

References

[1] Department of Physics, Case Western Reserve
University. Lab Manual, 2006.

2

[2] John Robert Gregg, Louis Leslie, and Charles
Zoubek. Gregg Shorthand. McGraw-Hill, 1971.

[3] Greg Hanneman. A new historical analysis of /U/.
In Proceedings of SIGBOVIK: Workshop about
Symposium on Robotic Dance Party of, Pitts-
burgh, PA, April 2007. Association for Compu-
tational Heresy.

[4] Mitchell P. Marcus, Beatrice Santorini, and
Mary Ann Marcinkiewicz. Building a large an-
notated corpus of english: The penn treebank.
Computational Linguistics, 19, 1993.

[5] Glenn Sage. Cylinder of the month. Online,
December 1999. http://www.tinfoil.com/cm-
9912.htm#e10000.

[6] Ross Steele, Susan St. Onge, and Ronald St.
Onge. La civilisation française en évolution.
Thomson Heinle, 1996.

3

126

Wikiplia:

The Free Programming Language

That Anyone Can Edit

Tom Murphy VII

1 April 2007

Abstract

We present a new programming language called
Wikiplia. The language has an unprecedented level
of integration: The system is its own compiler, lan-
guage definition, documentation, development envi-
ronment, distributed filesystem, database, revision
control system, bootstrapping software license, com-
munity message board, and World Wide Web home
site. Wikiplia is designed to be Free to a greater
extent and in more dimensions than existing lan-
guages.

Keywords: Freedom, programming language, software

license, wiki, XML, weatherproof footwear and their fas-

tening mechanisms, hyper-driven devices

1 Introduction

One of the most cherished social principles of
mankind is freedom,1 in its many incarnations. More
recently, freedom has become an important principle
in computer science as well, with the introduction of
Free Software licenses such as the GNU GPL,2 exten-
sible markup languages such as XML,3 the ability ex-
plicitly deallocate memory with the free(3) library
call, and the widespread availability of Free Herbal
V1agara on the World Wide Web.4

The aim of this project is to develop a program-
ming language that is as free as possible. We begin

-1Copyright c© 2007 the Regents of the Wikiplia Foundation.
Appears in SIGBOVIK 2007 with the permission of the As-
sociation for Computational Heresy; IEEEEEE! press, Verlag-
Verlag volume no. 0x40-2A. This document may be distributed
under the terms of the TIA Public License (Section 5). £0.00

1Wikipedia, the free encyclopedia: Freedom; 2007
2Wikipedia, the free encyclopedia: GNU General Public License; 2007
3Wikipedia, the free encyclopedia: XML; 2007
4Wikipedia, the free encyclopedia: Sildenafil; 2007

by enumerating freedoms that we desire to support.
Because freedom is a possession of inestimable value5

we do not attempt to rank these freedoms; instead,
each freedom is “numbered” using a symbol drawn
from incomparable sets of glyphs.

Freedom c©: The freedom to tinker. Users
should be able to study a program to see how it works,
and to make modifications to suit his or her needs.
For most software, this means that the programmer
needs access to the software’s documentation, source
code, and UML6 use case diagrams. This is tradi-
tionally achieved through licenses such as the GPL;
however, as we will discuss in Section 2 there are spe-
cial considerations for bootstrapping compilers that
render the GPL inadequate for this purpose.

Freedom ~: Freedom of expression. Program-
mers should be able to write their programs using any
expressions that they like. Specifically, there should
be no prior establishment of arbitrary categories of
expression that are excluded, such as those that dis-
criminate on the basis of class, mathematical philos-
ophy, or type.

Freedom ©
q: Free to be You and Me. The de-

velopment of a programming language should not be
confined to the bearded academic elite, gazing down
upon the programmer fiefs from their stratospheric
ivory towers. Wikiplia is the free programming lan-
guage that anyone can edit: from bearded academic
elite7 to congressional staffers8 to nameless Slashdot9

trolls. Wikiplia’s WWW-based approach means that

5Wikipedia, the free encyclopedia: Cicero; 2007
6Wikipedia, the free encyclopedia: Unified Modeling Language; 2007
7Wikipedia, the free encyclopedia: Tenure; 2007
8Wikipedia, the free encyclopedia: Congressional staffer edits to Wikipedia
9Wikipedia, the free encyclopedia: Slashdot; 2007

1

an Internet connection and compatible WWW hy-
pertext browser is all that’s needed to begin on the
life-changing journey of programming language de-
sign.

Freedom 4: Freedom of beer. Users should be
able to write software without paying money to a
licensing authority or certification program.

Freedom ¶: Freedom to redefine freedom.
Freedom should be free, so the definition of freedom
should be free to change as the meaning of freedom
changes. Wikiplia’s license allows for Wikiplia to
be distributed in a way that monotonically increases
freedom as new concepts and catchphrases of freedom
are invented.

Freedom x1.2√�oo + x
z2 : Freedom of USA #1.

Wikiplia is 100% made in the USA and only avail-
able in English.10

2 Reflections on strapping
straps and booting boots

The hallmark of Free software is the GNU General
Public License. It is a hereditary license that requires
that (a) source code be distributed with the program
and (b) modified versions of the program also be li-
censed under the GPL. The intention is that anyone
receiving the software can exercise Freedom c© by
understanding the source code and modifying it to
suit his needs. Clearly any source code will not do:
an obfuscated11 version of the source code cannot be
easily understood or modified, even though it is tech-
nically “source code.” The GPL therefore legally de-
fines source code as the “preferred form” for “making
modifications.”

Even source code in the preferred form might not
be enough to achieve Freedom c©, however. For in-
stance, the program might be written in a myste-
rious programming language that only the author
understands, and that programming language might
only be implemented in a private compiler on the au-
thor’s hard disk.12 It is therefore reasonable to con-
strue the “preferred form” of the original software to
include the implementation of the programming lan-
guage that the software is written in. Because the

10Wikipedia, the free encyclopedia: Freedom fries; 2007
11Wikipedia, the free encyclopedia: Obfuscated code; 2007
12Wikipedia, the free encyclopedia: Hard disk; 2007

programmer might need to fix bugs or extend the
programming language implementation in order to
modify the original program, he also needs the source
code for that language as well. This code must also
be written in some language, so the process contin-
ues. It can end when one of the programming lan-
guages is generally well known enough that there are
no practical barriers to understanding it or finding
an implementation (examples would include C13 and
ALGOL 5814), or so simple that the implementation
is essentially non-existent (e.g. an assembler imple-
mented directly in machine code).

Another way for this process to terminate is for
a programming language to be implemented in it-
self. This is known as a “bootstrapping compiler.” A
natural social tendency causes this to be very com-
mon: language implementors are more likely to enjoy
the language they are implementing, and therefore
more likely to choose it to implement the language.
But when this process terminates this way, the reader
might be left with a suspicious sense that nothing has
actually been achieved.15 Specifically: What freedom-
fulfilling use is the source code to an implementation
of a mysterious programming language, if that source
code is itself in the same mysterious programming
language?

Let us concentrate on a more concrete example.
The GNU C compiler16 (licensed under the GPL) is
an implementation of the C language with some ex-
tensions specific to the compiler. The GCC source
code uses some of these extensions. Can the GCC
be Free software if it requires the GCC to build? In
the extreme case, what if someone were to add an
extension to the GCC to enable a new C keyword—
called compile a program—and then replace the en-
tire source code with:

int main (int argc, char ** argv) {
compile_a_program;
return 0;

}

Such code is clearly worthless. Not all subversions
of the source code via language extension may be
so overt, but we claim that they nonetheless pose a
substantial threat to freedom.

We do not wish to limit the programmer’s ability
to make extensions to a language, since this would

13Wikipedia, the free encyclopedia: C (programming language); 2007
14Wikipedia, the free encyclopedia: ALGOL 58; 2007
15In the case of a LOGO interpreter implemented in LOGO,

we could say that this is then “turtles all the way down.”
16Wikipedia, the free encyclopedia: GNU Compiler Collection; 2007

2

also toe-step Freedom c©. We then conclude that the
licensing terms must be expanded in order to provide
more than “source code.” We propose that not only
the source, but the source code’s history, must be
made available.

2.1 Revision control

Computer scientists use revision control17 to track
changes to software and to coordinate development
between multiple programmers. This has been true
for thousands of years. Popular revision control sys-
tems such as CVS18 and Subversion19 allow for code
to be concurrently modified by two or more develop-
ers and then have their changes integrated after the
fact by an explicit “check in” and conflict resolution
phase.

It may näıvely seem that publishing the entire CVS
history of a project would solve the issue with lan-
guage extensions: By inspecting the revision that in-
troduced the compile a program feature (but prior
to the replacement of the GCC with the minuscule
version above), one could then see its implementa-
tion and then know what it means. For certain pat-
terns of development this does indeed suffice. How-
ever, programmers are not forced to check in their
changes except at their own whims, as determined
by social conventions; a programmer might make the
private addition of the keyword compile a program,
then rewrite the GCC to use it, and only then check
in this change as one revision. For this action he will
surely be rebuked by his fellow programmers; none of
the other developers can compile the new version of
the code without access to the intermediate revision!
This social pressure would also näıvely seem to be
enough to address the problem, but more insidious
scenarios yet obtain.

As a concrete example, suppose there are two pro-
grammers called K and R. Each is modifying the
GCC with the purpose of adding a new character
constant, ’\c’. K and R start at revision 100 of the
GCC. K finds the case analysis for parsing character
constants:

17Wikipedia, the free encyclopedia: Revision control; 2007
18Wikipedia, the free encyclopedia: Concurrent Versions System; 2007
19Wikipedia, the free encyclopedia: Subversion (software); 2007

/* REVISION 100 (K) */
switch(ch) {
case ’n’: return ’\n’;
case ’r’: return ’\r’;
...
default: abort("bad char constant");

}

He adds a case for his extension, without using the
extension, and checks this in as revision 101.

/* REVISION 101 (K) */
switch(ch) {
case ’n’: return ’\n’;
case ’r’: return ’\r’;
...
case ’c’: return 257;
default: abort("bad char constant");

}

Meanwhile, R has similar (but not identical) inspira-
tion and modifies his copy of the compiler:

/* REVISION 100 (R) */
switch(ch) {
case ’n’: return ’\n’;
case ’r’: return ’\r’;
...
case ’c’: return 8675309;
default: abort("bad char constant");

}

He does not commit his code because he is wary of
the time-consuming conflict resolution phase and is
late for a date with K’s estranged wife who is fed up
with K’s all-night hacking binges. He burns rubber
in his 2007 Honda Civic20 with aftermarket spoiler
for a night on the town, believing that a healthy
well-rounded programmer spends more or less equal
nights basking in the pale amber glow of the tele-
type as waking up with a few missing teeth naked
and norovirused in some midtown alleyway with his
wallet barely out of reach but empty anyway, having
amply exercised Freedom 4.

Meanwhile, K continues extending the GCC, using
the extension to implement itself. He checks in this
code with no conflicts:

20Wikipedia, the free encyclopedia: Honda Civic; 2007

3

/* REVISION 102 (K) */
switch(ch) {
case ’n’: return ’\n’;
case ’r’: return ’\r’;
...
case ’c’: return ’\c’;
default: abort("bad char constant");

}

K punches out at 1130 UTC,21 just as R returns from
his adventure. R’s confidence bolstered, he finishes
his extension effort, following best practices and im-
plementing the extension using itself:

/* REVISION 100 (R) */
switch(ch) {
case ’n’: return ’\n’;
case ’r’: return ’\r’;
...
case ’c’: return ’\c’;
default: abort("bad char constant");

}

He now decides to commit his changes (forgetting
that he did not commit the intermediate revision).
To do so he updates to the newest revision, 102,
and sees that there are no conflicts—in fact, revision
102 already contains his changes! Believing that his
changes are therefore compatible, he continues hack-
ing.

After this scenario, K and R believe they are work-
ing on the same programming language—after all, it
has the same source code—but their minor bifurca-
tion in development history means that they have for-
ever different meanings of the ’\c’ extension. This
mistake is likely to go unnoticed for some time, and
until it is resolved, the meaning of the ’\c’ exten-
sion is firmly enslaved in the bipartite penitentiary of
double entendre, yearning to be free . . .22

21Wikipedia, the free encyclopedia: Coordinated Universal Time; 2007
22Wikipedia, the free encyclopedia: Information wants to be free; 2007

2.2 Solution

Based on these scenarios we conclude that extant so-
cial measures such as revision control conventions are
not enough to guarantee freedom in all circumstances.
Even if we think these situations are implausible in
the hands of well-intentioned, well-mannered and
capable23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45

software engineers, we wish for our software to re-
main free even when in the hands of nefarious
and crafty factions who would seek to fracture46

our free software community. We therefore need a
technological and legal solution that forces the entire
development history to be available. Keeping with
Freedom x1.2√�oo + x

z2 , we call this technology and
its license Total Information Awareness after the
successful project of the US Government with the
same name.47

Technologically, we develop our system around a
primitive notion of revision control in which every
change to the system is recorded. Because the system
has an integrated editor, every action of a program-
mer is logged and preserved indefinitely with no ex-
tra action necessary on the programmer’s part. Such
commits are globally atomic, using a single univer-
sal repository. (This means that in the above sce-
nario, R would not have been able to forget to commit
his intermediate change, and would have been forced
to observe his conflict with K.) To protect against
the possibility that divergent development paths lead
to incompatible compilers, we require that there is
only one compiler for any given programming lan-
guage, which itself exists in the revision control sys-
tem. Therefore, it is always clear which version of

23Wikipedia, the free encyclopedia: Year 2000 problem; 2007
24Wikipedia, the free encyclopedia: Northeast Blackout of 2003
25Wikipedia, the free encyclopedia: Ariane 5 Flight 501; 2007
26Wikipedia, the free encyclopedia: Mars Climate Orbiter; 2007
27Wikipedia, the free encyclopedia: Mars Polar Lander; 2007
28Wikipedia, the free encyclopedia: Mars Rover; 2007
29Wikipedia, the free encyclopedia: Mars Pathfinder; 2007
30Wikipedia, the free encyclopedia: Gripen#Crashes; 2007
31Wikipedia, the free encyclopedia: missingno.; 2007
32Wikipedia, the free encyclopedia: XSS; 2007
33Wikipedia, the free encyclopedia: Buffer overflow; 2007
34Wikipedia, the free encyclopedia: Therac-25; 2007
35Wikipedia, the free encyclopedia: Lothar (storm); 2007
36Wikipedia, the free encyclopedia: Mariner 1; 2007
37Wikipedia, the free encyclopedia: Code Red worm; 2007
38Wikipedia, the free encyclopedia: SQLSlammer; 2007
39Wikipedia, the free encyclopedia: Sandstorm (vehicle); 2007
40Wikipedia, the free encyclopedia: Samy (XSS); 2007
41Wikipedia, the free encyclopedia: Pentium FDIV bug; 2007
42Wikipedia, the free encyclopedia: MIM-103 Patriot; 2007
43Wikipedia, the free encyclopedia: Windows 95; 2007
44Wikipedia, the free encyclopedia: Morris (computer worm); 2007
45Wikipedia, the free encyclopedia: USS Yorktown (CG-48); 2007
46Wikipedia, the free encyclopedia: Fork (software development); 2007
47Wikipedia, the free encyclopedia: Information Awareness Office; 2007

4

the compiler was used to produce an executable from
source. This also makes the K and R scenario impos-
sible: there is only one compiler and so it is impossible
for it to differ from itself.

Legally, all of the software is licensed (Section 5)
under terms similar to the GNU GPL, but that de-
fine the “source code” to include the entire revision
history of the system. In order to be compatible with
Freedom ¶, we allow the license itself to be edited,
but to ensure that no one can remove freedoms al-
ready present in the license, the license includes a
provision that allows any prior version of the license
to be used, at the programmer’s option.

2.3 Implementation

Wikiplia, the free programming language that anyone
can edit, is implemented as a web-site on the Internet
at the address

http : //wikiplia.spacebar.org : 2222/

2.4 Roadmap

The remainder of this paper proceeds as follows. We
first present in Section 3 the design of the initial
Wikiplia system, which is used to bootstrap the rest
of Wikiplia. We then discuss the current state of
Wikiplia as of revision 532 in Section 4. We explain
the freedom-preserving TIA Public License in Sec-
tion 5. We conclude with a discussion of unrelated
work and plans for the future 6.

3 Core calculus

X ::= <tag> X1 X2 . . . Xn </tag>
| string

Figure 1: Syntax of XML

Wikiplia is built upon a core calculus of structured
data with primitive revision control. Because we
wish to support the freedom to tinker, the structured
data take the form of XML (the extensible markup
language; Figure 1). Similar to the W3C’s XML
Validation,48 we allow the quality of an XML doc-
ument to be assessed via a process called evaluation,
whose output (if any) is itself an XML document.

48Wikipedia, the free encyclopedia: XML schema; 2007

Selected rules for XML evaluation (the dynamic se-
mantic markup) are given in Figures 2 and 3.49

Revision control is accessed through the class of im-
perative cvs judgments. We assume a single global
repository, which maps keys (strings) to lists of revi-
sions. A revision is a monotonically increasing and
unique revision number (integer) paired with an XML
document. The judgment cvs commit s X = i cre-
ates a new revision with revision number i and data
X and inserts it under the key s. The judgment
cvs checkout s = X fetches the most recent revi-
sion for the key s,50 the document X (if no such key
exists, then the document is invalid). The judgment
cvs checkout −r i s = X does the same, but for the
specific revision number i51 (if no such revision exists,
the document is invalid). Finally, cvs log s = ~X
fetches all of the revision numbers for the key s, as a
series of integers ~X.

3.1 Syntax

E ::= (E1 E2 . . . En)
| "string"
| n
| symbol
| ’E

[[(E1 . . . En)]] = <list>[[E1]] . . . [[En]]</list>
[["s"]] = <string>s</string>

[[n]] = <int>n</int>
[[sym]] = <symbol>sym</symbol>
[[’E]] = <quote>[[E]]</quote>

Figure 4: The syntax for the XESP syntax. The
recursively defined [[·]] operation converts an XESP
expression into an XML document.

XML documents are universally parseable.52 How-
ever, they are difficult to write and read. Therefore,
as usual53 we create a new syntax by which humans
can write and read documents and which the com-
puter automatically parses and converts to the eas-

49XML documents can be self-correcting through the use of
the handle primitive, which detects an invalid document and
proceeds along an alternative path. We omit the rules for this
feature, which requires propagating invalid document status
throughout evaluation and thus complicates the rules substan-
tially.

50Wikipedia, the free encyclopedia: Dynamic scope; 2007
51Wikipedia, the free encyclopedia: Static scope; 2007
52Wikipedia, the free encyclopedia: Parsing; 2007
53Wikipedia, the free encyclopedia: RELAX NG; 2007

5

Γ ` eval <string>s</string> 7→ <string>s</string> Γ ` eval <quote>X</quote> 7→ X

Γ ` eval <int>s</int> 7→ <int>s</int> Γ ` eval <prim>s</prim> 7→ <prim>s</prim>

s prim

Γ ` eval <symbol>s</symbol> 7→ <prim>s</prim>

Γ(s) = X

Γ ` eval <symbol>s</symbol> 7→ X

Γ ` eval <closure>Γ s X</closure> 7→ <closure>Γ s X</closure>

Γ ` eval X1 7→ X ′
1 · · · Γ ` eval Xn 7→ X ′

n Γ ` rate X ′
1 . . . X ′

n 7→ X ′

Γ ` eval <list>X1 . . . Xn</list> 7→ X ′

Figure 2: Evaluation of XML, part 1. The judgment Γ ` eval X 7→ X ′ indicates an assessment of the
document X with value X ′. The judgment rate is an auxiliary assessment of a list of documents. It
is defined in Figure 3. ~X is shorthand for a possibly empty sequence of XML documents. Γ is itself
an XML document of the form <list><symbol>s1</symbol> X1 . . . <symbol>sn</symbol> Xn</list>.
We take the judgment Γ(s) = X to produce the leftmost Xi in Γ such that si is s. Γ, s = X is
<list><symbol>s</symbol> X ~X</list> if Γ is <list> ~X</list>. The judgment s prim holds when s
is one of insert, head, read, abort, lambda, list, cons, quote, string, xcase, size, sub, substr, handle, parse, eval,
eq, +, -, int, history, let, or if.

ily parseable XML syntax and back to the new syn-
tax, reducing complexity.54 This compact syntax is
based upon parentheses rather than tags: The XML
document <list>X1 X2</list> is instead written
(X1 X2). Note that the closing parenthesis is not
named as in XML, which makes parsing difficult be-
cause the computer must guess which parenthesis be-
longs to which other parenthesis. We therefore call
this compact syntax XESP because it basically reads
the programmer’s mind 55 to guess what the name of
the closing parenthesis should be. The grammar for
XESP is given in Figure 4 along with the translation
to XML documents. From now on, we use the XESP
syntax in our examples.

3.2 Implementation

Wikiplia is implemented as a World Wide Web Home-
Site, which allows for easy access from any location.

The system is implemented as a Standard ML56

program of approximately 1,000 lines.57 This program

54For efficiency, the Wikiplia implementation is optimized
to lazily perform these translations, so that the document is
never represented in XML form.

55Wikipedia, the free encyclopedia: Extra-sensory perception; 2007
56Wikipedia, the free encyclopedia: Standard ML; 2007
57This count does not include general purpose libraries, such

as a networking library.

is designed to be minimal: it consists of a web server,
a revision control system, and facilities for evaluat-
ing XESP documents. It also contains a very mini-
mal bootstrapping “compiler” for XESP documents,
with its boots manually strapped. From this tiny
core we then develop the remainder of Wikiplia using
Wikiplia itself.

Some may balk at the choice of Standard ML, as
the language is miserably non-free: First, while many
of the major implementations are GNU or BSD-
licensed,58 all are implemented in Standard ML itself,
yielding the bootstrapping problem described earlier.
Second, the mathematical Definition of Standard ML
book is only available as a copyrighted publication
of MIT Press,59 not even ostensibly in a free man-
ner. However, the performance considerations of the
server and evaluator—and the lack of suitable free
alternatives—force us to settle for such subjugation.

3.2.1 Web Server

The web server’s job is simple. It runs in a loop,
accepting a single connection, setting up an initial
environment Γ for evaluation (which associates the
symbols request.url, request.ip and request.time with

58Wikipedia, the free encyclopedia: BSD licenses; 2007
59Wikipedia, the free encyclopedia: MIT Press; 2007

6

Γ ` rate <prim>list</prim> ~X 7→ <list> ~X</list>

Γ ` rate <prim>cons</prim> X <list> ~X</list> 7→ <list>X ~X</list>

Γ ` rate <prim>lambda</prim> <symbol>s</symbol> X 7→ <closure>Γ s X</closure>

Γ′, s = <list> ~X</list> ` eval X 7→ X ′

Γ ` rate <closure>Γ′ s X</closure> ~X 7→ X ′
Γ ` eval X 7→ X ′

Γ ` rate <prim>eval</prim> X 7→ X ′

Γ ` eval X 7→ X ′

Γ ` rate <prim>xcase</prim> <list></list> X ~X 7→ X ′

Γ, sh = Xh, st = Xt ` eval Xb 7→ X ′

Γ ` rate <prim>xcase</prim> <list>Xh
~Xt</list> X0

<list><symbol>sh</symbol> <symbol>st</symbol> Xb</list> ~X 7→ X ′

Γ, sq = X ` eval Xb 7→ X ′

Γ ` rate <prim>xcase</prim> <quote>X</quote> X0 X1

<list><symbol>sq</symbol> Xb</list> ~X 7→ X ′

Γ ` eval X 7→ X ′

Γ ` rate <prim>xcase</prim> <string>s</string> X0 X1 X2 X ~X 7→ X ′

Γ ` eval X 7→ X ′

Γ ` rate <prim>xcase</prim> <int>i</int> X0 X1 X2 X3 X ~X 7→ X ′

Γ, sb = <string>s</string> ` eval Xb 7→ X ′

Γ ` rate <prim>xcase</prim> <symbol>s</symbol> X0 X1 X2 X3 X4

<list><symbol>sb</symbol> Xb</list> ~X 7→ X ′

t = prim or closure Γ ` eval X 7→ X ′

Γ ` rate <prim>xcase</prim> <t> ~Xt</t> X0 X1 X2 X3 X4 X5 X ~X 7→ X ′

Γ ` rate <prim>quote</prim> X 7→ <list>X</list>

cvs checkout s = X
Γ ` rate <prim>head</prim> <string>s</string> 7→ X

cvs checkout −r i s = X
Γ ` rate <prim>read</prim> <string>s</string> <int>i</int> 7→ X

cvs commit s X = i
Γ ` rate <prim>insert</prim> <string>s</string>X 7→ <int>i</int>

cvs log s = ~X

Γ ` rate <prim>history</prim> <string>s</string> 7→ <list> ~X</list>

Figure 3: Evaluation of XML, part 2. The rate judgment assesses a sequence of XML expressions. The rules
for rating the primitives parse, string, sub, substr, +, -, int, eq and if are omitted for space.

7

the appropriate values), and then evaluating the doc-
ument contained at the head of the key main in the
repository. The result of that evaluation is sent back
to the web browser as a string.60 The server knows
nothing else about how Wikiplia works.

The web server is single-threaded (so each request
must finish before the next is handled) because we
desire global atomicity (Section 2).

3.2.2 Revision Control

The revision control system stores XESP documents
and their history. This is mostly a straightfor-
ward implementation of the imperative cvs judg-
ments given in Section 3. Unlike typical revision con-
trol systems, we need to support very large numbers61

of revisions with small edits (since every change is
saved), so the implementation is engineered to make
storing small revisions very cheap. Particularly, revi-
sions are aggressively compressed by only storing the
newest revision directly, and then a series of differ-
ence “plans” that describe how to get the next older
revision from the current one. We compute optimal
plans using an efficient minimal edit distance62 cal-
culation at the token63 level. As of revision 532, the
database is only 250 kilobytes.64

3.2.3 Document Evaluation

The Wikiplia implementation also has facilities for
parsing and evaluating XESP documents. These are
a direct implementation of the evaluation rules in Fig-
ures 2 and 3.

3.2.4 Bootstrapping

The key main of Wikiplia is responsible for decom-
posing the URL and acting upon it however is ap-
propriate. The goal of the bootstrapping process is
to make Wikiplia self-sufficient65 in the sense that
the language can be edited from the web site imple-
mented by main. To do so, the web site needs to be
able to present the user with an edit box containing
the current source of the main key and the ability to
save his code into the database, overwriting the main
key, in order to add functionality.

60The HTTP result code may be modified if, for example,
the resulting document is a HTTP redirect to another URL.

61The implementation also supports revision numbers of ar-
bitrary size.

62Wikipedia, the free encyclopedia: Levenshtein distance; 2007
63Wikipedia, the free encyclopedia: Token (parser); 2007
64Wikipedia, the free encyclopedia: Kilobyte; 2007
65Wikipedia, the free encyclopedia: Self-sufficiency; 2007

(lambda ’s ’(parse (xcase s ’no ’(h _ h))))

Figure 5: The initial bootstrapping compiler.

The initial implementation of main is provides for
the simple ability to edit, save, and view the current
version of keys in the repository. These three actions
are encoded as the URLs /edit/key, /save/key,
and /view/ /key. The view action is straightfor-
ward. The edit action displays an HTML textarea66

containing the current value of the key and a but-
ton that submits the changes to the save url. The
save action is the most complex. First, the submit-
ted document is saved as the new version of the key.
Then, if the key is of the form base.extension, the
database is checked to see if there is a key called
extension:compile. If so, the XESP document that
is there is applied to the input document (a string)
to produce a document that is saved at the key base.
This allows us to develop languages that are auto-
matically compiled when saved.

This initial functionality is implemented directly in
the XESP language, whose extension is b; the boot-
strapping “compiler” is just the built-in parser (Fig-
ure 5).

Arranging that the repository contain the correct
keys to make this work is subtle. A small initializa-
tion phase sets up:

• b:compile.b The source code (a string) in
Figure 5

• b:compile The parsed document correspond-
ing to the above, such that b:compile applied
to b:compile.b yields b:compile

• main.b The source code of the original “main”
program

• main The parsed document corresponding to
the above, such that b:compile applied to
main.b yields main.

We do this by anticipating, during the initializa-
tion process, the meaning of b:compile so that we
can perform that action (parsing) on b:compile.b
to produce b:compile. This can only be achieved by
fiat and this is the essence of bootstrapping.

After this minimal initialization, we can then ex-
clusively use the web interface to develop and extend
Wikiplia.

66Wikipedia, the free encyclopedia: Text box; 2007

8

Figure 6: Screenshot of the Wikiplia home page as of revision 532.

4 Revision 532

As of writing, Wikiplia is at revision 532, and has a
number of features implemented.

4.1 Interface

The editing interface implemented has been enhanced
greatly; Figure 6 shows a screenshot of the main page.
The various views of a key are shown with a series of
tabs at the top of each page. Each user has a home
page named after his IP address,67 which he can use
to catalogue his interests. Various warnings help the
user, for example, if he tries to edit a page that was
generated by compiling some source code, a warn-
ing message suggests that he may wish to edit the
source code instead. An ornate logo in SVG68 adorns
the page, and a sidebar provides quick access to the
site’s features. The logo and graphics for the site
are stored in the repository; the new raw and typed
actions allow access to these resources over HTTP

67Wikipedia, the free encyclopedia: IP address; 2007
68Wikipedia, the free encyclopedia: Scalable Vector Graphics; 2007

so that they may be freely modified.69 At revision
228 support for metadata was added for each page;
a history tab now shows the date, revision number,
IP address, and edit summary for each change to a
key (Figure 7).

It is very easy to make mistakes that render the
system unusable. Therefore Wikiplia supports the
ability to safely revert to a previous version of a key.
When making changes to the main key this ability can
be accidentally disabled, so the complex functionality
of main was split off to a new key called main-go
at revision 9; the main key now only dispatches to
main-go but provides an emergency-revert action
that automatiaclly reverts main-go to its previous
revision in case it is damaged and the site is unusable.

69Because Wikiplia is dogmatically forward-looking, the
graphics require SVG support in the browser and support for
the data: URL format, a combination only found in the newest
versions of the Mozilla Firefox. Wikiplia is compatible with
incompatible browsers, however, simply displaying a crapified
version of each page.

9

Figure 7: Screenshot of the history information for main-go.w.

4.2 Wikiplia language w

Writing XESP documents by hand is very tedious,
so one of the first orders of business was to de-
velop a compiler for a new language, w, which
can be extended with convenient features. The
first version of this language, created in revision
22, was written in XESP. It automatically quoted
the appropriate arguments to the let, it, lambda,
xcase primitives. In revision 361, the compiler was
ported to the language w as w:compile.w, then
compiled with the existing b-compiled version of
w:compile.b, then recompiled with itself until reach-
ing a fixed point.70 After that, more features were
added: a multi-argument function construct fn;
a list-deconstructing binding construct lets; sim-
ple support for separately-compiled libraries71 via
include; support for mutually-recursive72 bundles of
functions via fun;73 and the cond keyword for series
of chained “if. . . else” conditionals. At each stage, the

70Wikipedia, the free encyclopedia: Fixed point (mathematics); 2007
71Wikipedia, the free encyclopedia: Library (computing); 2007
72Wikipedia, the free encyclopedia: Recursion (computer science); 2007
73Prior to this, recursion had to be encoded directly by pass-

ing an initial “self” argument to each function.

feature is implemented using the current version of w,
and then w:compile.w is rewritten to use that conve-
nient extension, and then recompiled until reaching
a fixed point.

4.3 Wikiplia language page

Wikiplia is not just a programming language; it needs
facilities for editing pages that are human readable
as well. This can be used to edit documentation for
programming languages, to modify the home page
to tout new developments, to modify the software li-
cense (Section 5) or to deface other user’s personal
pages. For this we provide a Wiki-like74 syntax that
allows for the authorship of such pages and easy link-
ing between them. Like other Wikis, a link to a page
that does not exist is colored red, to alert the user to
the opportunity to stake out cyberspace real estate.
This syntax is compiled to XESP documents via the
page language; the resulting documents are active in
the sense that they check the status of linked pages
to report the correct color on every page load.

74Wikipedia, the free encyclopedia: Wiki; 2007

10

5 TIA Public License

In this section we reproduce the Total Information
Awareness Public License. Commentary is given via
footnotes75 into parts of the license.

TIA PUBLIC LICENSE
Revision 468, March 2007

BEGIN INVINCIBLE SECTION 1

This software is Copyright c© 2007–∞
The Regents of the Wikiplia Foundation.
Permission is not granted to reproduce this
software or license except by the terms
explicitly enumerated below.

I. Invincible Sections

This license contains certain invincible
sections, denoted by the text ‘‘BEGIN
INVINCIBLE SECTION <n>’’ and ‘‘END
INVINCIBLE SECTION <n>’’. Such
sections may not be modified under any
circumstances.

END INVINCIBLE SECTION 176

BEGIN INVINCIBLE SECTION 2

II. Version Identification and Invalid
Licenses

This license must identify itself in the
header as Revision <n> for some number
<n>, which must be the same as the revision
number in the Wikiplia repository for the
key ‘‘TPL’’ in which the license text is
stored. If this is not the case, then
this version of the license is considered
Invalid and Void.

Permission is not granted to distribute
the software or license using any Invalid
version of the license.

END INVINCIBLE SECTION 277

75Wikipedia, the free encyclopedia: footnote; 2007
76Invincible sections exist in order to ensure the sanctity

of the license. We first establish that invincible sections will
appear and that they are inviolable; this itself is done in an
invincible section. Invincible sections cause a limited loss of
liberty, but this is the cost of freedom.

77This invincible section establishes a connection between
license versions and the actual contents of the Wikiplia repos-

BEGIN INVINCIBLE SECTION 3

III. Option of License

The licensee has the option to choose
any revision of the license prior to
(numerically less than) this version as
the licensing terms for the software and
license.

END INVINCIBLE SECTION 3

BEGIN INVINCIBLE SECTION 4

IV. Heredity of License

Any copy or derivative work of this
software or license must be licensed under
the TIA Public License.

END INVINCIBLE SECTION 478

BEGIN INVINCIBLE SECTION 5

V. Completeness of Copy

This software and license may only be
copied in their entirety, including the
entire revision history.

END INVINCIBLE SECTION 579

VI. Freedom to edit

Permission is hereby granted to edit this
license.80

itory. Note the self-reference: Though this text is in an invin-
cible section and never changes, the referent of “this license”
does change as the rest of the license is modified. Because
Wikiplia assigns version numbers monotonically, this ensures
that the next invincible section is able to guarantee that free-
dom is monotonic. In the case of an invalid license, no permis-
sions whatsoever are granted, so the licensee must use a prior
valid version of the license. The initial version of the license is
valid.

78This clause makes the license “viral” like the GNU GPL,
so that freedom is preserved in all descendants of the software.

79This section is the centerpiece of Wikiplia; it guarantees
that the “source code” to any software or programming lan-
guage derived from Wikiplia is free from the loopholes de-
scribed in Section 2 and so maximizes Freedom c©. Note that
this does not limit the way that the software can be modified;
the programmer might begin by blanking all of the keys he
doesn’t care about—as long as he preserves the fact that there
was once something there.

80The only non-invincible provision of the original license al-
lows the reader to add provisions that he desires to the license.
This guarantees Freedom ¶, the freedom to redefine freedom.

11

This license is bootstrapping in the sense that it
grants only the minimal permissions necessary, after
setting up invariants via the behavior-limiting invin-
cible sections. In fact, the original version of the li-
cense does not directly permit the licensee to copy
the software at all; he must first amend the license
using VI to give himself this permission.

6 Conclusion

We have reached the end of our journey. But the jour-
ney is not complete! We conclude with a discussion of
future plans and unrelated work, and then conclude
with another paragraph.

6.1 Future Work

Though Wikiplia in its current form is a usable
general-purpose programming language, work re-
mains to be done for it to reach its full poten-
tial. For one, it needs a vibrant community of con-
tentious and hubristic editors hiding behind anony-
mous IP addresses boldly asserting half-baked syn-
tactic extensions or enforcing superficial style prefer-
ences, gritting their teeth while typing and clicking
white knuckled in a kind of road rage81 created by
the dehumanizing semantic markup by which they
are forced to communicate.

We also seek to improve the languages. The
language w needs many more features to speed
development: the parenthesis-based XESP syntax
should eventually be replaced by a pleasant con-
crete syntax, if we can get around to it before
too much code is written in XESP. A type sys-
tem82 is not planned, because type systems re-
strict Freedom ~, the freedom of expression. How-
ever, we should seek to make Wikiplia as multi-
paradigm as possible (again, freedom from discrim-
ination on the basis of paradigm83 orientation),
supporting OOPs-oriented programming,84 aspect-
oriented programming,85 duck-oriented typing,86

orientation-oriented orienteering,87 Orient-oriented

Note that even if a freedom-hater removes this provision from
the license, the invincible sections above ensure that the free-
dom to edit the license is preserved for all time.

81Wikipedia, the free encyclopedia: List of rages; 2007
82Wikipedia, the free encyclopedia: Type system; 2007
83Wikipedia, the free encyclopedia: paradigm; 2007
84Wikipedia, the free encyclopedia: Object-oriented programming; 2007
85Wikipedia, the free encyclopedia: Aspect-oriented programming; 2007
86Wikipedia, the free encyclopedia: Duck typing; 2007
87Wikipedia, the free encyclopedia: Orienteering; 2007

programming,88 etc.
The page language needs extensions for developing

human-readable web pages, mostly for the purpose of
creating jazzy graphics and boxes that distract from
or directly call attention to obvious problems with the
pages without actually addressing those problems.

6.2 Unrelated Work

All popular modern languages are defined via a defini-
tional interpreter89,90,91 with accompanying O’Reilly
“animal” book.92 The work on Wikiplia is unre-
lated: We have no animal mascot93 and the languages
are described by a tower of source-to-source trans-
lations94 on top of a universally parseable semantic
document in XML95 form.

The author96 doesn’t think97 much of musicals,98

to be perfectly99 honest,100 so those are basically101

a no-go. He also feels that the metric system102 but
paradoxically103 also time zones104 are pretty over-
rated. Ketchup105 on eggs106 is gross,107 but not quite
as gross as foie gras108, which more or less has the
word109 “gross” in its name110 so duh.111

6.3 Another Paragraph

We have described Wikiplia, the free programming
language that anyone can edit. Unlike other pro-
gramming languages, it is designed to support a vari-
ety of freedoms (c©, ~, 4, x1.2√�oo + x

z2 , ¶, ©q) and is
explicitly scalable to new freedoms. Wikiplia is im-
plemented in a minimal bootstrapping core based on
freedom-aware technologies such as XML, and then
built up to a featured system using its own faculties

88Wikipedia, the free encyclopedia: The Orient; 2007
89Wikipedia, the free encyclopedia: JavaScript; 2007
90Wikipedia, the free encyclopedia: Objective Caml; 2007
91Wikipedia, the free encyclopedia: Perl; 2007
92Wikipedia, the free encyclopedia: O’Reilly Media; 2007
93Wikipedia, the free encyclopedia: ORLY owl; 2007
94Wikipedia, the free encyclopedia: Translation; 2007
95Wikipedia, the free encyclopedia: Category:ML programming language family
96Wikipedia, the free encyclopedia: Author; 2007
97Wikipedia, the free encyclopedia: Thought; 2007
98Wikipedia, the free encyclopedia: Musical theatre; 2007
99Wikipedia, the free encyclopedia: Thomas Aquinas; 2007

100Wikipedia, the free encyclopedia: Honesty; 2007
101Wikipedia, the free encyclopedia: BASIC; 2007
102Wikipedia, the free encyclopedia: Metric system; 2007
103Wikipedia, the free encyclopedia: Pardadox; 2007
104Wikipedia, the free encyclopedia: Time zone; 2007
105Wikipedia, the free encyclopedia: Ketchup; 2007
106Wikipedia, the free encyclopedia: Egg (food); 2007
107Wikipedia, the free encyclopedia: Gross; 2007
108Wikipedia, the free encyclopedia: Foie gras; 2007
109Wikipedia, the free encyclopedia: Word; 2007
110Wikipedia, the free encyclopedia: Name; 2007
111Wikipedia, the free encyclopedia: Duh; 2007

12

for extension. However, much work remains to be
done. We invite you to join us!

http : //wikiplia.spacebar.org : 2222/

13

140

Comics Supplement

141

142

144

♬♩ ♪
(N o t e s)

146

